HYPERBOLIC RELAXATION OF THE VISCOUS CAHN-HILLIARD EQUATION IN 3-D

STEFANIA GATTI¹, MAURIZIO GRASSELLI², ALAIN MIRANVILLE³, VITTORINO PATA²

ABSTRACT. We consider a modified version of the viscous Cahn-Hilliard equation governing the relative concentration u of one component of a binary system. This equation is characterized by the presence of the additional inertial term ωu_{tt} that accounts for the relaxation of the diffusion flux. Here $\omega \geq 0$ is an inertial parameter which is supposed to be dominated from above by the viscosity coefficient δ . Endowing the equation with suitable boundary conditions, we show that it generates a dissipative dynamical system acting on a certain phase-space depending on ω . This system is shown to possess a global attractor that is upper semicontinuous at $\omega = \delta = 0$. Then, we construct a family of exponential attractors $\mathcal{E}_{\omega,\delta}$, which is a robust perturbation of an exponential attractor of the Cahn-Hilliard equation, namely the symmetric Hausdorff distance between $\mathcal{E}_{\omega,\delta}$ and $\mathcal{E}_{0,0}$ goes to 0 as (ω, δ) goes to (0, 0) in an explicitly controlled way. This is done by using a general theorem which requires the construction of another dynamical system, strictly related to the original one, but acting on a different phase-space depending on both ω and δ .

¹DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI FERRARA VIA MACHIAVELLI 35 I-44100 FERRARA, ITALY *E-mail address*: s.gatti@economia.unife.it

²DIPARTIMENTO DI MATEMATICA "F.BRIOSCHI" POLITECNICO DI MILANO VIA BONARDI 9 I-20133 MILANO, ITALY *E-mail address*: maugra@mate.poimi.it *E-mail address*: pata@mate.poimi.it

³UNIVERSITÉ DE POITIERS LABORATOIRE D'APPLICATIONS DES MATHÉMATIQUES - SP2MI BOULEVARD MARIE ET PIERRE CURIE - TÉLÉPORT 2 F-86962 CHASSENEUIL FUTUROSCOPE CEDEX, FRANCE *E-mail address*: miranv@math.univ-poitiers.fr

²⁰⁰⁰ Mathematics Subject Classification. 35B40, 35B41, 35B45, 35M99, 37L25, 80A22.

Key words and phrases. Cahn-Hilliard equations, global attractors, robust exponential attractors. Research supported by the Italian MIUR-COFIN project "Problemi di Frontiera Libera nelle Scienze Applicate".