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Abstract

For partial differential equations of mixed elliptic-hyperbolic type we prove results on exis-

tence and existence with uniqueness of weak solutions for “closed” boundary value problems of

Dirichlet and mixed Dirichlet-conormal types. These problems are of interest for applications

to transonic flow and are over-determined for solutions with classical regularity. The method

employed consists in variants of the a−b−c integral method of Friedrichs in Sobolev spaces

with suitable weights. Particular attention is paid to the problem of attaining results with a

minimum of restrictions on boundary geometry and the form of the type change function.
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1 Introduction.

The purpose of this work is to examine the question of well-posedness for boundary value problems

for linear partial differential equations of second order of the form
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Lu = K(y)uxx + uyy = f in Ω (1.1)

Bu = g on ∂Ω (1.2)

where K ∈ C1(R2) satisfies

K(0) = 0 and yK(y) > 0 for y 6= 0, (1.3)

Ω is a bounded open and connected subset of R2 with piecewise C1 boundary, f, g are given

functions and B some given boundary operator. We assume throughout that

Ω± := Ω ∩R2
± 6= ∅ (1.4)

so that (1.1) is of mixed elliptic-hyperbolic type. We will call Ω a mixed domain if (1.4) holds.

Additional hypotheses on f, g, K and Ω will be given as needed. Such an equation is of Tricomi

type and goes by the name of the Chaplygin or Frankl’ equation due to its longstanding importance

in the problem of transonic fluid flow (see the classic monograph [4] or the modern survey [19], for

example). This connection is our principal motivation.

Such a boundary value problem will be called closed in the sense that the boundary condition

(1.2) is imposed on the entire boundary as opposed to an open problem in which (1.2) is imposed

on a proper subset Γ ⊂ ∂Ω. Both kinds of problems are interesting for transonic flow; for example,

open problems arise in flows in nozzles and closed problems arise in flows about airfoils. Much

more is known about open problems, beginning with the work of Tricomi [26] who considered the

case K(y) = y with the boundary condition Bu = u on Γ = σ ∪ AC where σ is a simple arc in

the elliptic region y > 0 and AC is one of two characteristic arcs which form the boundary in the

hyperbolic region y < 0. Both the equation and this boundary condition now carry his name.

On the other hand, much less is known about closed problems which is due in part to the fact

that closed problems for mixed type equations are typically overdetermined for classical solutions.

This is essentially due to the presence of hyperbolicity in the mixed type problem; for example,

it is well known that the Dirichlet problem for the wave equation is not well posed for classical
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solutions as first noted by Picone [21] and further investigated by Fichera [6, 7]. More precisely,

under mild assumptions on the function K and the geometry of the boundary one has a uniqueness

theorem for regular solutions to the Tricomi problem of the following form: Let u ∈ C2(Ω)∩C1(Ω\
{A,B})∩C0(Ω) solve Lu = K(y)uxx +uyy = 0 in Ω and u = 0 on σ∪AC, then u = 0 in all of Ω.

Such uniqueness theorems have been proven by a variety of methods, including energy integrals as

in [23] and maximum principles as in [1] and [14]. Such uniqueness theorems imply that the trace of

a regular solution u on the boundary arc BC is already determined by the boundary values on the

remainder of the boundary and the value of L(u) in Ω. Hence, if one wants to impose the boundary

condition on all of the boundary, one must expect in general that some real singularity must be

present. Moreover, in order to prove well-posedness, one must make a good guess about where

to look for the solution; that is, one must choose some reasonable function space which admits a

singularity strong enough to allow for existence but not so strong as to lose uniqueness. This, in

practice, has proven to be a difficult problem.

Despite the interest in closed problems for mixed type equations, the literature essentially

contains only two results on well-posedness. The first, due to Morawetz [18] concerns the Dirichlet

problem for the Tricomi equation (K(y) = y) and the second due to her student Pilant [22] concerns

the natural analog of the Neumann problem (conormal boundary conditions) for the Laurentiev-

Bitsadze equation (K(y) = sgn(y)). In both cases, the restrictions on the boundary geometry

are quite severe in that the domains must be lens-like and thin in some sense. Such restrictions on

boundary geometry and the type change function are not particularly welcome in the transonic flow

applications since the boundary geometry reflects profile or nozzle shape and the approximation

K(y) ∼ y is valid only for nearly sonic speeds. The main purpose of this paper is to show well-

posedness continues to hold for classes of type change functions and more general domains.

A brief summary of the results obtained is the following. In section 2, we investigate the

notions of weak and strong solutions for the Dirichlet problem. In a very general setting, we show

both the existence of a weak solution and the uniqueness of the strong solution. However, the

weak solution may not be unique nor satisfy the boundary condition in a strong sense while the

strong solution may not exist. Hence there is a need for a suitable intermediary notion of solution

to establish well posedness. In section 3, we deine this suitable intermediary notion and show
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that under slightly stronger restrictions on the type change function and the domain, one has the

existence of a unique generalized solution for the Dirichlet problem. Under similar restrictions, in

section 4, we show the existence and uniqueness of a generalized solution to a problem with mixed

boundary conditions (Dirichlet conditions on the elliptic boundary and conormal conditions on

the hyperbolic boundary). The main ingredients in the proofs are variants of the classical a−b−c

method of Friedrichs where our multipliers are calibrated to an invariance or almost invariance of

the differential operator. In particular, section 2 employs the technique as first used by Protter [23]

with a differential multiplier, section 3 uses the idea of Didenko [5] with an integral multiplier, and

section 3 uses the technique of Morawetz [17] by first reducing the problem to a first order system

and then using a differential multiplier. Attempts to improve Pilant’s work on the full conormal

problem are in progress.

2 Weak and strong solutions for the Dirichlet problem.

In this section we show that even though closed boundary value problems for mixed type are over-

determined for classical solutions, at least for the Dirichlet boundary condition, one can obtain a

general existence result for a very weak formulation of the problem as well a general uniqueness

result for a sufficiently strong formulation. In particular, very little is assumed about boundary

geometry and only mild and reasonable hypotheses are placed on the type change function K.

In what follows Ω will be a bounded mixed domain (open, connected, satisfying (1.4)) in R2

with piecewise C1 boundary so that we may apply the divergence theorem. The function K ∈ C1(R)

will be taken to satisfy (1.3) and additional assumptions as necessary. We will make use of several

natural spaces of functions and distributions; namely for treating the Dirichlet problem

Lu = K(y)uxx + uyy = f in Ω (2.1)

u = 0 on ∂Ω, (2.2)

we define H1
0 (Ω;K) as the closure of C∞0 (Ω) (smooth functions with compact support) with respect

to the weighted Sobolev norm
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||u||H1(Ω;K) :=
[∫

Ω

(|K|u2
x + u2

y + u2
)

dxdy

]1/2

(2.3)

and denote by H−1(Ω;K) the dual space to H1
0 (Ω;K) equipped with its negative norm in the sense

of Lax

||w||H−1(Ω;K) := sup
0 6=ϕ∈C∞0 (Ω)

|〈w, ϕ〉|
||ϕ||H1

0 (Ω;K)

, (2.4)

where 〈·, ·〉 is the duality bracket. One clearly has a rigged triple of Hilbert spaces

H1
0 (Ω;K) ⊂ L2(Ω) ⊂ H−1(Ω;K), (2.5)

where the scalar product (on L2 for example) will be denoted by (·, ·)L2(Ω). Moreover, since u ∈
H1

0 (Ω; K) vanishes weakly on the entire boundary, one has a Poincarè inequality: there exists

CP = CP (Ω,K)

||u||2L2(Ω) ≤ CP

∫

Ω

(|K|u2
x + u2

y

)
dxdy, u ∈ H1

0 (Ω;K) (2.6)

The inequality (2.6) is proven in the standard way by integrating along segments parallel to the

coordinate axes for u ∈ C1
0 (Ω) and then using continuity. An equivalent norm on H1

0 (Ω;K) is thus

given by

||u||H1
0 (Ω;K) :=

[∫

Ω

(|K|u2
x + u2

y

)
dxdy

]1/2

. (2.7)

Other notations and function spaces will be introduced as needed.

It is routine to check that the second order operator L in (2.1) is formally self-adjoint when

acting on distributions D′(Ω) and gives rise to a unique continuous and self-adjoint extension

L : H1
0 (Ω;K) → H−1(Ω; K) (2.8)

Using standard functional analytic techniques, one can obtain results on weak existence and strong

uniqueness for solutions to the Dirichlet problem (2.1)− (2.2). The key point is to obtain a suitable

a priori estimate by performing an energy integral argument with a well chosen multiplier.
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Lemma 2.1. Let Ω be any bounded region in R2 with piecewise C1 boundary. Let K ∈ C1(R) be

a type change function satisfying (1.3) and

K ′ > 0 (2.9)

∃δ > 0 : 1 +
(

4K

K ′

)′
≥ δ (2.10)

Then there exists a constant C1(Ω,K) such that

||u||H1
0 (Ω;K) ≤ C1||Lu||L2(Ω), u ∈ C2

0 (Ω) (2.11)

Proof: To obtain the estimate, one considers an arbitrary u ∈ C2
0 (Ω) and a triple of (a, b, c) of

sufficiently regular functions to be determined. One seeks to estimate the expression (Mu,Lu)L2

from above and below where Mu = au + bux + cuy is the as yet undetermined multiplier. One has

that

(Mu,Lu)L2 =
∫

Ω

[div(Mu(Kux, uy))−∇(Mu) · (Kux, uy)] dxdy (2.12)

which can be rewritten with the aid of the divergence theorem as

(Mu, Lu)L2 =
1
2

∫

Ω

[
αu2

x + 2βuxuy + γu2
y + u2La

]
dxdy

+
1
2

∫

∂Ω

[
2Mu(Kux, uy)− (Ku2

x + u2
y)(b, c)− u2(Kax, ay)

] · ν ds (2.13)

where

α := −2Ka−Kbx + (Kc)y (2.14)

β := −Kcx − by (2.15)

γ := −2a + bx − cy (2.16)

ν is the unit exterior normal, and ds is the arc length element. For u with compact support, the

boundary integrals will vanish and the choices
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a ≡ −1, b ≡ 0, c = c(y) = max{0,−4K/K ′} (2.17)

yield

(Mu, Lu)L2 =
∫

Ω+

(
Ku2

x + u2
y

)
dxdy +

∫

Ω−

[
1 +

(
4K

K ′

)′]
(−Ku2

x + u2
y) dxdy

≥ min{1, δ}
∫

Ω

(|K|u2
x + u2

y

)
dxdy, u ∈ C2

0 (Ω) (2.18)

where Ω± := Ω ∩ {(x, y) : ±y ≥ 0}. Technically, since c is only piecewise C1(Ω) one should first

cut the integral along y = 0 and note that the boundary terms (as given in (2.13)) along the cut

will cancel out.

One estimates from above using the Cauchy-Schwartz inequality and the regularity and mono-

tonicity of K to find

(Mu, Lu)L2 ≤ ||Mu||L2(Ω)||Lu||L2(Ω) ≤ CK ||u||2H1
0 (Ω;K)||Lu||L2(Ω), u ∈ C2

0 (Ω). (2.19)

where CK depends on sup(|K/K ′|). To complete the estimate, one combines (2.18) and (2.19) with

the Poincarè inequality (2.6) to find (2.11) with C1(Ω,K) = [CK(1 + CP )/(min{1, δ})]1/2.

An existence theorem for weak solutions follows from the a priori estimate (2.11).

Theorem 2.2. Let Ω be any bounded region in R2 with piecewise C1 boundary. Let K ∈ C1(R) be

a type change function satisfying (1.3), (2.9) and (2.10). Then for each f ∈ H−1(Ω;K) there exists

u ∈ L2(Ω) which weakly solves (2.1)− (2.2) in the sense that

(u, Lϕ)L2 = 〈f, ϕ〉, ϕ ∈ H1
0 (Ω;K) : Lϕ ∈ L2(Ω). (2.20)

Proof: The basic idea is to combine the a priori estimate with the Hahn-Banach and Riesz rep-

resentation theorems. Given any distribution f ∈ H−1(Ω; K) one defines the linear functional by

Jf (Lϕ) = 〈f, ϕ〉 for ϕ ∈ C∞0 (Ω). By the generalized Schwartz inequality and the estimate (2.11)

one has
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|Jf (Lϕ)| ≤ C1||f ||H−1(Ω;K)||Lϕ||L2(Ω), ϕ ∈ C∞0 (Ω) (2.21)

and so this functional is bounded on the subspace V of L2(Ω) of elements of the form Lϕ with

ϕ ∈ C∞0 (Ω). By the Hahn-Banach theorem, Jf extends to the closure of V in L2(Ω) in a bounded

way. Extension by zero on the orthogonal complement of V gives a bounded linear functional on all

of L2(Ω) and so by the Riesz representation theorem there exists u ∈ L2(Ω) so that (2.20) holds.

We note that the Sobolev space H1
0 (Ω; K) is a normal space of distributions and that L is

formally self-adjoint and hence the proof of Theorem 2.2 is classical (cf. Lemma B.1 of [25]) where

one can show also that the solution map from H−1(Ω;K) to L2(Ω) is continuous with respect to

the relevant norms.

The estimate (2.11) also shows that sufficiently strong solutions must be unique. We say

that u ∈ H1
0 (Ω;K) is a strong solution of the Dirichlet problem (2.1) − (2.2) if there exists an

approximating sequence un ∈ C2
0 (Ω) such that

||un − u||H1(Ω;K) → 0 and ||Lun − f ||L2(Ω) → 0 as n → +∞ (2.22)

The following theorem is an immediate consequence of the definition.

Theorem 2.3. Let Ω be any bounded region in R2 with piecewise C1 boundary. Let K ∈ C1(R) be

a type change function satisfying (1.3), (2.9) and (2.10). Then any strong solution of the Dirichlet

problem (2.1)− (2.2) must be unique.

We note that the class of admissible K is very large and includes the standard models for

transonic flow problems such as the Tricomi equation with K(y) = y and the Tomatika-Tamada

equation K(y) = A(1 + e2By) with A,B constants. Moreover, the result also holds for non strictly

monotone functions such as the Gellerstedt equation with K(y) = y|y|m−1 where m > 0. In this

case, one can check that in place of (2.15) it is enough to choose the “dilation multiplier” introduced

in [13]

a ≡ 0, b = (m + 2)x, c = 2y. (2.23)

8



We also note that no boundary geometry hypotheses have been made for the weak existence result

above for the Dirichlet problem; in particular, there are no star-like hypotheses on the elliptic part

and no sub-characteristic hypotheses on the hyperbolic part. These kinds of hypotheses will enter

however later on when we look for existence of solutions in a stronger sense.

On the other hand, it is clear that the existence is in a very weak sense; too weak in fact

to be very useful. In particular, the sense in which the solution vanishes at the boundary is only

by duality and one may not have uniqueness. In fact, the estimate (2.11) which holds for both

L and its formal adjoint L∗ = L together with the Poincarè inequality (2.6) gives an L2 − L2

estimate for both L and L∗ for test functions u, v ∈ H2(Ω) ∩H1
0 (Ω;K). These are the necessary

and sufficient conditions of Berezanskii for a problem with almost correct boundary condition (cf.

Chapter 2 of [3]). In order to be sure that the weak solution which exists is strong and satisfies the

boundary condition in the sense of traces, one needs to show that u ∈ H2(Ω), which will not hold

in general for f ∈ L2. In any case, the existence result is a first general indication that while the

closed Dirichlet problem is generically over-determined for regular solutions, it is generically not

over-determined if one looks for a solution which is taken in a sufficiently weak sense. Moreover,

while uniqueness generically holds for strong solutions, one must show that such strong solutions

exist.

Example 2.4. Let Ω be any mixed domain containing the origin. Consider the function

u(x, y) = ψE(x, y) =





C−|9x2 + 4y3|5/6 (x, y) ∈ Ω ∩D−(0)

0 (x, y) ∈ Ω \ D−(0)
(2.24)

where ψ(x, y) = 9x2 + 4y3, D− = {(x, y) ∈ R2 : 9x2 + 4y3 < 0} is the backward light cone from

the origin and

C− =
3Γ(4/3)

22/3π1/2Γ(5/6)
. (2.25)

Then u is a weak solution in the sense (2.20) of the equation Tu = yuxx + uyy = f where

f = −18yE

(
7
3
E + 3xEx + 2yEy

)
(2.26)
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The distribution E defined by (2.24) is the fundamental solution of Barros-Neto and Gelfand

[2] for the Tricomi operator with support in D−(0) and one verifies that (2.26) holds in the sense

of distributions by repeating their calculations with ψE in the place of E. One has u ∈ L2(Ω) since

it is continuous on the closure and that f ∈ H−1(Ω;K). The verification of (2.20) then follows.

One notes that the restriction of u does not vanish on all of the boundary and moreover that one

should then be able to build another weak solution to the equation by adding a suitable smooth

function in the kernel of T .

As a final remark in this section we note that the approach of obtaining the a priori estimate

(2.11) has its origins in the so-called a−b−c method of Friedrichs which was first used by Protter

for showing uniqueness results for classical solutions [23] to open boundary problems. The key

difference is that the compact support used here for the weak existence must be replaced with a

simple condition of vanishing and hence boundary terms will remain in the expression (2.13) whose

signs must be compatible with the sign of the integral over the domain. It is for this reason that

technical hypotheses on the boundary will enter.

3 Generalized solutions to the Dirichlet problem

In this section, we show how to steer a course between the weak existence and the strong uniqueness

result for the Dirichlet problem by following the path laid out by Didenko [5] for open boundary

value problems. More precisely, we will show that the Dirichlet problem is well-posed for generalized

solutions lying a suitable Hilbert space. Technical hypotheses on the type change function K and

the boundary will enter in the process.

To begin, we fix some notation and conventions which will be used throughout this section.

We will continue to assume that Ω is a bounded mixed domain with piecewise C1 boundary with

external normal field ν. Since the differential operator (2.1) is invariant with respect to translations

in x, we may assume that the origin is the point on the parabolic line AB := {(x, y) ∈ Ω : y = 0}
with maximal x coordinate; that is, B = (0, 0). This will simplify certain formulas without reducing

the generality of the results. We will often require that Ω is star-shaped with respect to the flow of a

given (Lipschitz) continuous vector field V = (V1(x, y), V2(x, y)); that is, for every (x0, y0) ∈ Ω one
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has Ft(x0, y0) ∈ Ω for each t ∈ [0, +∞] where Ft(x0, y0) represents the time-t flow of (x0, y0) in

the direction of V . We recall that Ω is then simply connected and will have a V -star-like boundary

in the sense that V (x, y) · ν ≥ 0 for each regular point (x, y) ∈ ∂Ω (cf. Lemma 2.2 of [13]). We will

continue to assume that the type change function K belongs to C1(R) and satisfies (1.3) where

additional hypotheses will be made as needed.

We will also make use of suitably weighted versions of L2(Ω) and their properties. In particular,

for K ∈ C1(R) satisfying (1.3) we define

L2(Ω; |K|−1) := {f ∈ L2(Ω) : |K|−1/2f ∈ L2(Ω)} (3.1)

equipped with its natural norm

||f ||L2(Ω;|K|−1) =
[∫

Ω

|K|−1f2 dxdy

]1/2

(3.2)

which is the dual space to the weighted space L2(Ω; |K|) defined as the equivalence classes of square

integrable functions with respect to the measure |K| dxdy; that is, with finite norm

||f ||L2(Ω;|K|) =
[∫

Ω

|K|f2 dxdy

]1/2

. (3.3)

One has the obvious chain of inclusions

L2(Ω; |K|−1) ⊂ L2(Ω) ⊂ L2(Ω; |K|), (3.4)

where the inclusion maps are continuous and injective (since K vanishes only on the parabolic line,

which has zero measure).

Under suitable hypotheses, we will show the existence of a unique H1
0 (Ω; K) solution to the

Dirichlet problem (2.1)− (2.2) for each f ∈ L2(Ω; |K|−1) The sense in which we will find a solution

is contained in the following definition.

Definition 3.1. We say that u ∈ H1
0 (Ω; K) is a generalized solution of the Dirichlet problem

(2.1)− (2.2) if there exists a sequence un ∈ C∞0 (Ω) such that

||un − u||H1
0 (Ω;K) → 0 and ||Lun − f ||H−1(Ω;K) → 0, for n → +∞ (3.5)

11



or equivalently

〈Lu, ϕ〉 =
∫

Ω

(Kuxϕx + uyϕy) dxdy = 〈f, ϕ〉, ϕ ∈ H1
0 (Ω,K), (3.6)

where 〈·, ·〉 is the duality paring between H1
0 (Ω; K) and H−1(Ω; K) and L is the continuous extension

defined in (2.8).

The equivalence of (3.5) and (3.6) follows by integration by parts on C∞0 (Ω) which is dense in

H1
0 (Ω; K). We note that since L2(Ω; |K|−1) is a subspace of L2(Ω) ⊂ H−1(Ω;K), (3.5) and (3.6)

make sense for f ∈ L2(Ω; |K|−1). Generalized solutions give an intermediate notion between the

weak solutions (2.20) and the strong solutions (2.22) where the approximation property (3.5) is

compatible with the continuity property (2.8).

Our first result concerns the Gellerstedt operator; that is, with K of pure power type

K(y) = y|y|m−1, m > 0. (3.7)

Theorem 3.2. Let Ω be a bounded mixed domain with piecewise C1 boundary and parabolic segment

AB with B = 0. Let K be of pure power form (3.7). Assume that Ω is star-shaped with respect to

the vector field V = (−(m + 2)x,−µy) where µ = 2 for y > 0 and µ = 1 for y < 0. Then, for each

f ∈ L2(Ω; |K|−1) there exists a unique generalized solution u ∈ H1
0 (Ω;K) in the sense of Definition

3.1 to the Dirichlet problem (2.1)− (2.2).

Proof: For the existence, the basic idea is, as in the proof of existence for weak solutions (The-

orem 2.2), to obtain an a priori estimate for setting up a Hahn-Banach and Riesz representation

argument. The needed estimate involves one derivative less than in the weak existence proof (cf.

Lemma 2.2) and is contained in the following lemma.

Lemma 3.3. Under the hypotheses of Theorem 3.2, one has the a priori estimate: there exists

C1 > 0 such that

||u||L2(Ω;|K|) ≤ C1||Lu||H−1(Ω;K). (3.8)

We will call a domain Ω admissible for generalized solutions to the Dirichlet problem if the
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estimate (3.8) holds. Assuming that Ω is admissible, one defines a linear functional Jf for ϕ ∈
C∞0 (Ω) by the formula Jf (Lϕ) = (f, ϕ)L2(Ω) and the estimate (3.8) together with the Cauchy-

Schwartz inequality yields

|Jf (Lϕ)| ≤ ||f ||L2(Ω;K−1)||ϕ||L2(Ω;K) ≤ C1||f ||L2(Ω;K−1)||Lϕ||H1
0 (Ω;K), ϕ ∈ C∞0 (Ω). (3.9)

and so Jf is bounded on the subspace V of H−1(Ω;K) of elements of the form Lϕ with ϕ ∈ C∞0 (Ω).

Now, as in the proof of Theorem 2.2, one obtains the existence of u ∈ H1
0 (Ω;K) such that

〈u, Lϕ〉 = (f, ϕ)L2(Ω), ϕ ∈ H1
0 (Ω;K), (3.10)

where L is the self-adjoint extension defined in (2.8).

This weak solution is a generalized solution in the sense of Definition 3.1. In fact, given a

sequence un ∈ C∞0 (Ω) which approximates u in the norm (2.3) the continuity property (2.8) shows

that fn := Lun is norm convergent to some element f̃ ∈ H−1(Ω : K). One has also

〈un, Lϕ〉 = (fn, ϕ)L2(Ω), ϕ ∈ H1
0 (Ω;K). (3.11)

Taking the difference between (3.10) and (3.11) and passing to the limit shows that f̃ = f and

hence (3.5) holds.

For the uniqueness claim, again we use the estimate (3.8). In fact, for fixed f , let u, v ∈
H1

0 (Ω; K) be two generalized solutions with approximating sequences {un}, {vn} satisfying (3.5).

Using the linearity of L and (3.8) one has that un−vn tends to zero in L2(Ω;K). Hence un−vn also

tends to zero in L2(Ω) and in H1
0 (Ω;K) by the injectivity of the inclusion (3.4) and the Poincarè

inequality (2.6). Thus u = v in H1
0 (Ω;K) and finishes the proof of the theorem, modulo the proof

of the lemma.

Proof of Lemma 3.3. The basic idea is to estimate from above and below the expression

(Iu, Lu)L2(Ω) for each u ∈ C∞0 (Ω) where v = Iu is the solution to the following auxiliary Cauchy

problem





Mv := av + bvx + cvy = u in Ω

v = 0 on ∂Ω \B
(3.12)
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where B = (0, 0) is the righthand endpoint of the parabolic line and

a ≡ −1/4, (b, c) = −V = ((m + 2)x, µy) (3.13)

where we recall µ = 2 in Ω+ and µ = 1 in Ω−. The choice of the coefficients (a, b, c) will ensure the

positivity of a certain quadratic form used later in the estimate. We note the difference with the

proof of Lemma 2.1 in which an integral expression v = Iu replaces the differential expression Mu

in (2.12). Since

(Iu, Lu)L2(Ω) = (v, Lu)L2(Ω) = (v, LMv)L2(Ω), (3.14)

one actually performs an a priori estimate for the third order operator LM acting on the auxiliary

function v. We divide the rest of the proof into 4 steps.

Step 1. Existence and properties of the solution v to (3.12) : We claim that for every u ∈ C∞0 (Ω)

there exists v ∈ C∞(Ω±) ∩ C0(Ω \B) solving (3.12) with the additional properties

lim
(x,y)→B

v(x, y) = 0 (3.15)

∫

Ω±

(|K|v2
x + v2

y

)
dxdy < +∞ (3.16)

and hence by defining v(B) = 0 one has that

v ∈ C0(Ω) ∩H1
0 (Ω;K). (3.17)

To prove these claims, one first notes that since Ω is V star-shaped, each flow line of V starting

from the boundary and entering the interior will stay in the closure and that the only singular

point of V is in the origin B. Hence the method of characteristics will give the existence of a

unique v ∈ C∞(Ω±) ∩ C0(Ω \ B) solving (3.12). We recall that the coefficients a and b are C∞

while c is globally Lipschitz.

In order to verify the claims (3.14) and (3.15), we appeal to the explicit nature of (b, c) = −V

and the compact support of u. We parameterize the integral curves of (b, c) by γ(t) = (x(t), y(t)) =

(x0e
(m+2)t, y0e

µt) for (x0, y0) ∈ ∂Ω and t ∈ [−∞, 0]. We parameterize the boundary by Γ(s) where
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s ∈ [0, S] is the arc length parameter, Γ(0) = Γ(S) = B, and we use the positive orientation an Γ.

The support supp(u) of u, which is compact and fixed, will be disjoint from each ε neighborhood of

the boundary Nε(∂Ω) = {(x, y) ∈ Ω : dist((x, y), ∂Ω) ≤ ε} for each ε sufficiently small. Moreover,

there will be two critical values s (resp. s) of the arc length defined as the infimum (resp. supremum)

of the values of s for which γ arrives at (x0, y0) = Γ(s) and γ intersects supp(u). In this way, the

flow of −V divides Ω into three regions Ω1,Ω2, Ω3 corresponding to the intervals [0, s], [s, s], [s, S].

For each (x, y) ∈ Ω1 ∪Ω3, the unique C1 solution satisfying (3.12) must vanish as u ≡ 0 there

and v starts from zero. Similarly, for (x, y) in the “wedge” Bε((0, 0)) ∩ Ω2, we can re-initialize the

Cauchy problem at time t = T < 0 by starting from points (xT , yT ) on the “outer boundary” of

the wedge. The unique C1 solution along each flow line is

ψ(t) = v(x(t), y(t)) = v(xT , yT )et/4, t ∈ (−∞, T ]. (3.18)

Since v is C1 in Ω, the variation in v(xT , yT ) is bounded for (xT , yT ) on the initial data surface.

The claims (3.15) and (3.16) are now easily verified.

Step 2. Estimate 3.14 from below: Since v ∈ C0(Ω) and Lu ∈ C∞0 (Ω), the integrand is compactly

supported and the expression (3.14) is finite. Splitting along the parabolic line (since v and c are

only piecewise smooth)

(v, Lu)L2(Ω) =
∫

Ω+
vLu dxdy +

∫

Ω−
vLu dxdy (3.19)

and applying the divergence theorem yields

(v, Lu)L2(Ω) =
1
2

∫

Ω+∪Ω−

[
αv2

x + 2βvxvy + γv2
y + v2La

]
dxdy

+
1
2

∫

∂Ω+∪∂Ω−

[
2v(Kux, uy)− (Kv2

x + v2
y)(b, c)− v2(Kax, ay)

] · ν ds (3.20)

where

α := −2Ka−Kbx + (Kc)y = (2m + 1)K/2 in Ω+ and α = −K/2 in Ω− (3.21)

β := −Kcx − by = 0 (3.22)
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γ := −2a + bx − cy = (2m + 1)/2 in Ω+ and α = (2m + 3)/2 in Ω− (3.23)

Using the compact support of u and that a ≡ −1/4, (3.20)− (3.23) yield

(v, Lu)L2(Ω) ≥
1
2

∫

Ω

(|K|v2
x + v2

y

)
dxdy − 1

2

∫

∂Ω+∪∂Ω−
(Kv2

x + v2
y)(b, c) · ν ds. (3.24)

The first integral is finite by (3.15) and so is the second, where v vanishes identically in a sufficiently

small neighborhood of each point on ∂Ω \ B. Moreover the contributions along the cut y = 0 will

cancel out and so the boundary integral vanishes. Hence one obtains the estimate

(v, Lu)L2(Ω) ≥
1
2
||v||2H1

0 (Ω;K), u ∈ C∞0 (Ω) (3.25)

Step 3. Estimate (3.14) from above: We use the generalized Schwartz inequality on the non-negative

quantity (3.18) to obtain

(v, Lu)L2(Ω) ≤ ||v||H1
0 (Ω;K)||Lu||H−1(Ω;K), u ∈ C∞0 (Ω). (3.26)

Step 4. Completing the estimate (3.8): Combining (3.25) and (3.26) one has

||v||H1
0 (Ω;K) ≤ 2 ||Lu||H−1(Ω;K), u ∈ C∞0 (Ω). (3.27)

Finally, it is easy to check that the first order differential operator M is continuous from H1
0 (Ω; K)

into L2(Ω; |K|); that is, there exists CM > 0 such that

||u||L2(Ω;|K|) = ||Mv||L2(Ω;|K|) ≤ CM ||v||H1
0 (Ω;K), v ∈ H1

0 (Ω;K). (3.28)

Combining (3.27) and (3.28) gives the desired estimate (3.8) with C1 = 2CM . This completes

Lemma 3.3 and hence Theorem 3.2 as well.

We complete the results of this section by showing how to eliminate almost entirely the

boundary geometry restrictions in the elliptic part of the domain and indicate how to replace the

type change functions K of pure power type to with more general forms. We denote by

Ωδ := {(x, y) ∈ Ω : y < δ} (3.29)
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in the following result, which for the Gellerstedt equation shows that the Dirichlet problem is

well-posed so long as the domain is suitably star-shaped for y < δ with δ > 0 arbitrarily small.

Theorem 3.4. Let Ω̂ be a bounded mixed domain which “caps off” an admissible domain Ω in the

sense that there exists δ > 0 such that Ω̂δ = Ωδ. Then Ω̂ is also admissible and the conclusion of

Theorem 3.2 is valid also for Ω̂.

Proof: The idea is originally due to Didenko [5] for open problems and has been used by the

authors [12] for the Tricomi problem. For completeness, we sketch the main points of the proof.

We need to show that there exists C > 0 such that

||u||
L2(Ω̂;|K|) ≤ C||Lu||H−1(Ω;K), u ∈ C∞0 (Ω̂; K). (3.30)

For an arbitrary mixed domain Ω, one has the easy a priori estimate

||u||H1
0 (Ω+;K) ≤ ||Lu||H−1(Ω+;K), u ∈ C∞0 (Ω+) (3.31)

for the degenerate elliptic operator L on Ω+. In fact, one merely takes (a, b, c) = (−1, 0, 0) in the

way of section 2 (Lemma 2.1). Next, one picks a cut-off function φ ∈ C∞(Ω̂) such that

φ(x, y) =





1 y ≥ 2δ/3

χ(y) δ/3 ≤ y ≤ 2δ/3

0 y ≤ δ/3

(3.32)

where χ is any smooth transition function. One has that u = φu + (1 − φ)u with φu ∈ C∞0 (Ω̂+)

and (1 − φ)u ∈ C∞0 (Ω). Applying (3.31) with Ω̂ in place of Ω to the first term and (3.8) to the

second term yields

||u||
L2(Ω̂;|K|) ≤ ||L(φu)||

H−1(Ω̂+;K)
+ C1||L((1− φ)u)||H−1(Ω;K). (3.33)

To complete the estimate (3.30), one uses the Leibniz formula, the definition of the norm in

H−1(Ω̂+;K), the generalized Schwarz inequality and the continuity of ∂y : H1
0 (Ω̂+; K) → L2(Ω̂+) ⊂

L2(Ω̂+; |K|) to control the first term of (3.33) and a similar argument to control the second term

(see the proof of Theorem 2.2 in [12] for details).
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As a final improvement, one need not choose a type change function of pure power type in

order to have a well-posed problem. An example is contained in the following proposition in which

the function µ = µ(y) defined by

µ = (K/K ′)′ (3.34)

plays a key role. Both K and µ will be thought of as functions defined on Ω which are independent

of x.

Proposition 3.5. Let K ∈ C2(R) be a type change function and Ω a bounded mixed domain with

B = (0, 0) such that

K ′(y) > 0 in Ω (3.35)

2 sup
Ω+

µ < 3 + 2 inf
Ω+

µ (3.36)

where µ is defined by (3.34) and Ω is star-shaped with respect to the vector field V = (−b0x,−2K/K ′)

with

b0 =





1 + 2 supΩ+ µ in Ω+

3 + 2 infΩ+ µ in Ω−
(3.37)

Then Ω is admissible and the Dirichlet problem is well posed in the sense of Theorem 3.2.

The proof follows precisely the argument used in the proof of Lemma 3.3, where we note only

that the multiplier used is again of the form (3.13) with a ≡ −1/4 and (b, c) = −V = (b0x, 2K/K ′).

We remark that the vector field V here merely generalizes the one used in (3.13) for a pure

power K with the associated anisotropic dilation invariance. The technical hypothesis (3.36) is

always satisfied in the pure power case, but in general asks that Ω be thin in y direction if K

has a large variation. Of course, this thinness condition can be removed in the elliptic region by

applying Theorem 3.4. As a result, one obtains well posedness for the Dirichlet problem for the

Tomatika-Tamada equation, for example, for any mixed domain which has a sufficiently thin and

V -star-shaped hyperbolic part.
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Finally, it should be noted that the norm H1(Ω;K) employed here has a weight K which

vanishes on the entire parabolic line and hence one might worry that the solution is not locally

H1 due to the term |K|u2
x. In fact, the solution does lie in H1

loc(Ω) as follows from a microlocal

analysis argument (cf. [20]). On the other hand, the norms used in [18] for treating the equation by

way of a first order system were carefully constructed so as not to have weights vanishing on the

interior. This gives a direct proof of the lack of H1 singularities in the interior for the corresponding

solution to the scalar problem in special cases.

4 Well posedness for mixed boundary conditions.

Having treated the well posedness for generalized solutions to the Dirichlet problem, we turn our

attention to the other natural boundary condition for the transonic flow applications, namely the

conormal boundary condition. Here, we follow the path laid out first by Morawetz [17] for open

boundary value problems and then later adapted to very special cases for closed boundary value

problems of Dirichlet type in [18] and conormal type in [22]. The basic idea is to rewrite the second

order scalar equation for u as a first order system for the gradient of u, which has the effect of

“eliminating a derivative” and allowing for a unified treatment of both natural boundary conditions.

For general classes of type change functions and for fairly general domains, we can obtain results

for the Dirichlet problem (and hence an alternative treatment to the method of section 3) as well

as for mixed boundary conditions. For now, we are unable to make the technique work directly on

the full conormal problem and hence the result of Pilant [22] (in the special case K(y) = sgn(y))

remains the only one.

As a first step, we recall why boundary conditions of Dirichlet and conormal type are natural

for the class of equations (2.1). As already noted, the operator L is formally self-adjoint and one

has the following Green’s identity for sufficiently regular functions u, v:

∫

Ω

(uLv − vLu) dxdy =
∫

∂Ω

(vuν − uvν) ds (4.1)

where uν = (Kux, uy) · ν is the so-called conormal derivative with respect to the divergence form

operator L = div ◦ (K∂x, ∂y). In this way, one expects that representation formulas for solutions
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to (2.1)− (2.2) might be available using as data the “forcing” function f in Ω as well as the values

of u, uν on the boundary as happens for the the Laplace equation in terms of the Dirichlet and

Neumann data. This approach has been used for open boundary value problems with some success

(cf. [9], [24] and the references there in).

We note that we will continue to use much of the notation and conventions which were

introduced in section 3. In particular: Ω is a bounded domain with piecewise C1 bounndary; the

parabolic line AB = {(x, y) ∈ Ω : y = 0} has its maximal x-coordinate in B = (0, 0); the boundary

∂Ω will often be star-shaped with respect to a given (Lipschitz) continuous vector field V ; the type

change function K ∈ C1(R) satisfies (1.3) and additional conditions as needed.

Before giving the main results, we briefly recall the formulation of the boundary value problems

via first order systems as done in [18, 22]. In place of the second order differential equation for the

scalar valued u

Lu = Kuxx + uyy = f (4.2)

with boundary conditions of Dirichlet

u = 0 on Γ ⊆ ∂Ω (4.3)

or conormal type

uν = 0 on ∂Ω \ Γ (4.4)

one considers the system Lv = g

Lv =


 K∂x ∂y

∂y −∂x





 v1

v2


 =


 g1

g2


 . (4.5)

In the case that (g1, g2) = (f, 0) and v = ∇u, then a solution v to (4.5) gives rise to a solution u

of (4.2). In order to give a suitable formulation of weak solutions to (4.5) and in order to build in

the analogous boundary conditions to (4.3)− (4.4), one exploits the following integration by parts

formula valid for every v, ϕ regular enough in a domain Ω:

(Lv, ϕ) = −(v,Lϕ) +
∫

∂Ω

ϕ1 (Kv1 dy − v2 dx)−
∫

∂Ω

ϕ2 (v1 dx + v2 dy) , (4.6)

20



where in this section, we will denote by

(v, ϕ) =
∫

Ω

(v1ϕ1 + v2ϕ2) dxdy (4.7)

the scalar product on H(Ω) = L2(Ω;R2). Keeping in mind that v should be thought of ∇u, the

Dirichlet condition (4.3) for u becomes the condition

v1 dx + v2 dy = 0 on Γ ⊆ ∂Ω (4.8)

on v, which of course corresponds to u identically constant on Γ. As for the conormal condition

(4.4), one places the following condition on v:

Kv1 dy − v2 dx = 0 on ∂Ω \ Γ. (4.9)

We will make use of several spaces of vector valued functions analogous to those used in the

solvability discussions of sections 2 and 3. We will find solutions in the Hilbert space HK(Ω) of all

measurable functions v = (v1, v2) on Ω for which the norm

||v||HK =
[∫

Ω

(|K|v2
1 + v2

2

)
dxdy

]1/2

(4.10)

is finite, where we denote the scalar product by

(v, ϕ)K =
∫

Ω

(|K|v1ϕ1 + v2ϕ2) dxdy. (4.11)

Using the inner product (4.7), the dual space to HK(Ω) can be identified with the space HK−1(Ω)

in which |K|−1 replaces |K| in (4.10) and (4.11). These spaces are special cases of the Hilbert space

HA(Ω) = {v : Av ∈ H(Ω)} (4.12)

where A some piecewise continuous matrix value function on Ω, often invertible almost everywhere.

In particular, the spaces HK(Ω),HK−1(Ω) are of this general form with the diagonal matrix K
having entries |K|±1 and 1. We will denote by A∗ the transpose of the matrix A.

Using the formulas (4.6), (4.8), and (4.9) we have the following notion of a weak solutions.
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Definition 4.1. Let Ω be a bounded mixed domain and g such that K−1M∗g ∈ H(Ω) for a fixed

matrix valued function M which is piecewise continuous and invertible almost everywhere. Let

Γ ⊆ ∂Ω be a possibly empty subset. A weak solution to the system (4.5) with the Dirichlet condition

on Γ ⊆ ∂Ω and conormal condition on ∂Ω \ Γ is function v ∈ HK(Ω) such that

−(v,Lϕ) = (g, ϕ) (4.13)

for each test function ϕ such that

ϕ ∈ C1(Ω;R2) and K−1Lϕ ∈ H(Ω) (4.14)

and

ϕ1 = 0 on Γ (4.15)

ϕ2 = 0 on ∂Ω \ Γ (4.16)

A weak existence theorem for the system follows directly from a suitable a priori estimate.

We record the following general result, which has its origins in [17] for open problems.

Lemma 4.2: Let Ω be a bounded mixed domain and Γ a potentially empty subset of ∂Ω. Assume

that there exists a matrix valued function M for which the following a priori estimate holds: there

exists C > 0 such that

||KM−1ϕ||H(Ω) ≤ C||K−1Lϕ||H(Ω) (4.17)

holds for each test function satisfying (4.14) − (4.16). Then there exists a weak solution u in the

sense of Definition 4.1.

Proof: The proof is classical (cf. example the proof of Theorem 3 in [18] or section 2 of [22]). For

completeness, we give a sketch. One defines the linear functional Jf (Lϕ) = (g, ϕ) which by the

Cauchy-Scwartz inequality and the a priori estimate (4.17) yields

|Jf (Lϕ| = |(K−1M∗g,KM−1ϕ)|
≤ ||K−1M∗g||H(Ω)||KM−1ϕ||H(Ω)

≤ CgC||K−1Lϕ||H(Ω)
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where we note K is diagonal and hence self-adjoint and Cg is a constant which depends on the

g which is fixed. Hence Jf gives a bounded linear functional on the subspace W of HK−1(Ω) of

elements of the form Lϕ. One then extends Jf to whole of HK−1(Ω) in the standard way (first

by continuity on W and then by zero on its orthogonal complement). The Riesz representation

theorem then gives w ∈ HK−1(Ω) such that

(g, ϕ) = (w,Lϕ)K−1 = (K−2w,Lϕ)

and hence v = −K−2w is the desired solution.

The theorem shows that for a given domain Ω and a given type change function K, it is then

enough to find a suitable multiplier matrix M for which the estimate (4.15) holds. One again, a

suitable version of the a−b−c method as developed in [17] is the key.

Lemma 4.3. Let Ω be a bounded mixed domain and Γ a potentially empty subset of ∂Ω. Let

K ∈ C1(R) be a type change function satisfying (1.3). Assume that there exists a pair (b, c) of

continuous and piecewise C1 functions on Ω such that:

b2 + Kc2 > 0 on Ω, (4.18)

there exists a constant δ > 0 such that for each (x, y) ∈ Ω and each Φ ∈ R2 one has

Q(Φ) := α(x, y)Φ2
1 + 2β(x, y)Φ1Φ2 + γ(x, y)Φ2

2 ≥ δ
(|K(y)|Φ2

1 + Φ2
2

)
, (4.19)

where

α = Kbx − (Kc)y, β = Kcx + by, γ = cy − bx (4.20)

and

b dy − c dx ≤ 0 on Γ (4.21)

K(y)(b dy − c dx) ≥ 0 on ∂Ω \ Γ. (4.22)

Then there exists a matrix M for which the a priori estimate (4.17) holds for each test function

satisfying (4.14)− (4.16).
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Before giving the proof, we make a few remarks. Lemma 4.3 together with Lemma 4.2 reduces

the weak existence to the art of finding a suitable multiplier pair (b, c). Notice also that in this

system approach the multiplier a plays no role since one is working on v = ∇u in the place of

u. The conditions (4.21) and (4.22) say that Γ and ∂Ω are suitably star-like with respect to the

vector field V = (b, c). In terms of the flow of V one is asking for “inflow” in the case of Dirichlet

conditions and “inflow/outflow” in the case of conormal conditions depending on whether y is

negative/positive. This need of reversing orientation of the flow across y = 0 makes the problem

of finding a multiplier for the conormal problem particularly difficult. The proof of Lemma 4.3

is essentially classical; as done in [18], [22]. The minor difference here is the possible mixture of

boundary conditions and the a priori choice of the norm in which to find solutions, as governed by

the right hand side of (4.19). More generally, one could replace (4.19) by asking only that Q > 0

on Ω and use this quadratic form to define a norm in a different way.

Proof of Lemma 4.3: Given Ω and (b, c) satisfying (4.18)−(4.22), one defines a multiplier matrix

M by the recipe of [17]:

M =


 b c

−Kc b


 (4.23)

which is invertible except possibly at B = (0, 0) by (4.18). Given any test function ϕ satisfying

(4.14)− (4.16), one defines

Φ = M−1ϕ or ϕ = MΦ (4.24)

and tries to estimate (Lϕ,M−1ϕ) = (LMΦ, Φ) from above and below. Notice that the conditions

(4.15) and (4.16) on ϕ become

(MΦ)1 := bΦ1 + cΦ2 = 0 on Γ (4.25)

(MΦ)2 := −KcΦ1 + bΦ2 = 0 on ∂Ω \ Γ (4.26)

One easily checks that by integrating by parts as in (4.6) and using (4.25) and (4.26) one has

2(LMΦ, Φ) =
∫

Ω

Q(Φ) dxdy +
∫

Γ

− 1
c2

Φ2
1(b

2 + Kc2)(b dy − c dx)

+
∫

∂Ω\Γ

1
b2

Φ2
1(b

2 + Kc2)K(y)(b dy − c dx)
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≥
∫

Ω

Q(Φ) dxdy (4.27)

where we have used (4.18), (4.21) and (4.22) and Q is defined in (4.19). Using the lower bound in

(4.19) one has

2(LMΦ, Φ) ≥ δ

∫

Ω

(|K|Φ2
1 + Φ2

2

)
dxdy = δ||KM−1ϕ||2H(Ω). (4.28)

Then estimating from above, one has

2(LMΦ, Φ) = 2(K−1Lϕ,KM−1ϕ)

≤ 2||K−1Lϕ||H(Ω)||KM−1ϕ||H(Ω), (4.29)

by the Cauchy-Scwartz inequality since ϕ satisfies (4.14). Combining (4.28) and (4.29) yields

||KM−1ϕ||H(Ω) ≤
2
δ
||K−1Lϕ||H(Ω) (4.30)

as claimed.

Our first existence result for the system (4.5) with Dirichlet or mixed boundary conditions is

the following analog of Theorem 3.2 for type change functions of pure power type K.

Theorem 4.4. Let K = y|y|m−1 with m > 0 be a pure power type change function. Let Ω be a

mixed domain and let Γ be either the entire boundary ∂Ω or the elliptic boundary (∂Ω)+. Assume

that (4.18), (4.21) and (4.22) hold with respect to the multiplier pair

(b, c) = (−(m + 2)x),−µy) (4.31)

where µ = 2 in Ω+ and µ = 1 in Ω−. Then, for each g such that K−1M∗g ∈ H(Ω), there exists a

weak solution v ∈ HK(Ω) in the sense of Definition 4.1 to the system (4.5) with Dirichlet conditions

on Γ and conormal conditions on ∂Ω \ Γ.

Proof: By the Lemmas 4.2 and 4.3 one needs only to check that the multiplier pair (4.31) gives

rise to the inequality (4.19) for some δ > 0. One easily checks that δ = min{1,m} will do.

25



We remark that the multiplier pair (4.31) is almost the dilation multiplier; it has been fudged

a bit in the hyperbolic region in order to get the correct sign for the quadratic form Q. In fact,

one can slightly relax the hypotheses on Ω by choosing µ to satisfy µ(m + 1) > m + 2 in Ω+ and

µ(m + 1) < m + 2 in Ω−.

Using the same proof, one can generalize Theorem 4.4 by replacing the pure power type

change function K by an “almost pure power” K which satisfies the hypotheses of Proposition 3.5.

Choosing again (b, c) = (−b0x,−2K/K ′) as the multiplier pair defines a class of mixed domains

Ω for which one has a weak solution to the system for the Dirichlet or the mixed boundary value

problem.

We conclude with a few additional remarks. In order to get uniqueness of the weak solutions,

one needs to show that there is sufficient regularity. This can be accomplishes by following the

techniques laid out in [18] or [22], which in turn use ideas from [11] and [8] in which mollifying

in the x-direction plays a key role. In a similar way, if there is enough regularity then in the case

(g1, g2) = (f, 0) one can use the second equation in the system (4.5) in order to define a potential

function u for which v = ∇u and this u will solve the scalar equation (4.2) with the associated

boundary conditions (4.3)− (4.4).
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