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Abstract

Cardiovascular ischemic diseases are one of the main causes of death all over the

world. In this kind of pathologies, it is fundamental to be well-timed in order to

obtain good prognosis in reperfusive treatment. In particular, an automatic clas-

sification procedure based on statistical analyses of tele-transmitted ECG traces

would be very helpful for an early diagnosis. This work presents an analysis on

electrocardiographic (ECG) traces (both physiological and pathological ones) of

patients whose 12-leads pre-hospital ECG has been sent by life supports to 118

Dispatch Center of Milan. The statistical analysis starts with a preprocessing step,

in which functional data are reconstructed from noisy observations and biological

variability is removed by a non linear registration procedure. Then, a multivariate

functional k-means clustering is carried out on reconstructed and registered ECG

curves and their first derivatives. Hence, a new semi-automatic diagnostic proce-

dure, based on the sole ECG’s morphology, is proposed to classify ECG traces

and the performance of this classification method is evaluated.

1 Introduction

Cardiovascular ischemic diseases are nowadays one of the main causes of death all over

the world. In Italy, they are responsible of 44% of overall deaths and call for the most

part of emergency rescue operations. In fact, almost all events which require rescue

operations to the 118 Milan Dispatch Center (the Italian free toll number for emergen-

cies) concern cardiovascular system. In case of coronary arteries ischemic disease, it

1



is fundamental to be well-timed in order to obtain good prognosis in reperfusive treat-

ment. This result can be obtained only with pre, inter and intra-hospital networks well

organized and synchronized.

Since 2001, a working group collecting 23 Cardiology Units of Milanese urban area

and 118 Dispatch Center has been activated. Starting from 2006, this group performs

monthly data collection twice a year on all patients admitted to any hospital belonging

to the Milan Cardiological Network of Milan with coronary artery disease. The analysis

of these data (see Ieva and Paganoni, 2010; Grieco et al., 2007, 2011), pointed out the

time of first ECG tele-transmission as the most important factor to guarantee a quick

access to an effective treatment for patients (see also Antman et al., 2008).

Then, since 2008, a project named PROMETEO (PRO-

getto sull’area Milanese Elettrocardiogrammi Teletra-

sferiti dall’ Extra Ospedaliero) has been started with

the aim of spreading the intensive use of ECG as pre-

hospital diagnostic tool and of constructing a new da-

tabase of ECGs with features never recorded before in

any other data collection on heart diseases. Thanks to

the partnerships of Azienda Regionale Emergenza Urgenza (AREU), Abbott Vascular

and Mortara Rangoni Europe s.r.l., ECG recorder with GSM transmission have been

installed on all Basic Life Supports (BLSs) of Milanese urban area.

In this work we analyse a sample (n = 198) of data coming from PROMETEO dataware-

house, which contains all the ECG traces recorded on Milanese urban area by BLSs

since the end of 2008. Each file contained in PROMETEO datawarehouse is in cor-

respondence to three sub-files. The first one is called Details and contains technical

information, useful for signal processing and analysis, such as times of waves’ repolar-

ization and depolarization, landmarks indicating onset and offset times of main ECG’s

subintervals and automatic diagnoses, established by Mortara-Rangoni VERITAS
TM

algorithm1. We used these automatic diagnoses to label ECG traces we analyzed, in

order to validate the performances of our unsupervised clustering algorithm. The chal-

lenge of this work, in fact, consists of tuning and testing a real time procedure which

enables semi automatic diagnosis of the patients’ disease based only on ECG traces

morphology, then not dependent on clinical evaluations. The second sub-file is called

Rhythm and contains the ECG signal sampled for 12 seconds (10000 sampled points).

The third one is called Median. It is built starting from Rhythm file, and depicts a ref-

erence beat lasting 1.2 seconds (1200 points). We carried out the analysis considering

only the Median files, obtaining 8 curves (one for each ECG lead) for each patient,

which represents his/her “Median” beat for that lead.

The main goal of this work is then to identify, from a statistical perspective, specific

ECG patterns which could benefit from an early invasive approach. In fact, the iden-

tification of statistical tools capable of classifying curves using their shape only could

support an early detection of heart failures, not based on usual clinical criteria. To this

aim, it is extremely important to understand the link between cardiac physiology and

ECG trace shape. As detailed in following sections, we focus on physiological traces in

1Mortara Rangoni Europe s.r.l. is the leading provider of ECG algorithms and components for various

clinical applications, see http://www.mortara.com.
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contrast to Right and Left Bundle Branch Block (RBBB and LBBB respectively) traces.

Bundle Branch Block (BBB) is a cardiac conduction abnormality seen on the ECG. In

this condition, activation of the left (right) ventricle is delayed, which results in the one

ventricle contracting later than the other.

Details on Bundle Branch Blocks and their connection with non-physiological shape

of ECG signal will be treated in Section 2, where also clinical details about ECG signals

will be given. Wavelet smoothing of ECG traces and their first derivatives and proce-

dure of landmarks registration are explained in Section 3. In Section 4 data analysis is

presented, consisting of a multivariate functional k-means clustering of QT-segments of

smoothed and registered ECG curves and first derivatives. Finally, in Section 5 results

of analysis are discussed, and further developments to be explored in future works are

proposed. Alla the analyses are carried out using R statistical software (see R Develop-

ment Core Team, 2009).

2 Electrocardiography and Bundle Branch Block

Electrocardiography is a transthoracic recording of the electrical activity of the heart

over time captured and externally recorded through skin electrodes. The ECG works

mostly by detecting and amplifying the tiny electrical changes on the skin that are

caused when the heart muscle depolarises during each heart beat (for further inquiry

about clinical details, see Lindsay, 2006).

First attempts of measuring ECG signals date back to Willem Einthoven (see Einthoven,

1908; Einthoven et al., 1950). The Einthoven limb leads (standard leads) are illustrated

in Fig. 1 and are defined in the following way:

Lead I: VI = ΦL −ΦR, Lead II: VII = ΦF −ΦR, Lead III: VIII = ΦF −ΦL;

where

Figure 1: Eithofen limb leads

VI = voltage of Lead I

VII = voltage of Lead II

VIII = voltage of Lead III

ΦL = potential at the left arm

ΦR = potential at the right arm

ΦF = potential at the left foot

These lead voltages satisfy the following relation-

ship:

VI +VIII = VII , (1)

hence only two of these three leads are indepen-

dent. A simple model results from assuming that

the cardiac sources are represented by a dipole located at the center of a sphere repre-

senting the thorax, hence at the center of an equilateral triangle. With these assump-

tions, the voltages measured by the three limb leads are proportional to the projections

of the electric heart vector on the sides of the lead vector triangle. The voltages of the

leads are obtained from Equation (1).
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Nowadays, the most commonly used clinical ECG-system, the 12-lead ECG system,

consists of the following 12 leads: I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6.

The main reason for recording all 12 leads is that it enhances pattern recognition (see

Goldberger 1942a and 1942b; Mason and Likar 1966 and Wilson et al. 1944). Of these

12 leads, the first six are derived from the same three measurement points. Therefore,

any two of these six leads include exactly the same information as the other four. So,

the ECG traces analyzed in the following sections will consist of leads I, II, V1, V2,

V3, V4, V5 and V6 only.

Fig. 2 shows a scheme of the typical shape of a physiological single beat, recorded

on ECG graph paper; main relevant points, segments and waves are highlighted. De-

flections in this signal are denoted in alphabetic order starting with the letter P, which

represents atrial depolarization. The ventricular depolarization causes the QRS com-

plex, and repolarization is responsible for the T-wave. Atrial repolarization occurs

during the QRS complex and produces such a low signal amplitude that it cannot be

detected, with the exception of physiological ECGs (see Scher and Young, 1957). The

direction of travel of the wave of depolarization is named the heart electrical axis.

Figure 2: Scheme of the typical shape of a physiological single beat, recorded on ECG

graph paper. Main relevant points, segments and waves are highlighted.

In the case of interest, the file Rhythm of our dataset represents the output of an

ECG recorder. From this curve, a representative heartbeat for each patient is obtained

and it is provided in the file Median. As we said before, it consists of a trace of a single

cardiac cycle (heartbeat), i.e. of a P wave, a QRS complex, a T wave, and a U wave,

which are normally visible in 50% to 75% of ECGs.

The heart’s electrical activity begins in the sinoatrial node (the heart’s natural pace-

maker, n.1 in Fig. 3), which is situated on the upper right atrium. The impulse travels

next through the left and right atria and summates at the AV node (n.2 in Fig. 3). From

the AV node the electrical impulse travels down the Bundle of His (n.3 in Fig. 3) and

divides into the right and left bundle branches (n.4 and 10 in Fig. 3). The right bundle

branch contains one fascicle. The left bundle branch subdivides into two fascicles: the

left anterior fascicle and the left posterior fascicle (n.4 and 5 in Fig. 3). Ultimately,

the fascicles divide into millions of Purkinje fibres which in turn interdigitise with indi-
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vidual cardiac myocytes, allowing for rapid, coordinated, and synchronous physiologic

depolarization of the ventricles.

Figure 3: Conduction system of the heart: 1. Sinoatrial node; 2. Atrioventricular node;

3. Bundle of His; 4. Left bundle branch; 5. Left posterior fascicle; 6. Left-anterior

fascicle; 7. Left ventricle; 8. Ventricular septum; 9. Right ventricle; 10. Right bundle

branch.

Bundle branch or fascicle injuries result in altered pathways for ventricular depolar-

ization. In this case, there is a loss of ventricular synchrony, ventricular depolarization

is prolonged, and there may be a corresponding drop in cardiac output.

¿From a clinical perspective, a RBBB typically causes prolongation of the last part

of the QRS complex, and may shift the heart electrical axis slightly to the right. LBBB

widens the entire QRS, and in most cases shifts the heart electrical axis to the left.

Another usual finding with bundle branch block is appropriate T wave discordance:

this means that the T wave will be deflected opposite the terminal deflection of the QRS

complex.

¿From a statistical point of view, we will focus our analysis on shape modifications

induced on the ECG curves and their first derivatives by the BBB pathology, and we will

investigate these shape modifications only in a statistical perspective, i.e. not using clin-

ical criteria to classify ECGs. The exploitation of these morphological modifications in

the clustering procedure will be the focus of the following Sections.

3 Data smoothing and registration

The dataset coming from PROMETEO datawarehouse consists of the ECG signals of

n = 198 subjects, among which 101 are Normal and 97 are affected by BBB (49 RBBB

and 48 LBBB). As mentioned above, the aim of this work is exploring ECG curves

morphology. Thus, the basic statistical unit is the multivariate function which describes

heart dynamics, for each patient, on the eight leads.

However, in practice we have only a noisy and discrete observation of the function
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describing ECG trace for each patient. Moreover, each patient has his own “biological”

time, i.e. the same event of the heart dynamics may happen at different time measure-

ments for different patients: this is only misleading from a morphological point of view.

These two problems are common in Functional Data Analysis (FDA) applications and

they can be addressed respectively with data smoothing and registration (see Ramsay

and Silverman, 2005).

3.1 Wavelets smoothing

The first step of the statistical analysis consists in data smoothing starting from noisy

measurements: to this aim, the choice of the functional basis is crucial. Wavelet bases

seem suitable for our data because every basis function is localized both in time and in

frequency, being therefore able to capture ECG strong localized features (peaks, oscil-

lations...). In particular we use a Daubechies wavelet basis with 10 vanishing moments

(see Daubechies, 1988 for details), because we are interested also in derivatives of the

ECG traces and thus we need a basis smooth enough for this purpose.

As in most smoothing methods based on wavelet expansion, it is necessary to deal

with a grid of 2J points, J ∈ N. Thus, in the further analysis we use only the central

210 = 1024 observation points. There is no loss of significant information: the portion

of the signal on which we focus the analysis contains all the important features of the

ECG trace. For this reason, we choose not to turn to non-decimated wavelets, which

could be applied also to non dyadic grid but require a larger computational effort.

Since the eight leads (i.e. I, II, V1, V2, V3, V4, V5 and V6) jointly describe the

complex heart dynamic, when smoothing these data it is appropriate to use a technique

which takes into account all the eight leads simultaneously. This helps in detecting

significant features, which reflect on more then one leads. To this aim in Pigoli and

Sangalli (2011) it is developed a wavelet based smoothing technique for multivariate

curves. This technique is used to obtain the estimation of 8 dimensional ECG signals.

It has also the advantage to provide an estimate of derivatives, which is straightforward

when the estimate is provided in functional basis expansion: it can be obtained simply

by a linear combination of the basis functions derivatives.

Thus, starting from the vectorial raw signal, we estimate the vectorial function

fi(t) = (Ii(t), IIi(t),V 1i(t),V 2i(t),V 3i(t),V 4i(t),V 5(t),V 6(t)),

and its derivatives, for each patient i = 1, . . . ,198. See Pigoli and Sangalli (2011) for a

detailed description of this smoothing procedure. Fig. 4 shows raw data and functional

estimates obtained with this wavelet smoothing procedure for a normal subject. Obser-

vations are now in a functional form and thus we can use FDA techniques. The smooth-

ing procedure is essential also for an accurate derivative reconstruction, as shown in

Fig. 5, where the estimate of the first derivative is superimposed to the first central

finite difference (i.e. a rough indication of first derivative behavior).

3.2 Landmark registration

Functional observations usually show both phase and amplitude variation, i.e. each

curve has its own biological time so that the same feature can appear at different times

among the patient. It is well known that a correct separation between these two kind
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Figure 4: Raw data of the eight leads (black points) and wavelet functional estimates

(blue) for a normal subject.
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Figure 5: First central finite difference of the eight leads (gray) and wavelet estimates

of the first derivatives (blue) for a normal subject.

of variability is necessary for a successful analysis (see Ramsay and Silverman, 2005).

We address this problem through a registration procedure based on landmarks, which

are points of the curve that can be associated with a specific biological time. Five of

these landmarks are provided by Mortara-Rangoni procedure and can be found in the

Details file. They identify the P wave (Ponset, Poffset), QRS complex (QRSonset, QRSoffset)
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Table 1: Landmarks obtained at the end of the registration procedure, as the mean of

landmarks of all the curves, and used to select the portion of smoothed and registered

ECG curves relevant to our analysis (first line of the table); in the second line, landmarks

standard deviations. Landmarks values are referred to a registered time in ms.

P0
onset P0

offset QRS0
onset I peak0 QRS0

offset T 0
offset

mean 184.3 298.2 354.8 407.2 476.9 755.8

standard deviation 39.7 37.4 18.9 15.4 21.4 44.2

and T wave (Toffset). We add one more landmark corresponding with the R peak on the I

lead (I peak). We choose this landmark because only on the I lead both physilogical and

pathological ECG traces present a clearly identifiable R peak. Since all the leads capture

the same heart dynamics, biological time must be the same. Thus, these landmarks can

be used to register all the leads. For each patient i we look for a warping function hi

such that
hi(Ponset) = P0

onset hi(Poffset) = P0
offset

hi(QRSonset) = QRS0
onset hi(I peak) = I peak0

hi(QRSoffset) = QRS0
offset hi(Toffset) = T 0

offset

where P0
onset, P0

offset, QRS0
onset, I peak0, QRS0

offset and T 0
offset are the mean values of the

correspondent landmarks. These values are reported in Table 1, together with the asso-

ciated standard deviations. We solve this problem using spline interpolation of degree

3. Thus, the registered vectorial function will be

Fi(t) = fi(hi(t)),

for every patient i = 1, . . . ,198. Fig. 6 shows both unregistered and registered I leads

for all the 198 patients. This is a non linear registration procedure, since in this frame-

work there is no simple affine transformation which can take in account the subject

specific variability. The registration procedure separates morphological information

(i.e. amplitude variability) from duration of the different segments of ECG (i.e. phase

variability). The former is captured by the registered ECG traces, while the latter is

described by warping functions, determined by landmarks. In clinical practice the du-

ration of different segments of ECG and particularly the QRS complex length is one of

the most important parameters to identify pathological situations. However, this kind

of information is not able to distinguish among different pathologies, such as Right and

Left BBB. This can be seen also in our dataset. If we perform a multivariate 3-means

algorithm on interval lengths (Poffset −Ponset, QRSonset −Poffset, QRSoffset −QRSonset and

Toffset−QRSoffset), with the aim of identifying the existing 3 groups, we obtain the result

shown in Table 2: this method correctly separates physiological traces from patholog-

ical ones but it gives no information on the pathology. For this reason, we focus our

analysis on the registered curves, in the attempt to extract other diagnostic informa-

tion from ECG morphology. In clinical practice, the result of our analysis should be

considered together with traditional diagnostic tools based on segment lengths.
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Figure 6: Original I leads for the 198 patients (left) and registered ones (right). Verti-

cal lines indicate position of mean landmarks P0
onset, P0

offset, QRS0
onset, I peak0, QRS0

offset,

T 0
offset .

Table 2: Confusion matrix related to patients disease classification. Results are obtained

performing 3-means clustering algorithm on interval lengths.

Normal RBBB LBBB

Cluster 1 96 6 0

Cluster 2 2 17 25

Cluster 3 3 26 23

4 Data analysis

In this section we propose the use of FDA techniques to perform clustering of smoothed

and registered ECG traces. Aim of the analysis is the development of a proper classi-

fication procedure, able to distinguish the grouping structure induced in the sample of

ECGs by the presence of different pathologies, on the basis of the sole shape of the

considered curves.

As previously discussed in Section 2, ECG traces are very complex functional data,

in which different portions of the domain can be analyzed in order to detect differ-

ent pathologies. The main focus of our analysis stands in the investigation of BBB

pathology, which mainly expresses in the ECG trace through a lengthening of the QRS

complex and a modification of the T wave. In fact, the diagnosis of BBB is not con-

cerned with modifications in P wave, since this portion of the ECG curve deals with

cardiac rhythm dysfunctions our patients are not affected by. We thus focus our classi-

fication analysis on the QT-segment. Since we have already registered the ECG signals,

all the curves show relevant features at the same time points, corresponding to the ref-

erence landmarks P0
onset, P0

offset, QRS0
onset, I peak0, QRS0

offset, T 0
offset (see Section 3.2): this

fact allows us to select, for all the registered curves of the dataset, only the portion of

ECG trace belonging to the interval [P0
offset,T

0
offset], which is relevant to our diagnostic

purposes.
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In particular, we select only the portion of

F(t) = {Fr(t)}8
r=1 = (I(t), II(t), V 1(t), V 2(t), V 3(t), V 4(t), V 5(t), V 6(t))

such that t ∈ T := [P0
offset,T

0
offset], where P0

offset and T 0
offset are the values reported in the

first line, second and sixth columns of Table 1.

4.1 Functional classification

We analyze the n patients according to a functional k-means clustering procedure, in

which all the eight leads Fi(t) : T → R
8, for patients i = 1, . . . ,n, are simultaneously

clustered. To develop this clustering procedure we suppose that Fi(t) ∈ H1(T ;R8).
Since we consider all the eight leads simultaneously in the analysis, we name the

employed clustering procedure multivariate functional k-means, to distinguish it from

standard functional k-means, which would treat each lead separately.

A proper definition of functional k-means procedure and an introduction to its con-

sistency properties can be found in Tarpey and Kinateder (2003). We develop a similar

k-means procedure, choosing the following distance between ECG traces

d1(Fi(t),F j(t)) =

√

8

∑
r=1

∫

T
(Fr

i (t)−Fr
j (t))

2dt +
∫

T
(DFr

i (t)−DFr
j (t))

2dt, (2)

for i, j = 1, . . . ,n, and with DFr
i (t) being the wavelet estimate of the first derivative of

the r-th lead in the ECG trace of the i-th patient. Note that the distance defined in (2) is

the natural distance in the Hilbert space H1(T ;R8).
In order to perform comparisons, and to test the robustness of our clustering proce-

dure, we considered two more distances between two ECG traces

d̃1(Fi(t),F j(t)) =

√

8

∑
r=1

∫

T
(DFr

i (t)−DFr
j (t))

2dt, (3)

d2(Fi(t),F j(t)) =

√

8

∑
r=1

∫

T
(Fr

i (t)−Fr
j (t))

2dt. (4)

The distance defined by (3) is the natural semi–norm in the Hilbert space H1(T ;R8),
while the one defined in (4) is the norm in the Hilbert space L2(T ;R8): they are both

considered in the clustering procedure not only to compare performances of multivariate

functional k-means under different specifications of the distance, but also to have an

insight on the role of curves first derivatives: we claim that both the ECG trace and its

first derivative are essential to distinguish more similar morphologies from less similar

ones.

Functional k-means clustering algorithm is an iterative procedure, which alternates

a step of cluster assignment, in which all curves are assigned to a cluster, and a step

of centroid calculation, in which a relevant functional representative (the centroid) for

each cluster is identified.

More precisely, in the cluster assignment step each curve is assigned to the cluster

whose centroid (computed at the previous iteration) is nearer according to the distances
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defined in (2), (3) or (4) respectively. Instead, the identification of centroids ϕl(t) for

l = 1, . . . ,k, is performed solving the following optimization problem

ϕl(t) = argmin
ϕ∈Ωd

∑
i:Ci=l

d(Fi(t),ϕ(t))2,

where Ci is the cluster assignment of the ith patient at the current iteration, d is one of

the three distances defined in (2-4), and Ωd is the Hilbert space with respect to which

the chosen distance d is natural. The solution to this infinite dimensional optimization

problem obviously depends on the choice of the distance: it is possible to prove that,

both when the distance is measured with (2), and when it is measured with (4), the

minimizer ϕl(t) corresponds to the functional mean of curves belonging to the same

cluster. An immediate consequence of this result is that, when the semi–norm in H1

(eq. (3)) is used, the centroid is the functional mean of the first derivatives of curves

belonging to the same cluster.

There are many different implementations of functional k-means algorithm in the

literature on functional data analysis, among which some procedures integrate regis-

tration in the classification steps (e.g. the k-means alignment algorithm described in

Sangalli et al., (2010), the core shape modeling approach in Boudaoud et al., (2010),

the non-parametric time–synchronized iterative mean updating technique in Liu and

Müller, (2003), or finally the SACK model in Liu and Yang, (2009)). Here, instead,

we chose to separate registration and clustering in two subsequent steps of the analysis,

since the latter doesn’t use any information beside morphology of the ECG traces, while

the former is based on a strong clinical indication provided by landmarks supplied by

the Mortara-Rangoni VERITAS
TM

algorithm.

The k-means clustering procedure clearly depends not only on the choice of the

distance, but also on the number of clusters k. Being the number of clusters a–priori

unknown, we also consider a way to select the optimal number of clusters k∗ via silhou-

ette values and plot of the final classification (see Struyf et al., 1997). In particular, the

silhouette plot of a final classification consists in a bar plot of the silhouette values si,

obtained for each patient i = 1, . . . ,n as

si =
bi −ai

max{ai,bi}
,

where ai is the average distance, according to one of the three distances defined in (2-4),

of the ith patient to all other patients assigned to the same cluster, while

bi := min
l=1,...,k;l 6=Ci

∑ j:C j=l d(Fi(t),F j(t))

#{ j : C j = l}

is the minimum average distance of the ith patient from another cluster, where d is one

of the three distances defined in (2-4). Clearly si always lies between −1 and 1, the

former value indicating a misclassified patient, while the latter a very well classified

one. Note that a patient which alone constitutes a cluster, has silhouette value equal to

1, but he is not considered in the silhouette plot for choosing k∗.
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Figure 7: Silhouette plots of the clustering result obtained via multivariate functional k-

means procedure, setting k = 2,3,4,5 and with distance given by (2); data are ordered

according to an increasing value of silhouette within each cluster, and are coloured

according to the cluster assignment.
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Figure 8: Smoothed and registered ECG traces (QT-segment): the whole dataset is

coloured according to the final cluster assignments of multivariate functional 3-mean

clustering, with distance given by (2); the superimposed black lines are the three final

cluster centroids (functional means). Each panel correspond to a different lead of the

ECG traces.
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4.2 Results and discussion

Aim of the analysis is to detect the underlying grouping structure in our sample of

198 ECG traces. We thus perform clustering of the whole dataset via the multivariate

functional k-means algorithm previously described, using the different definitions of

the distance between curves given in (2-4).

The final silhouette plots obtained by clustering the sample of 198 ECG traces ac-

cording to a multivariate functional k-means procedure with distance d1 (2), and setting

k = 2,3,4,5, are shown in Fig. 7. As we can appreciate from the picture, the grouping

structure obtained setting k = 3 seems the best one, both in terms of silhouette profile,

and in terms of wrong assignments. A similar result is obtained measuring the distance

between curves via (3) or (4); however, the procedure seems to detect the best grouping

structure when both the curves and their derivatives are considered in the distance. We

thus set k∗ = 3.

The final classification obtained with this choice of the distance, and setting k = 3,

is shown in Fig. 8, where the whole functional dataset is coloured according to cluster

assignments; each panel corresponds to a different lead. From inspection of this picture

a different shape of ECGs assigned to different clusters can be immediately appreciated,

especially looking at the final centroids (functional mean) of each group, drawn in black

in each panel of the picture. We shall now verify whether this difference in the ECGs

morphology across clusters is due to the different pathology.

Since we have an indication of the different pathologies of the patients included in

the sample, we can analyze the confusion matrix associated to the final cluster assign-

ments, with respect to the Mortara-Rangoni algorithm classification (Normal, RBBB

and LBBB). The confusion matrices obtained via multivariate functional k-means with

different choices of the distance between curves (given by d1, d̃1 or d2) are shown in

Table 3. We remark that the final cluster assignments are based on the sole shape of the

smoothed and registered ECG curves and their first derivatives, analyzed via a unsuper-

vised classification procedure.

Both choosing the H1 norm and the L2 norm, the results seem appreciable, and

slightly better in the former case: the final grouping structure traces out quite coherently

the patients disease classification, with only few cases wrongly assigned. Moreover, we

remark the improvement in the results obtained via multivariate functional 3-means

with respect to the results of 3-means clustering algorithm on interval lengths (see Ta-

ble 2): we are now able not only to detect pathological subjects, but also to distinguish

between the two different pathologies present in the dataset. The result obtained via

multivariate functional 3-means clustering with H1 semi-norm, instead, is not so posi-

tive, since cluster 1 and 2 apparently merge physilogical traces with ECGs of patients

affected by RBBB.

The effectiveness of the clustering procedure in detecting the grouping structure

among data suggests the definition of a semi–automatic diagnostic procedure based on

the multivariate functional k-means algorithm: in fact, the final result of our clustering

procedure is a set of k centroids, representative of each cluster, which can be used as

reference signals to compare a new ECG trace. Suppose a new ECG signal is available:

we could have an immediate hint on the new patient’s diagnosis by smoothing its ECG

trace, registering it and finally assigning it to the group characterized by the nearest

centroid.
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Table 3: Confusion matrices related to patients disease classification. Results are

obtained by application of multivariate functional 3-means clustering algorithm to

smoothed and registered QT-segment of ECG curves, with different choices of the dis-

tance between ECGs: H1 norm (eq. (2), first table), H1 semi-norm (eq. (3), second

table) and L2 norm (eq. (4), third table). In the first table, cluster 1,2,3 respectively

correspond to orange, green and red in Fig. 8.

Normal RBBB LBBB

1 95 7 1

2 6 42 3

3 0 0 44

Normal RBBB LBBB

1 71 12 0

2 30 36 5

3 0 1 43

Normal RBBB LBBB

1 94 6 2

2 7 43 3

3 0 0 43

It is important to evaluate the misclassification cost for this procedure, with the

choice of the different functional distances. To this aim, we perform a cross-validation

analysis. We randomly choose among ECGs a training set of 80 Normal subjects, 40

to RBBBs and 40 to LBBBs, for a total of ntraining = 160 curves. A multivariate func-

tional 3-means clustering is performed on the selected training set; we then consider

the remaining ntest = 38 curves, and we assign each of them to the cluster whose cen-

troid is nearer, according to distances (2-4). Given the patients disease classification,

we compute misclassification cost using the following index

costCV =
λ1 ·miscN +λ2 · (miscRN +miscLN)+λ3 · (miscRL +miscLR)

ntest

, (5)

where miscN is the number of healthy patients assigned to a pathological cluster2,

miscRN and miscLN are the number of patients respectively affected by RBBB and

LBBB which are assigned to the cluster of healthy patients, while miscRL and miscLR are

the number of patients whose ECGs are detected as pathological, but whose pathology

is wrong. The parameters λ1, λ2 and λ3 are misclassification weights: they are chosen

according to the suggestion of the clinicians, who believe that assigning a BBB patient

to the cluster of healthy patients is approximately 4 times more serious than treating as

pathological a normal subject, which indeed is two times more serious than assigning

a RBBB patient to the LBBB cluster (or viceversa); in order to determine the values of

the weights we introduce a further request: costCV = 1 in the worst case, i.e. when all

2given the final cluster assignments, the cluster of healthy patients is detected as the one that includes

the most physiological traces. The pathological ones are subsequently chosen, first the one that contains

the more RBBB traces, while the cluster that remains is the LBBB one.
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Table 4: Mean misclassification cost (first row) and standard deviation (second row)

computed over 20 repetitions of the cross-validation procedure via eq. (5).

distance d1 d̃1 d2

mean costCV 0.1227563 0.2286588 0.1275316

std dev costCV 0.1112663 0.1050911 0.1220574

Normal subjects are classified as BBB and all BBB subjects are classified as Normal.

This led to the choices λ1 = 0.4270, λ2 = 1.7079 and λ3 = 0.2135.

We repeat this procedure 20 times, computing each time the misclassification cost

according to eq. (5): the mean and standard deviation computed along the 20 cross-

validation repetitions are shown in Table 4. Even if all the distances (2-4) provide

good results, we notice that the norm in the Hilbert space H1(T ;R8) seems to give best

results, thus confirming our initial claim: both registered curves and first derivatives are

needed to accurately compare ECGs morphology.

5 Conclusions

In this work we proposed a statistical framework for analysis and classification of

ECG curves starting from their sole morphology. We analyzed a database composed

by 198 ECG traces - 101 of them were Normal, 49 were RBBB and 48 were LBBB

- extracted from PROMETEO datawarehouse. The strongly localized features (peaks,

oscillations. . .) of ECG curves makes them particulary suited to be smoothed via wavelets

methods, since every basis function is localized both in time and in frequency; to this

aim, and to reconstruct smoothed curves together with their first derivatives, we used

a Daubechies wavelet basis with 10 vanishing moments. Moreover, being ECGs func-

tional observations, they show both phase and amplitude variation, i.e. the same fea-

tures can appear at different times among the patients. Since a correct separation be-

tween these two kind of variability is necessary for a successful analysis, we register

ECG traces, choosing a landmark based procedure, which identifies as landmarks those

time points that can be associated with a specific biological event. Five of them are

provided by the Mortara-Rangoni VERITAS
TM

algorithm, identifying the P wave, the

QRS complex and the T wave; we add one more landmark corresponding to the peak of

R wave on the I lead, an easily localized feature on each ECG. In this way, we managed

to separate morphological information of the curves (i.e. amplitude variability) from

duration of each ECG interval (i.e. phase variability).

We chose to analyze morphological information via a multivariate functional k-

means, thus simultaneously clustering all 8 leads of each patient, with three different

choices for the distance between ECGs, involving curves and/or first derivatives; our

claim is that both the ECG trace and its first derivative are necessary to deeply capture
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the morphological characteristics of ECGs. The optimal number of clusters can be cho-

sen via a measure of the goodness of the clustering results, and in all considered cases

it is set equal to 3. The confusion matrix resulting from our classification framework

shows appreciable results, especially when the distance considers both curves and first

derivatives, confirming our initial claim. Thus, we propose a classification procedure

which uses groups centroid as reference signals. This technique could help in the semi–

automatic diagnosis of BBB–related pathologies. We perform a cross-validation analy-

sis to evaluate the misclassification cost associated to this procedure: our algorithm per-

formances seem very appreciable, especially when functional distance considers both

ECG curves and their first derivatives. The proposed classification procedure has an

extreme generality, due to the flexibility in the definition of distance between functional

data.

In fact, the innovative aspect of this proposal consists in developing advanced statis-

tical methods aimed at detecting pathological ECG traces (in particular Bundle Branch

Blocks), starting only from morphological features of the curves. This allows for diag-

noses consistent with clinical practice, starting from purely statistical considerations.

Further refinements of our clustering procedure could help in its integration in the

cardiovascular context, possibly for the diagnosis of different kinds of pathologies (not

only BBB); due to the extreme generality of the algorithm, which is based only on

morphological characteristics of the curves, this generalization can be based on a proper

definition of a distance between functional data, e.g. including higher order derivatives.

Acknowledgment

This work is within PROMETEO (PROgetto sull’area Milanese Elettrocardiogrammi

Teletrasferiti dall’Extra Ospedaliero). The authors wish to thank in particular dr. Nic-
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