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Abstract. We consider a conserved phase-field system of Caginalp type, characterized by the
assumption that both the internal energy and the heat flux depend on the past history of the
temperature and its gradient, respectively. The latter dependence is a law of Gurtin-Pipkin
type, so that the equation ruling the temperature evolution is hyperbolic. Thus the model
consists of a hyperbolic integrodifferential equation coupled with a fourth-order evolution
equation for the phase-field. This model, endowed with suitable boundary conditions, has
already been analyzed within the theory of dissipative dynamical systems, and the existence
of an absorbing set has been obtained. Here we prove the existence of the universal attractor.
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1 Introduction

We have recently studied phase-field systems of Caginalp type with memory effects as infinite-
dimensional dissipative dynamical systems (see, e.g., [10, 11, 12, 18] and references therein).
These models are characterized by constitutive laws for the internal energy and the heat
flux which show a dependence on the past history of the (relative) temperature ϑ and its
gradient, respectively, through convolution integrals with suitable smooth memory kernels.
Thus, via the energy balance, one ends up with an integrodifferential heat equation coupled
with an Allen-Cahn or a Cahn-Hilliard type equation governing the order parameter (or
phase-field) χ. The former case is usually named nonconserved, since the spatial average
of χ is not constant in time; while the latter is called the conserved case, for the same
quantity does not depend on time, provided that no-flux boundary conditions are supposed
to hold. The analysis of these models from the point of view of dynamical systems is based
on the introduction of an additional variable η, the integrated past history of ϑ, that solves
a first-order linear hyperbolic equation. Consequently, we are dealing with a system of three
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coupled evolution equations governing ϑ, η, and χ. This reformulation of the original model
can be interpreted as a dynamical system in a suitable infinite-dimensional phase-space which
accounts for the past history of η regarding it as an initial datum in a weighted Hilbert space
(on this approach see [15] and its references).

The picture in the nonconserved case is fairly detailed. Indeed, when the heat flux de-
pends both on the past history and on the instantaneous values of ∇ϑ, i.e., it also contains
the term k∇ϑ, with k > 0, we have proved that the resulting model endowed, e.g., with ho-
mogeneous Neumann boundary conditions, generates a strongly continuous semigroup with
a universal attractor Ak of finite fractal dimension (see [11], cf. also [14]). Moreover, the
existence of an exponential attractor has been shown in [7]. These results are obtained by
assuming that the memory kernels and some of their derivatives satisfy certain monotonicity
conditions as well as a suitable behavior at infinity. We recall that these hypotheses do
comply with the Second Principle of Thermodynamics (see [9, 10]). Here, the coupling term
linking the heat equation with the phase-field equation can have quadratic growth, allowing
second order phase transitions (cf. [2]). When k = 0, the heat flux law is the linearized
version of the Gurtin-Pipkin type (see [19], cf. also [21] and references therein). In this
case the mathematical analysis gets much more complicated, since the heat equation be-
comes hyperbolic and its dissipation features are due to the memory effects only (cf. [13]).
Nonetheless, provided that the coupling between the heat equation and the phase-field equa-
tion is linear, we can still obtain the existence of the (finite dimensional) universal attractor
A0 which is upper semicontinuous with respect to the family {Ak} (see [12]). The analysis
of the exponential attractors will be done in a forthcoming paper.

As far as the conserved model is concerned, some details are still missing. Indeed, we
have only analyzed the case k > 0 with linear coupling, proving the existence of a finite-
dimensional universal attractor (see [18]), as well as the existence of an exponential attractor
(cf. [8]). In this paper we want to deal with the apparently most difficult case, that is,
k = 0. Several results on this model have been obtained, by regarding the past history as an
additional source (see [3, 4, 5, 23, 25]). However, concerning the global longterm behavior,
it has only been proved that the resulting model is a dynamical system with an absorbing
set (see [27]), but the question about the existence of the universal attractor has been left
unanswered. Our present goal is to give a positive answer. As we shall see, this result will
require some technical efforts. However, an important question remains open; that is, finding
some regularity for the universal attractor which would be basic to obtain further results like
the upper semicontinuity or the existence of exponential attractors; but this seems a hard
task (compare also with [16]).

We can now introduce the problem considered in [27]. Let Ω ⊂ R3 be a bounded con-
nected domain with smooth boundary ∂Ω. The phase-field system we want to analyze is

∂t

(
ϑ(t) + χ(t) +

∫ ∞

0

a(s)ϑ(t− s)ds

)
−

∫ ∞

0

b(s)∆ϑ(t− s)ds = f (1.1)

∂tχ(t)−∆w(t) = 0 (1.2)

w(t) = −∆χ(t) + χ3(t) + γ′(χ(t))− ϑ(t), (1.3)

in Ω, t ∈ R+ = (0,∞). Here γ is a smooth function on R with at most quadratic growth,
whereas f is an external source, that for sake of simplicity we assume to be constant in time.
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All the physical constants have been taken equal to one. The memory kernels a and b are
positive smooth functions on R+ satisfying suitable properties at infinity (see next section).

We supplement the system with no-flux boundary conditions; namely,
∫ ∞

0

b(s)∂nϑ(t− s)ds = 0 on ∂Ω, t ∈ R+ (1.4)

∂nχ(t) = 0 on ∂Ω, t ∈ R+ (1.5)

∂nw(t) = 0 on ∂Ω, t ∈ R+, (1.6)

where ∂n represents the outward normal derivative to ∂Ω.
Concerning the initial conditions, we need to know the value of ϑ and χ at t = 0, as well

as the values of ϑ for t < 0. Hence, we have

ϑ(0) = ϑ0 in Ω (1.7)

χ(0) = χ0 in Ω (1.8)

ϑ(−s) = ϑ1(s) in Ω× R+, (1.9)

where ϑ0, χ0 : Ω → R and ϑ1 : Ω× R+ → R are prescribed functions.
In the next section we will introduce some notation as well as the assumptions on the

memory kernels and the functions γ and f . Then, in Section 3, we formulate (1.1)-(1.9)
as a dynamical system in the history phase-space, by introducing the additional variable
η, and we recall the results of [27]. Section 4 is devoted to present the main result on the
existence of the universal attractors as well as some technical lemmas, whose proofs are given
in Sections 5 and 6.

Remark 1.1. In this paper we will assume that a(0) > 0. However, when a ≡ 0 our result
still holds provided one exploits the fact that the spatial average of the internal energy ϑ+χ
is conserved. This happens, for instance, when f is independent of time with null average.
Of course, the phase-space has a more complicated structure. Things get simpler when,
for instance, ϑ satisfies the homogeneous Dirichlet boundary condition on some portion of
∂Ω with positive surface measure, since this allows the use of the Poincaré inequality. In
this case, one can even take a ≡ 0, without any significant change in the definition of the
phase-space (cf. [13]).

2 Assumptions and notations

We introduce the Hilbert spaces

H = L2(Ω), V = H1(Ω), W =
{
u ∈ H2(Ω) : ∂nu = 0 on ∂Ω

}
.

We will use the symbols 〈·, ·〉X and ‖ · ‖X to denote the inner product and the norm on a
given space X, and we will keep the same notation when the appearing quantities are vectors
in X3. The symbol 〈·, ·〉 will stand for duality pairing between V ∗ (dual space) and V .

For any u ∈ H, we define the spatial average u of u to be

u =
〈u, 1〉H
‖1‖2

H

,
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where 1 denotes the constant-valued function on Ω that equals 1 for every x ∈ Ω.
The assumptions on the nonlinearity and the source term are1

γ ∈ C2(R) with γ′′ ∈ L∞(R) (2.1)

f ∈ H constant in time. (2.2)

Concerning the memory kernels, setting

ν(s) = −a′′(s) and µ(s) = −b′(s),

we require (cf. [18, 27])

(K1) ν, µ ∈ C1(R+) ∩ L1(R+)

(K2) ν(s) ≥ 0, µ(s) ≥ 0, ∀s ∈ R+

(K3) ν ′(s) ≤ 0, µ′(s) ≤ 0, ∀s ∈ R+

(K4) ∃ δ > 0 : ν ′(s) + δν(s) ≤ 0, µ′(s) + δµ(s) ≤ 0, ∀s ∈ R+.

Condition (K4) is basic to prove the existence of an absorbing set (see [27]). It is also worth
reminding that, alternatively, a can be chosen bounded, nonincreasing, and convex, so that
the signs of ν and ν ′ in (K2) and (K3), respectively, must be reversed. However, in order to
get an absorbing set, ν needs to be suitably dominated by µ (see [18]).

In view of (K1)-(K2), we introduce the weighted Hilbert space

M = L2
ν(R+; H) ∩ L2

µ(R+; V ),

and we consider the infinitesimal generator of the C0-semigroup of right-translations on M,
that is, the linear operator T on M with domain

D(T ) =
{
η ∈M : ∂sη ∈M, η(0) = 0

}

defined by
Tη = −∂sη, η ∈ D(T ).

Here ∂sη is the distributional derivative of η with respect to the internal variable s. Due to
(K1)-(K3), the operator T is dissipative; if we also use (K4), then (see [6])

〈Tη, η〉M ≤ −δ

2
‖η‖2

M, ∀η ∈ D(T ).

Finally, we define the product Hilbert space

H = H × V ×M.

Since from equation (1.2) (provided that, as in the case we will consider, the variables have
enough regularity) χ is conserved, we will also need to introduce for every α ≥ 0, the
complete metric space

Hα =
{
z = (ϑ, χ, η) ∈ H : |χ| ≤ α

}
,

with the metric topology induced by H.

1We take here the occasion to mention that in our joint paper [18] the unnecessary requirement γ′ ∈ L∞(R)
appears in the assumptions. However, it has never been used in the proofs.
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Remark 2.1. Even though for better clarity we consider the nonlinearity φ(r) = r3 + γ′(r),
which however includes the physically relevant case φ(r) = r3 − r, all our results can be
extended without substantial changes in the proofs to a more general nonlinear term φ of
the form φ = φ0 + φ1, with φ0 ∈ C2(R) and φ1 ∈ C1(R) such that

rφ0(r) ≥ 0, ∀ r ∈ R
|φ′′0(r)| ≤ k1(1 + |r|), ∀ r ∈ R
|φ′1(r)| ≤ k2(1 + |r|γ), γ ∈ [0, 2), ∀ r ∈ R
lim inf
|r|→∞

φ1(r)

r
> −cP

for some k1, k2 ≥ 0. Here cP > 0 is the Poincaré-Wirtinger constant for null-average functions
of V . The last condition enters only in the proof of the existence of an absorbing set. We
also remark that a function φ ∈ C2(R) satisfying the growth condition

|φ′′(r)| ≤ k(1 + |r|), ∀ r ∈ R

for some k ≥ 0, and the dissipation condition

lim inf
|r|→∞

φ(r)

r
> −cP

admits the above decomposition (see [1], cf. also [17]).

3 The dissipative dynamical system S(t)

As in [18, 27], we want to rewrite equations (1.1)-(1.3) in order to obtain a solution semigroup
S(t). Therefore, as we mentioned in the introduction, we define the summed past history

ηt(x, s) =

∫ s

0

ϑ(x, t− y)dy, (x, t, s) ∈ Ω× R+ × R+,

and we perform a (formal) integration by parts in the convolution terms. This procedure
allows us to translate (1.1)-(1.9) into the following system (see [18] for more details):

∂t

(
ϑ + χ

)
+ ϑ +

∫ ∞

0

ν(s)η(s)ds−
∫ ∞

0

µ(s)∆η(s)ds = f (3.1)

∂tχ−∆
(−∆χ + χ3 + γ′(χ)− ϑ

)
= 0 (3.2)

∂tη = Tη + ϑ, (3.3)

along with the boundary conditions

∫ ∞

0

µ(s)∂nη(s)ds = 0 on ∂Ω× R+ (3.4)

∂nχ = 0 on ∂Ω× R+ (3.5)

∂n
(−∆χ + χ3 + γ′(χ)− ϑ

)
= 0 on ∂Ω× R+, (3.6)

5



and the initial conditions

ϑ(0) = ϑ0 in ∂Ω (3.7)

χ(0) = χ0 in ∂Ω (3.8)

η0 = η0 in ∂Ω× R+, (3.9)

where we have set a(0) = 1 and

η0(x, s) =

∫ s

0

ϑ1(x, y)dy.

Then we have

Theorem 3.1. Let conditions (2.1)-(2.2) and (K1)-(K3) hold. Then for every α ≥ 0, every
T > 0, and every z0 = (ϑ0, χ0, η0) ∈ Hα, system (3.1)-(3.9) admits a unique solution

z(t) = (ϑ(t), χ(t), ηt) ∈ C([0, T ],Hα).

Moreover, the solution continuously depends on the initial data.

We recall that the proof of Theorem 3.1 is basically obtained by a vanishing viscosity
argument applied to the corresponding parabolic problem studied in [18]; that is, the problem
in which a term of the form −ε∆ϑ appears in the right-hand side of (3.1) (see [27]).

Remark 3.2. By means of Theorem 3.1, the solutions z(t) to (3.1)-(3.9) can be expressed
in terms of a C0-semigroup S(t) of (nonlinear) operators, namely,

z(t) = S(t)z0.

Notice that S(t) is a C0-semigroup both on the phase-space H and on the phase-space Hα,
for all α ≥ 0.

Remark 3.3. We point out that the translation of (1.1)-(1.9) into (3.1)-(3.9) is not only
formal. Indeed, provided that the initial data are smooth enough, it is possible to show that
a triplet (ϑ, χ, η) is a solution to (3.1)-(3.9) if and only if the corresponding functions ϑ and
χ solve (1.1)-(1.9). In fact, (3.1)-(3.9) actually generalize (1.1)-(1.9), since they support less
regular initial data. This equivalence is analyzed in detail for a general class of differential
systems with memory in the paper [15].

When the memory kernels exhibit the decay property (K4), the semigroup S(t) is shown
to be dissipative; more precisely, it possesses a bounded (connected) invariant absorbing set.
This is the main result of [27]:

Theorem 3.4. Let conditions (2.1)-(2.2) and (K1)-(K4) hold. Then for every α ≥ 0, there
exists a closed ball B0 = B0(α) ⊂ Hα such that, for every bounded set B ⊂ Hα, there exists
a time t0 = t0(B) ≥ 0 such that

S(t)B ⊂ B0, ∀t ≥ t0.

Moreover, S(t)B0 ⊂ B0 for every t ≥ 0. The same result holds true with H in place of Hα.
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4 The universal attractor

The aim of the present work is to show that the semigroup S(t) acting on the phase-space
Hα possesses a universal attractor, that is, a compact fully invariant subset of Hα which
attracts bounded sets with respect to the Hausdorff semidistance (cf. [20, 26]).

Indeed, we state

Theorem 4.1. Let (2.1)-(2.2) and (K1)-(K4) hold. Then for every α ≥ 0, the semigroup
S(t) acting on Hα possesses a connected universal attractor A = A(α).

To prove this theorem, we proceed with a decomposition of the semigroup, in order to
apply the techniques of the theory of the attractors for dynamical systems.

The semigroup decomposition. For a fixed α ≥ 0, we consider the solution z(t) = S(t)z0

with
z0 ∈ B0 ⊂ Hα,

where B0 is the connected, invariant and bounded absorbing set, whose existence is given by
Theorem 3.4. Then we choose a function g ∈ V , and we write z(t) as the sum

z(t) = zd(t) + zc(t),

where zd = (ϑd, χd, ηd) and zc = (ϑc, χc, ηc) are the solutions to the systems

∂tϑd = −ϑd − ∂tχd −
∫ ∞

0

ν(s)ηd(s)ds +

∫ ∞

0

µ(s)∆ηd(s)ds + f − g (4.1)

∂tχd = ∆(−∆χd + χ3
d − ϑd) (4.2)

∂tηd = Tηd + ϑd (4.3)

zd(0) = (ϑ0, χ0 − χ0, η0) (4.4)

and

∂tϑc = −ϑc − ∂tχc −
∫ ∞

0

ν(s)ηc(s)ds +

∫ ∞

0

µ(s)∆ηc(s)ds + g (4.5)

∂tχc = ∆(−∆χc + χ3 − χ3
d + γ′(χ)− ϑc) (4.6)

∂tηc = Tηc + ϑc (4.7)

zc(0) = (0, χ0, 0). (4.8)

Systems (4.1)-(4.4) and (4.5)-(4.8) admit unique solutions; moreover zd(t) ∈ C(H0,H0) and
zd(t) ∈ C(Hα,Hα) for every fixed time t ≥ 0.

The longterm properties of zd and zc are subsumed in the next two lemmas, whose proofs
will be given in the last sections.

Lemma 4.2. For every ω > 0 there exist tω > 0 and g = gω ∈ V , both independent of
z0 ∈ B0, such that

‖zd(t)‖H ≤ ω, ∀t ≥ tω (4.9)

for all z0 ∈ B0.

7



Lemma 4.3. For every t ≥ 0 and every g ∈ V there exists a compact set K(t, g, α) ⊂ Hα

such that
zc(t) ∈ K(t, g) (4.10)

for all z0 ∈ B0.

Collecting (4.9) and (4.10), it is straightforward to see that

lim
t→∞

αHα [S(t)B0] = 0,

αHα being the Kuratowski measure of noncompactness in Hα. This fact, on account of
standard arguments of the theory of dynamical systems (cf. [20]), yields the thesis of Theo-
rem 4.1.

It is also worth noticing that the flow on H is injective. On account of the full invariance
of A this means that the C0-semigroup S(t) restricted to A is in fact a C0-group. This is a
consequence of the following backward uniqueness property

Proposition 4.4. Let (2.1)-(2.2) and (K1)-(K4) hold. Consider z01, z02 ∈ H and assume
that for some τ > 0 the equality S(τ)z01 = S(τ)z02 holds. Then z01 = z02.

Proof. For i = 1, 2, denote

z0 = (ϑ0, χ0, η0) = z01 − z02

(ϑi(t), χi(t), η
t
i) = S(t)z0i

z(t) = (ϑ(t), χ(t), ηt) = S(t)z01 − S(t)z02.

Since ητ = 0, we get directly from the representation formula

ηt(s) =

{ ∫ s

0
θ(t− y)dy, 0 < s ≤ t

η0(s− t) +
∫ t

0
θ(t− y)dy, s > t

that η0 = 0 and so ηt = 0 in [0, τ ]. Therefore, from equation (3.3) we deduce ϑ = 0 in [0, τ ]
so that, owing to the linear coupling, equation (3.1) gives ∂tχ = 0 almost everywhere in
[0, τ ]. Being χ(τ) = 0 we infer χ = 0 in [0, τ ]. Therefore z0 = (0, 0, 0), as desired.

Remark 4.5. It is worth mentioning that, although we studied the stationary case, with
minor efforts the results can be generalized for a time-dependent translation-compact source
term f in a suitable space (cf. [18]).

Remark 4.6. At the beginning, we put a(0) = 1 (i.e., the coefficient of ϑ in (3.1)). However,
the greater is a(0), the higher is the dissipation of the system. In fact, if one takes a(0) large
enough, it is possible to say more about the attractor, for instance, to prove some regularity
results, and, possibly, to investigate the existence of exponential attractors, along the lines
of [7, 8].
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5 Proof of Lemma 4.2

We just give a sketch the proof, since it is very similar to the one of Lemma 7.8 in [18].
Introducing the null-average spaces

VA =
{
v ∈ V : 〈v, 1〉H = 0

}
and V ′

A =
{
ξ ∈ V ∗ : 〈ξ, 1〉 = 0

}
,

we can define the Riesz map T : V ′
A → VA as

−∆T ξ = ξ, ∀ξ ∈ V ′
A.

In particular, there holds

〈ζ, T ξ〉 = 〈ζ, ξ〉V ∗ , ∀ζ, ξ ∈ V ′
A.

We also recall that

‖∇v‖2
H ≤ ‖v‖2

V ≤ (1 + cP )‖∇v‖2
H , ∀v ∈ VA,

where cP is the Poincaré-Wirtinger constant.
Since χd(t) ∈ VA for all t ≥ 0, we take the products in H of (4.1) and ϑd, of (4.2) and

T ∂tχd, and of (4.2) and κT χd, for some suitably small κ > 0. Next we take the product in
L2

ν(R+, H) of (4.3) and ηd, and the product in L2
µ(R+, H) of the gradient of (4.3) and ∇ηd.

Following [18], we then integrate by parts in ds, and we make use of (K4). Collecting all the
above estimates, and setting

ρ(ηd) =

∫ ∞

0

ν(s)‖ηd(s)‖2
Hds +

∫ ∞

0

µ(s)‖∇ηd(s)‖2
Hds

and
Φd(t) = ‖ϑd(t)‖2

H + κ‖χd(t)‖2
V ∗ + ‖∇χd(t)‖2

H + ‖χd(t)‖4
L4 + ρ(ηt

d),

it is possible to find ε > 0 such that

d

dt
Φd + 2εΦd + ‖∂tχd‖2

V ∗ ≤ ‖f − g‖2
H . (5.1)

Thus by the Gronwall Lemma we end up with

Φd(t) ≤ Φd(0)e−2εt +
1

2ε
‖f − g‖2

H , ∀t ≥ 0. (5.2)

Set now

Ψd(t) = ‖ϑd(t)‖2
H + κ‖χd(t)‖2

V ∗ + ‖∇χd(t)‖2
H + ‖χd(t)‖4

L4 + ‖ηt
d‖2
M,

and repeat the same argument leading to (5.1) with ‖ηd‖2
M in place of ρ(ηd), to obtain, for

some c = c(ε) > 0,

d

dt
Ψd + 2εΨd ≤ ‖f − g‖2

H + 2

∫ ∞

0

µ(s)〈ηd(s), ϑd〉Hds

≤ ‖f − g‖2
H + ε‖ηd‖2

M + c‖ϑd‖2
H

≤ ‖f − g‖2
H + εΨd + cΦd
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In light of (5.2), the above inequality turns into

d

dt
Ψd(t) + εΨd(t) ≤ cΦd(0)e−2εt +

c + 2ε

2ε
‖f − g‖2

H ,

and a further application of the Gronwall Lemma yields

Ψd(t) ≤
(
Ψd(0) +

c

ε
Φd(0)

)
e−εt +

c + 2ε

2ε2
‖f − g‖2

H .

The thesis then follows quite directly, upon choosing g properly close in the H-norm to f ,
and t enough large.

Remark 5.1. Notice that integrating (5.1), it is also possible to find an L2-estimate for
‖∂tχd‖V ∗ , which will be useful later.

6 Proof of Lemma 4.3

Let A be the strictly positive operator on H defined by

A = I−∆ with domain D(A) = W.

Then, for s ∈ R, we introduce the Hilbert spaces

Vs = D(As/2)

endowed with the inner products

〈·, ·〉Vs = 〈As/2·, As/2·〉H .

Also, we set
Ms = L2

ν(R+, Vs) ∩ L2
µ(R+, V1+s).

We recall for s ∈ [0, 3/2) we have the continuous embeddings

V1−s ↪→ L6/(1+2s)(Ω) (6.1)

and
V1+s ↪→ L6/(1−2s)(Ω). (6.2)

Moreover (see [22]),

∇ : Vs → (Vs−1)
3 is a continuous linear operator ∀s ≥ 0, s 6= 1/2. (6.3)

Since we work in a regularization scheme, it is convenient to rewrite equations (4.5)-(4.6)
in terms of the operator A; namely, as

∂tϑc = −ϑc − ∂tχc +

∫ ∞

0

[
µ(s)− ν(s)

]
ηc(s)ds−

∫ ∞

0

µ(s)Aηc(s)ds + g (6.4)

∂tχc = −A2χc + 2Aχc − χc − A(χ3 − χ3
d) + χ3 − χ3

d

−Aγ′(χ) + γ′(χ) + Aϑc − ϑc. (6.5)
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Through the end of the proof, we will consider fixed t ≥ 0 and α ≥ 0, and we will denote
by c a generic positive constant depending only on t, α and g ∈ V , but independent of
z0 ∈ B0. Also, we select

σ ∈ (0, 1
2
).

In view of the results of Section 3 and Section 5, we know in particular that

sup
τ∈[0,t]

[
‖ϑ(τ)‖H + ‖ϑd(τ)‖H + ‖χ(τ)‖V + ‖χd(τ)‖V

]
≤ c (6.6)

and ∫ t

0

(‖χ(y)‖2
W + ‖χd(y)‖2

W + ‖∂tχ(y)‖2
V ∗ + ‖∂tχd(y)‖2

V ∗
)
dy ≤ c. (6.7)

It seems convenient to break the proof in some lemmas.

Lemma 6.1. The following estimate holds:

〈∂t(χ
3 − χ3

d), A
σχc〉H ≤ c

(‖χ‖2
W + ‖χd‖2

W + ‖∂tχd‖2
V ∗

)‖χc‖2
V1+σ

+c‖χc‖2
V2+σ

+
1

2
‖∂tχc‖2

V−1+σ
.

Proof. Let us rewrite the left-hand side of the above inequality as

〈∂t(χ
3 − χ3

d), A
σχc〉H = 3〈χ2∂tχc, A

σχc〉H + 3〈χcχ∂tχd, A
σχc〉H

+3〈χcχd∂tχd, A
σχc〉H . (6.8)

We now examine the three pieces separately.
For the first one, we have

3〈χ2∂tχc, A
σχc〉H ≤ 3‖∂tχc‖V−1+σ‖χ2Aσχc‖V1−σ .

Exploiting the continuous Sobolev embedding

W 1,6/(3+2σ)(Ω) ↪→ V1−σ,

we obtain

‖χ2Aσχc‖V1−σ ≤ c‖χ2Aσχc‖L6/(3+2σ) + c‖χ∇χAσχc‖L6/(3+2σ) + c‖χ2∇Aσχc‖L6/(3+2σ) .

By means of the Hölder inequality, (6.2)-(6.3) and (6.6), we get the estimates

c‖χ2Aσχc‖L6/(3+2σ) ≤ c‖χ‖2
L6‖Aσχc‖L6/(1+2σ)

≤ c‖χ‖V ‖Aσχc‖V1−σ

≤ c‖χ‖W‖χc‖V1+σ ,

c‖χ∇χAσχc‖L6/(3+2σ) ≤ c‖χ‖L6‖∇χ‖L6‖Aσχc‖L6/(1+2σ)

≤ c‖χ‖V ‖χ‖W‖Aσχc‖V1−σ

≤ c‖χ‖W‖χc‖V1+σ ,
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and

c‖χ2∇Aσχc‖L6/(3+2σ) ≤ c‖χ‖2
L6‖∇Aσχc‖L6/(1+2σ)

≤ c‖χ‖2
V ‖∇Aσχc‖V1−σ

≤ c‖Aσχc‖V2−σ

≤ c‖χc‖V2+σ .

Hence, from the Young inequality,

3〈χ2∂tχc, A
σχc〉H ≤ c‖∂tχc‖V−1+σ

(‖χ‖W‖χc‖V1+σ + ‖χc‖V2+σ

)

≤ c‖χ‖2
W‖χc‖2

V1+σ
+ c‖χc‖2

V2+σ
+

1

2
‖∂tχc‖2

V−1+σ
. (6.9)

Concerning the second term, we get

3〈χcχ∂tχd, A
σχc〉H ≤ 3‖∂tχd‖V ∗‖χcχAσχc‖V ,

with

‖χcχAσχc‖V ≤ c‖χcχAσχc‖H + c‖∇χcχAσχc‖H + c‖χc∇χAσχc‖H + c‖χcχ∇Aσχc‖H .

The Hölder inequality, (6.1)-(6.3) and (6.6), lead to

c‖χcχAσχc‖H ≤ c‖χc‖L6/(1−2σ)‖χ‖L6‖Aσχc‖L6/(1+2σ)

≤ c‖χc‖V1+σ‖χ‖V ‖Aσχc‖V1−σ

≤ c‖χ‖W‖χc‖2
V1+σ

,

c‖∇χcχAσχc‖H ≤ c‖∇χc‖L6/(1−2σ)‖χ‖L6‖Aσχc‖L6/(1+2σ)

≤ c‖∇χc‖V1+σ‖χ‖V ‖Aσχc‖V1−σ

≤ c‖χc‖V2+σ‖χc‖V1+σ ,

c‖χc∇χAσχc‖H ≤ c‖χc‖L6/(1−2σ)‖∇χ‖L6‖Aσχc‖L6/(1+2σ)

≤ c‖χc‖V1+σ‖χ‖W‖Aσχc‖V1−σ

≤ c‖χ‖W‖χc‖2
V1+σ

,

and

c‖χcχ∇Aσχc‖H ≤ c‖χc‖L6/(1−2σ)‖χ‖L6‖∇Aσχc‖L6/(1+2σ)

≤ c‖χc‖V1+σ‖χ‖V ‖∇Aσχc‖V1−σ

≤ c‖χc‖V1+σ‖Aσχc‖V2−σ

≤ c‖χc‖V1+σ‖χc‖V2+σ .

The Young inequality then yields

3〈χcχ∂tχd, A
σχc〉H ≤ c‖∂tχd‖V ∗

(‖χc‖V1+σ‖χc‖V2+σ + ‖χ‖W‖χc‖2
V1+σ

)

≤ c‖∂tχd‖2
V ∗‖χc‖2

V1+σ
+ c‖χc‖2

V2+σ
+ c‖∂tχd‖V ∗‖χ‖W‖χc‖2

V1+σ
. (6.10)
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Finally, the third term is treated exactly as the second one with χd in place of χ, so
giving

3〈χcχd∂tχd, A
σχc〉H ≤ c‖∂tχd‖2

V ∗‖χc‖2
V1+σ

+ c‖χc‖2
V2+σ

+ c‖∂tχd‖V ∗‖χd‖W‖χc‖2
V1+σ

. (6.11)

Collecting (6.8)-(6.11), and using once more the Young inequality, the proof is done.

Lemma 6.2. The differential inequality

d

dt

(
‖ϑc‖2

Vσ
+ ‖χc‖2

V1+σ
+ ‖ηc‖2

Mσ
+ 2〈χ3 − χ3

d, A
σχc〉H + 2〈γ′(χ), Aσχc〉H

)

≤ c + c‖χc‖2
V1+σ

+ c‖ηc‖2
Mσ

+ c‖∂tχ‖2
V ∗ + c‖∂tχd‖2

V ∗ + k‖χc‖2
V2+σ

+c
(‖χ‖2

W + ‖χd‖2
W + ‖∂tχd‖2

V ∗
)‖χc‖2

V1+σ
(6.12)

holds for some k > 0.

Proof. The reason why we single out the constant k will be clear in a while. Taking the
product in H of (6.4) and Aσϑc, we obtain

1

2

d

dt
‖ϑc‖2

Vσ
+ ‖ϑc‖2

Vσ
= −〈∂tχc, A

σϑc〉H − 〈ηc, ϑc〉Mσ + 〈ηc, ϑc〉L2
µ(R+,Vσ) + 〈g, Aσϑc〉H . (6.13)

The product in H of (6.5) and A−1+σ∂tχc furnishes

1

2

d

dt

(
‖χc‖2

V1+σ
+ 2〈χ3 − χ3

d, A
σχc〉H + 2〈γ′(χ), Aσχc〉H

)
+ ‖∂tχc‖2

V−1+σ

= 〈∂t(χ
3 − χ3

d), A
σχc〉H + 〈γ′′(χ)∂tχ,Aσχc〉H

+〈ϑc, A
σ∂tχc〉H + 〈F , A−1+σ∂tχc〉H , (6.14)

where we set
F = 2Aχc − χc + χ3 − χ3

d + γ′(χ)− ϑc. (6.15)

Finally, the product in Mσ of (4.7) and ηc, on account of (K3) and an integration by parts
in ds, bears

1

2

d

dt
‖ηc‖2

Mσ
≤ 〈ϑc, ηc〉Mσ . (6.16)

With regard to the right-hand sides of (6.13)-(6.14), the following estimates are easily seen
to hold:

〈ηc, ϑc〉L2
µ(R+,Vσ) ≤ 1

2
‖ϑc‖2

Vσ
+ c‖ηc‖2

Mσ
(6.17)

〈g, Aσϑc〉H ≤ c +
1

2
‖ϑc‖2

Vσ
(6.18)

〈γ′′(χ)∂tχ,Aσχc〉H ≤ c‖∂tχ‖2
V ∗ + c‖χc‖2

V2+σ
(6.19)

〈F , A−1+σ∂tχc〉H ≤ c + c‖χc‖2
V1+σ

+ c‖∂tχc‖2
V ∗ +

1

2
‖∂tχc‖2

V−1+σ
. (6.20)

Putting together (6.13)-(6.14) and (6.16), and exploiting (6.17)-(6.20) and Lemma 6.1, we
find the desired inequality (6.12).
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Lemma 6.3. There holds:

d

dt
‖χc‖2

Vσ
+ ‖χc‖2

V2+σ
≤ c + c‖ϑc‖2

Vσ
+ c

(‖χ‖2
W + ‖χd‖2

W

)
. (6.21)

Proof. We take the product in H of (6.5) and Aσχc. This yields

1

2

d

dt
‖χc‖2

Vσ
+ ‖χc‖2

V2+σ
= −〈A(χ3 − χ3

d), A
σχc〉H − 〈Aγ′(χ), Aσχc〉H

+〈Aϑc, A
σχc〉H + 〈F , Aσχc〉H , (6.22)

with F given by (6.15). Due to (6.6) and the Hölder and the Young inequalities,

−〈A(χ3 − χ3
d), A

σχc〉H ≤ ‖χ3 − χ3
d‖V ‖χc‖V2+σ ≤ c

(‖χ‖2
W + ‖χd‖2

W

)
+

1

6
‖χc‖2

V2+σ

and

〈Aϑc, A
σχc〉H ≤ ‖ϑc‖Vσ‖χc‖V2+σ ≤ c‖ϑc‖2

Vσ
+

1

6
‖χc‖2

V2+σ
.

Finally, we leave to the reader the easy check that

−〈Aγ′(χ), Aσχc〉H + 〈F , Aσχc〉H ≤ c +
1

6
‖χc‖2

V2+σ

Plugging the above inequalities into (6.22) we get the thesis.

We are now ready to find an estimate for the solution zc at time t in a more regular
space.

Lemma 6.4. There exists a constant K = K(t, g, α) > 0 such that

‖ϑc(t)‖2
Vσ

+ ‖χc(t)‖2
V1+σ

+ ‖ηc(t)‖2
Mσ

≤ K (6.23)

for all z0 ∈ B0.

Proof. For k as in Lemma 6.2, let us define

E(t) = ‖ϑc(t)‖2
Vσ

+ ‖χc(t)‖2
V1+σ

+ ‖ηc(t)‖2
Mσ

and

Ψ(t) = c + k‖χc(t)‖2
Vσ

+ 2〈χ3(t)− χ3
d(t), A

σχc(t)〉H + 2〈γ′(χ(t)), Aσχc(t)〉H .

By virtue of (2.1) and (6.6), it is a standard matter to verify that, upon choosing c = c(k) > 0
large enough,

1

β
E(t) ≤ E(t) + Ψ(t) ≤ βE(t) + c (6.24)

for some β = β(k) > 1. Addition of (6.12) and k-times (6.21), along with (6.24), entail

d

dt

(E + Ψ
) ≤ hE + h ≤ h(E + Ψ

)
+ h,
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where we set

h(t) = c
(
1 + ‖χ(t)‖2

W + ‖χd(t)‖2
W + ‖∂tχ(t)‖2

V ∗ + ‖∂tχd(t)‖2
V ∗

)
.

Recall that, by (6.7), ∫ t

0

h(y)dy ≤ c.

Moreover, from (4.8),
E(0) + Ψ(0) ≤ c.

Therefore, the integral Gronwall lemma yields

E(t) + Ψ(t) ≤ e
R t
0 h(y)dy

{
c +

∫ t

0

h(y)dy

}
≤ c,

which, using again (6.24), concludes the proof.

In order to gain the required compactness, we have to take care of the third component
ηc of zc. This because the embedding Mσ ↪→M, in general, lacks of compactness. However,
we have

Lemma 6.5. The set
C =

⋃
z0∈B0

ηt
N ⊂M

is relatively compact in M.

For the proof of the lemma, which is based on a compactness result from [24], we address
the reader to [18], where basically the same situation is encountered.

Conclusion of the proof. With K given by Lemma 6.4, denote by BK the ball of radius
K in Vσ × V1+σ centered at zero. Since the embedding Vσ × V1+σ ↪→ H × V is compact, and
since Hα is a closed subset of H, from Lemma 6.5 we learn that the set

K = (BK × E) ∩Hα ⊂ Hα

is compact. After Lemma 6.4 and Lemma 6.5, it is apparent that zc(t) ∈ K.
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