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Abstract

In this work a general framework for the simulation of sedimentary basins in pres-
ence of salt structures is addressed. Sediments and evaporites are modeled as non–
Newtonian fluids and the thermal effects induced by the presence of salt are taken
into account. The computational strategy is based on a Lagrangian methodology
with intensive grid adaptivity, together with a kinematic modeling of faults and dif-
ferent kinds of boundary conditions representing sedimentation, erosion, basement
evolution, lithospheric compression and extension. The proposed methodology is
applied to simple test cases as well as to a realistic geological reconstruction of
industrial interest.
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Introduction

In the past few years salt tectonics has become increasingly important in
petroleum exploration industry because of the role it plays in hydrocarbon gen-
eration and accumulation [47]. In fact the high mobility and low permeability
of salt can promote trap and seal formation and the temperature anomalies
induced by its high thermal conductivity can retard maturation of subsalt
source rocks and accelerates that of supra salt rocks. Some typical examples
of the strong interplay between salt tectonics and hydrocarbon reservoirs can
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be found in the whole area of the Gulf of Mexico, in the Niger Delta and
Indonesia [19]. The low permeability and high thermal conductivity of rock-
salt can be exploited also for environmental applications (such as radioactive
waste disposal and energy production by geothermal source).
Seismic profiles and drillings demonstrate that salt diapirs have a wide variety
of shapes [23,20], reflecting the different ways in which diapirs interact with
the overburden during their growth [22,46,43].
Traditionally, salt diapirism has been studied using Rayleigh-Taylor type mod-
els, describing the gravitational instability of fluid layers [12]. These models
have been extended to include several factors and relevant mechanisms, such
as the effects of topography [35], erosion and sedimentation [37,36,18], and
tectonic extension and compression [13,32,20]. Initially salt and overburden
were numerically modeled like Newtonian layered fluids with high density and
viscosity. The comparison between these works and the complex rheological
behaviour observed in many laboratory experiments [42,44,45] showed that
the Newtonian model was inadequate to describe rock behaviour [21,49].
Some recent studies have incorporated non–linear models in numerical simu-
lations, showing a better fit with rock behaviour [15,17,34]. A key factor in
this kind of simulations is the choice of the general framework essentially be-
tween Eulerian, Lagrangian and Arbitrary Lagrangian Eulerian (ALE). The
Eulerian methodology is based on a fixed grid on the whole domain, so a crit-
ical aspect arises when free surfaces and interfaces have to be included. For
some class of problems a local grid refinement is commonly used to reduce
numerical errors. Different choices can be adopted within this framework for
the tracking of interfaces and free surfaces, the most widely used being par-
ticle in cell, volume–of–fluids and level set methods. Particular care must be
taken when using these tracking methods in order to improve the accuracy
and resolution of the geometry. The Lagrangian approach incorporates the
interfaces and geometric description by tracking the reference configuration
at each step. In this way the material properties are automatically advected
with the material particles. This feature simplifies the description of complex
materials with respect to the Eulerian case. The main disadvantage of the
Lagrangian approach is that repeated application of mesh movements may
lead to bad quality or even invalid mesh, thus a partial or total remeshing is
required at some time steps. Finally the ALE method is also used for problems
with free surfaces and interfaces. However, depending on the formulation, the
ALE method inherits features of both Eulerian and Lagrangian methodologies
reducing but not completely overcoming the need for remeshing. The Eule-
rian and ALE approaches have been extensively adopted in the cited works.
Recently new numerical techniques with Lagrangian approximation of model
equations and grid adaptivity have been introduced [30,34].
The computational approach described in this work is based on the Lagrangian
method, which is complemented by robust and efficient adaptive meshing tech-
niques. This analysis will be performed in the framework of generalized Newto-
nian fluids. For a detailed description of the physical setting and applicability
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to sedimentary basin we refer to [30]. Also the problem of modeling the ther-
mal anomalies induced by the high thermal conductivity of salt diapirs and
its interaction with rheologic properties will be addressed.

1 Continuum formulation for generalized Newtonian fluids

We focus our attention on non–Newtonian models for the mechanic of sed-
imentary basins [8,36,35,18]. A non–Newtonian fluid is characterized by a
non–linear dependence between shear stress and shear rate. If we assume that
the Cauchy stress tensor σ is frame independent and is a function of density ρ
and on the symmetric gradient D(u) of the velocity u, here indicated simply
by D, and that the stress is frame independent, then, thanks to the Cayley–
Hamilton theorem, σ has the representation σ = α0I + α1D + α2D

2, where
αi = αi(ρ, ID, ΠD, ΠΠD) i = 0, 1, 2, and

D =
1

2

(
∇u +∇uT

)
, ID = trD , ΠD =

1

2

[
(trD)2 − tr(D2)

]
, ΠΠD = detD.

Hence, for an incompressible fluid ID = 0 and

|D|2 =
3∑

i,j=1

[Dij]
2 = −2ΠD,

where | · | denotes the Frobenius matrix norm. If we assume that the fluid
is incompressible and that stress depends only on the velocity gradient, the
Cauchy stress takes the form:

σ = −pI + α̂1(ΠD, ΠΠD)D + α̂2(ΠD, ΠΠD)D2, (1)

where p is a Lagrange multiplier that is introduced to enforce the constraint
of the incompressibility.
In this work we consider a particular subclass of fluids derived from (1) which
is widely used for geological application and for which the Cauchy stress is
given by

σ = −pI + µ(|D|2)D,

where µ(|D|2) can be interpreted as the apparent viscosity, which depends on
the second invariant of the rate of deformation tensor ΠD. Then, depending
on the chosen viscosity function, the following prototypical models [33] have
been proposed:

a) the power–law model is based on the assumption that the relationship
between shear stress and shear rate (on log–log scale) can be often ap-
proximated by a straight line over a limited range of shear rate. For this
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part of the flow curve the apparent viscosity of the fluid is thus given by

µ(z) = µ0z
(r−2)/2, (2)

where µ0 ≥ 0 and r ∈ (1,∞) are two empirical curve–fitting parameters
(the fluid consistency coefficient and the flow behaviour index, respec-
tively). If r = 2 the power–law model predicts the Newtonian behaviour;

b) the Carreau viscosity model [10] in which

µ(z) = µ∞ + (µ0 − µ∞)(1 + λz)(r−2)/2, (3)

where λ ≥ 0 and µ∞ > 0 are additional curve–fitting parameters. This
model predicts Newtonian fluid behaviour if λ = 0 or r = 2 . If we take
r ∈ (1, 2) we have pseudo–plastic fluid, instead if r ∈ (2,∞) we predict
the behaviour of a dilatant fluid.

1.1 Generalized Stokes equations

The rise of diapirs in sedimentary basins is mainly caused by a balance between
buoyancy and external driving forces and involves time scales of the order of
millions of years. On such a time scale rocks and salt can be modeled as high
viscous fluids. Then the description of the evolution of the basin can be cast
into the framework of the Rayleigh–Taylor theory describing the evolution of
gravitational instability between layered fluids. Let us state the generalized
Stokes problem following the introduction of Baranger [4] and Barret [5,6,7]
for non–linear Stokes equations. Let Ω be a bounded and connected open set
in R2 (that represents a vertical section of the basin) with a Lipschitz bound-
ary Γ. We consider the following boundary–value problem:

− div (µ(|D|2)D) +∇p = f in Ω,

div u = 0 in Ω,
(4)

completed by suitable boundary conditions (see sect. 2), where f ∈ L2(Ω) is
the applied body force, u the velocity, p the pressure, µ = µ(|D|2) ∈ C0(0,∞)
the viscosity of the fluid. Model (4) represents the steady isothermal flow of an
incompressible stratified fluid. In the next section we review the fundamental
properties of Carreau and power law models. Assuming uniform rheological
properties within each layer we can reduce the time–dependence of the evo-
lution exclusively to the dynamics of the interfaces between layers. We will
assume the continuity of the velocity field and of the normal stress on the
interface Γt, separating salt and overburden (see Figure 1). An initial config-
uration Γ0 is given for the interface. The evolution of each point belonging to
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Figure 1. Computational domain

the interface is defined as the solution of the kinematic equation





dξ

dt
= u(ξ), ξ ∈ Γt, for all t > 0,

ξ(0) = ξ0.
(5)

A physical description of the instability of stratified inhomogeneous fluids
(Rayleigh–Taylor instability) can be found in [12]. As a particular case we
analyze the evolution of immiscible fluids with different rheological properties
(density, viscosity).

2 Mathematical formulation for the non–linear Stokes problem

Following [30], we introduce the mathematical formulation for the sedimentary
basin evolution, focusing our attention on the non–linearity of the stress tensor.
We describe the basin evolution using a non–linear Stokes system in Ω(t) ⊂ R2

with moving interface Γt for t ∈ (0, T ], referring to Figure 1 for simplicity.
In the sequel the time dependence of the domain and of its boundaries is
understood. Equations (5) and (4)will be cast in the general frame of a fluid
with variable, possibly discontinuous, density and viscosity. In this context the
interface Γt separating Ω+ and Ω− is characterized as the loci of discontinuity
of the density ρ. The evolution model for basin structures can be formulated
as follows, for any t ∈ (0, T ]:

− div T (u, µ(|D|2)) +∇p = f in Ω,

div u = 0 in Ω,
∂ρ

∂t
+ u · ∇ρ = 0 in Ω,

u = 0 on Γ1,

u · n2 = 0, (T− pI)n2 · t2 = 0 on Γ2,

(T− pI)n3 = −pen3 on Γ3,

ρ|t=0 = ρ0 in Ω0,

(6)
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where Ω =
◦

Ω+ ∪ Ω−, ∂Ω = Γ1∪Γ2∪Γ3, Ω0 = Ω(0), T(u, µ(|D|2)) = µ(|D|2)D
is the non–Newtonian stress tensor and µ(|D|2) will be a constant if the fluid
is Newtonian, I is the identity tensor , f = ρg, pe : Ω → R (external pressure)
is a given function, ni and ti are respectively the unit outward normal and
tangent to Γi. Free surface boundary condition is prescribed on Γ3.
In order to model the basin evolution focusing on salt structures, we are in-
terested in the particular case in which the initial function ρ0(x) is positive
and discontinuous along Γt (see [31,30]). Considering the fluids immiscible,
the problem of advection of density is equivalent to finding the evolution of
the moving boundary Γt. At the initial time t = 0, the density is piecewise
constant and assumes two positive values characterizing the distinct phases of
the flow,

ρ(x, 0) = ρ0(x) =





ρ+, x ∈ Ω+
0

ρ−, x ∈ Ω−
0

, ρ+ > ρ− > 0.

In this case, the condition for density is equivalent to specifying the interface
Γt that separates the two subdomains Ω+

0 and Ω−
0 initially occupied by dif-

ferent fluids. For the solution of problem (6) we anticipate that we will use
the following splitting algorithm: at every time–step tn, first we compute the
velocity field solving the Stokes problem, then we track the interface Γt to
update its position:

Γn
t −→ [Ω+, Ω−]

n −→ ρn
+, ρn

− −→ Ωn = [Ω+]n ∪ [Ω−]n

−→ Stokes(Ωn) −→ (un)

(non–linear subiterations)
−→

{
Tracking(Γn

t ,un) −→ Γn+1
t

}

where by Stokes(Ωn) we mean that we look for the weak solution of the non–
linear problem on the whole domain (see the next section) and by tracking(Γn

t ,u
n)

we mean that we look for the solution of problem (5).

2.1 Well posedness results of the generalized Stokes problem

We adopt the standard notation W r,s(Ω) for the Sobolev spaces with r–th
order of differentiation and s–th order of integration on the regular domain
Ω ⊂ R2, with the usual norms ‖·‖W r,s(Ω) and semi-norms |·|W r,s(Ω). When used
for vector–valued functions, these spaces and norms are indicated Wr,s(Ω),
‖ · ‖Wr,s(Ω) and | · |Wr,s(Ω), respectively [1]. We set, for s ≥ 2,

W 1,s
0 (Ω) = {w ∈ W 1,s(Ω) : w = 0 on Γ}, Ls

0(Ω) = {w ∈ Ls(Ω) :
∫
Ω w dΩ = 0}.
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To introduce the direct and the mixed formulation for the generalized Stokes
system [4,40], let

J(v) ≡ Jr(v)− (f ,v), with Jr(v) = 2
∫

Ω

∫ |D(v)|2

0
µ(z) dz dΩ,

where µ(z) is given by (2) or (3), the subscript r refers to power–law or Carreau
model exponent. In particular, for the power law (2) we obtain

Jr(v) =
4µ0

r

∫

Ω

|D(v)|r dΩ,

while for the Carreau law (3) we have

Jr(v) = 2µ∞
∫

Ω

|D(v)|2dΩ +
2

λr
(µ0 − µ∞)

∫

Ω

((1 + λ|D(v)|2)r/2 − 1)dΩ.

Noting that, for a suitable C(s,m) > 0,

∣∣∣∣
m∑

i=1

ai

∣∣∣∣
s

≤ C(s,m)
m∑

i=1

|ai|s for all s > 0 and m ∈ N,

for every sequence of real numbers {ai}, we can deduce that the functional J ,
is well defined on W1,s(Ω) where

s = 2 if µ is given by (3) and r ∈ (1, 2),

s = r if µ is given by (2) or if µ is given by (3) and r ≥ 2.
(7)

For the sake of simplicity we set X = W1,s
0 (Ω) equipped with the norm ‖·‖X =

| · |W1,s
0 (Ω), where s is given in (7). Let 〈·, ·〉 denote the duality paring between

X∗ and X. Then J is Gateaux differentiable on X with (see [4])

〈J ′(w),v〉 = a(w;w,v)− (f ,v) ∀w,v ∈ X,

where, for every u, a(u; ·, ·) is the following continuous bilinear form

a(u;v,w) = 2
2∑

i,j=1

∫

Ω
µ(|D(u)|2)Dij(v)Dij(w) dΩ.

Moreover J ′ is strictly monotone, thus J is strictly convex on X and J is
coercive on X. Setting

V = {v ∈ X : div v = 0 in Ω},
it follows that there exists a unique solution of the minimization problem:

find u ∈ V : J(u) ≤ J(v) ∀v ∈ V. (8)
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Furthermore, problem (8) is equivalent to the Euler equation:

find u ∈ V : a(u;u,v) = (f ,v) ∀v ∈ V. (9)

One can regard problem (9) as a direct weak formulation of (4). If we set
M = Ls′

0 (Ω), with norm ‖ · ‖M = ‖ · ‖Ls′
0 (Ω), where s′ = s/(s − 1), then the

saddle–point weak formulation of problem (4) is:
find (u, p) ∈ X×M such that

a(u;u,w) + b(w, p) = (f ,w) ∀w ∈ X, (10a)

b(u, q) = 0 ∀q ∈ M, (10b)

where the bilinear form b : X×M → R is defined by b(u, q) = − ∫
Ω q div u dΩ.

Taking w ∈ V ⊂ X in (10a) it follows that the unique solution u of (10)
exists. Existence and uniqueness of p, follows from the Babuska–Brezzi inf–
sup condition (for the proof see Amrouche and Girault [2,3])

∃β > 0 : inf
q∈M

sup
w ∈ X
w 6= 0

b(w, q)

‖q‖M‖w‖X ≥ β. (11)

Let A : X −→ X∗ be the operator such that 〈A(u),w〉 = a(u;u,w). The
following inequalities hold for all u,w ∈ X(see [4]): for s ∈ (1, 2),

‖u−w‖2
X ≤ Cs〈A(u)−A(w),u−w〉(‖u‖X + ‖w‖X)2−s,

‖A(u)−A(w)‖X∗ ≤ Cs‖u−w‖s−1
X ,

(12)

while for s ∈ [2,∞),

‖u−w‖s
X ≤ Cs〈A(u)−A(w),u−w〉,

‖A(u)−A(w)‖X∗ ≤ Cs‖u−w‖X(‖u‖X + ‖w‖X)s−2,
(13)

where constant Cs is independent of u and v. Moreover, the following a priori
estimate can be obtained (see [25]):

Lemma 1 Let Ci, i = 1, 2 be two positive constants that depend on s, Ω and
f. If u is a solution of (9), then ‖u‖X ≤ C1. Suppose further that (11) holds,
and let (u, p) be the solution of (10). Then ‖p‖M ≤ C2 .

Proof. Set v = u in (9). Then a(u;u,u) = (f ,u). We have by (13) that
‖u‖s

X ≤ Csa(u;u,u) = Cs(f ,u) ≤ Cs‖f‖X∗‖u‖X which implies

‖u‖X ≤ C
1

s−1
s ‖f‖

1
s−1

X∗ (14)

for 2 < s ≤ ∞. Similarly for 1 < s ≤ 2 we have by (12)

‖u‖2
X ≤ Csa(u;u,u)‖u‖2−s

X = Cs(f ,u)‖u‖2−s
X
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which gives (14). The inf–sup condition (11) implies

‖p‖M ≤ 1

β
sup

w ∈ X
w 6= 0

b(w, p)

‖w‖X =
1

β
sup

w ∈ X
w 6= 0

a(u;u,w)− (f ,w)

‖w‖X ≤ 1

β
(‖A(u)‖X∗+‖f‖X∗).

The boundness of ‖p‖M follows now from the boundness of ‖u‖X which is a
consequence of (12) and (13).

3 Numerical Approximation

Let Xh and Mh be two finite dimensional spaces such that

Xh ⊂ X ∩W1,∞(Ω) and Mh ⊂ M ∩ L∞(Ω). (15)

We can approximate problem (10) as follows: find (uh, ph) ∈ Xh × Mh such
that

a(uh;uh,wh) + b(wh, ph) = (f ,wh) ∀wh ∈ Xh, (16a)

b(uh, qh) = 0 ∀qh ∈ Mh. (16b)

If a discrete inf–sup condition like (11) holds on the subspaces with a positive
constant βh > 0 (possibly depending on h) then (10) has a unique solution
which satisfies the error bounds [28,16]

‖v − vh‖X ≤ C(β−1
h )‖v −wh‖X. (17)

By choosing Taylor–Hood finite elements of degree k(≥ 1) for the velocity
field and k − 1 for the pressure, the following error estimate were proven in
[6]. Moreover it is possible to check that this family of finite elements satisfies
the discrete inf–sup condition (see [38]).

Theorem 2 Let µ obey the power–law models. Let (u, p) ∈ X × M be the
unique solution of (10). Then we have:

(1) if r ∈ (1, 2] and, for all h > 0, βh ≥ β̄ > 0, then

‖u− uh‖W1,r(Ω) ≤ Ch
kr
2 (‖u‖r/2

Wk+1,r(Ω) + ‖p‖W k,r′ (Ω)),

‖p− ph‖Lr′ (Ω) ≤ Ĉ
(
‖u‖Wk+1,r(Ω), ‖p‖W k,r′ (Ω)

)
h

kr(r−1)
2 ,

where C and Ĉ do not depend on h;
(2) if r ∈ [2,∞) and, for all h > 0, βh ≥ β̄ > 0, then

‖u− uh‖W1,r(Ω) ≤ C
(
‖u‖W 1,∞(Ω), ‖u‖W k+1,2(Ω), ‖p‖W k,2(Ω)

)
h

k
r−1
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Similar results in the case of Carreau–law model can be found in [5,6]. The dis-
crete formulation(16) may be converted into a system of non–linear algebraic
equations by explicitly choosing the bases for Xh and Mh. The corresponding
solution provides the velocity field that can be used for the tracking of the
interfaces, as described in [30]. To treat the associated non–linear algebraic
system we consider a Newton linearization strategy.

3.1 Newton linearization

For given uh ∈ Xh, the following map defines a continuous functional on Xh

wh −→ 〈G[uh],wh〉 = a(uh;uh,wh)− (f ,wh), ∀uh ∈ Xh .

Then, the solution uh of (16) satisfies

〈G[uh],wh〉+ b(wh, ph)− b(uh, qh) = 0, ∀(wh, qh) ∈ Xh ×Mh. (18)

Let Iuh
G[vh] denote the Gateaux derivative of G in the direction vh ∈ Xh

evaluated at uh, that is

〈Iuh
G[vh],wh〉 = lim

ε→0

1

ε
[a(uh + εvh;uh + εvh,wh)− a(uh;uh,wh)]

Then the Newton method for solving (18) reads: for a given initial guess

u
(0)
h ∈ Xh, for k ≥ 1 until convergence, find a sequence {(u(k)

h , p
(k)
h )} ⊂ Xh×Mh

such that ∀(wh, qh) ∈ Xh ×Mh

〈I
u

(k−1)
h

G[u
(k)
h −u

(k−1)
h ],wh〉+b(wh, p

(k)
h )−b(u

(k)
h , qh) = −〈G[u

(k−1)
h ],wh〉. (19)

Note that it is not necessary to specify an initial guess p(0) for the pressure
term. In the case of the power–law model:

〈Iuh
G[vh],wh〉 = a(uh;vh,wh) +

(
r − 2

2

)
µ

r−4
2

0

(
[∇uh · ∇vh]∇uh,wh

)
. (20)

Similar calculations hold for the Carreau law. If we substitute (20) in (19),
the Newton method reads:
given u

(0)
h ∈ Xh, for any k ≥ 1 until convergence find (u

(k)
h , p

(k)
h ) ∈ Xh ×Mh

such that:

a(u
(k−1)
h ;u

(k)
h ,wh) +

(
r − 2

2

)
µ

r−4
2

0

(
[∇u

(k−1)
h · ∇u

(k)
h ]∇u

(k−1)
h ,wh

)
− b(wh, p

(k)
h )

=
(

r − 2

2

)
µ

r−4
2

0

(
|∇u

(k−1)
h |2∇u

(k−1)
h ,wh

)
+ (f ,wh),

(21a)

b(u
(k)
h , qh) = 0 ∀(wh, qh) ∈ Xh ×Mh. (21b)
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When implementing this iterative scheme, the initial guess of the Newton
method is obtained after carrying out a few steps of the fixed point scheme
that we describe below. Let us start from the solution u

(0)
h,0 ∈ Xh of the linear

Stokes problem; then we define the sequence u
(0)
h,j ∈ Xh and p

(0)
h,j ∈ Mh for

j ≥ 1 to be the solution of the following linearized discrete system:

a(u
(0)
h,j−1;u

(0)
h,j,wh) + b(wh, p

(0)
h,j) = (f ,wh) ∀wh ∈ Xh,

b(u
(0)
h,j, qh) = 0 ∀qh ∈ Mh.

(22)

Then the initial guess for the Newton method is chosen u
(0)
h = u

(0)
h,j∗ , where j∗ is

the iteration index that satisfies a prescribed convergence criterion. Although
it is only linearly convergent, this scheme provides a simple way to initialize
the Newton method.

4 Modeling of complex sedimentary basins

In this section the effect of a non–Newtonian power law behaviour is tested on
a single layer overburden during the diapir growing process. Furthermore we
describe how to model some important phenomena that occur during basins
geohistory, such as the kinematic of faults and lateral salt evacuation. We
analyze here the effect of the power law rheology on the overburden behaviour.
The gravitational instability of a buoyant viscous layer (salt) overlain by a
(r = 1.7) non–Newtonian viscous layer is studied. As Figure 2 shows, the effect
of the non–Newtonian rheology of the overburden is related to the apparent
viscosity µ = µ(|D|2). The diapir piercing the overburden makes the viscosity
locally decrease changing the properties of surrounding material. A decrease
in viscosity changes the tensional state of the overburden (due to the lower
viscosity around the diapir), making the evolution of salt structures faster[17],
and provides information on possible fault formation.

4.1 Kinematic description of faults

The description of the whole range of the rheological behaviours of rocks is
very complex because it comprises a wide variety of deformation mechanisms.
A macroscopic effect in the deformation of sedimentary basins is the kinemat-
ics induced by the presence of localized faulting. This is an important feature
that has to be included in a comprehensive description of sedimentary basins.
In this work we don’t investigate the physical conditions leading to a fault
generation, but we want to include the effects induced by the faults in the
dynamics of a basin. Many sand–box experiments show a strict correlation

11



(a) t = 95Ma (b) t = 85Ma

(c) t = 75 Ma (d) t = 65Ma

Figure 2. Evolution of a single salt diapir in a non–Newtonian overburden modeled
with power–law rheology. The power law exponent is r = 1.7. In these pictures
the evolution of the apparent viscosity (Pa s) (together with its isolines) of the
overburden is shown.

between faults and diapirs growing in extensional basins. In order to be con-
sistent with the fluid approach we model a fault as a shear band of lower
viscosity with respect to the surrounding rocks. This approach, namely to lo-
cally change the material parameters in the zones where there is indication
of some weakness, is commonly used in many fields in order to include effects
that are not modeled by the basic framework. In this work we do not deal
with the problem of finding an indicator for an arising weakness. This is also
motivated by the very long time scales which characterize basin evolution. We
assume that the weakness localization is given from different sources, such as
geological studies which provide the location of faults and the time of their
activation. Then we include this information in our simulation by placing a
thin low viscosity shear band over the fault. In order to better understand
the effect induced by a low viscosity shear band we consider the simple case
shown in Figure 3(a), where the boundaries of the shear band are two straight
lines of infinite length separating the shear band from the sediment. A New-
tonian rheology is assumed and µsb indicates the viscosity. If the two sides
of the faults are moving with velocities V1 and V2 respectively, both aligned
with the tangent direction on the boundaries, a planar Couette flow is found
inside the shear band. In this case we can compute the exact velocity inside
the band. Let us denote by n the distance from the left boundary measured
along the perpendicular to the boundaries and by L the distance between the
two boundary lines. Then the exact solution for the velocity inside the shear
band is

V(n) = V1 + Vr
n

L
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n

Shear band

1v

2v

(a) (b) (c)

Figure 3. Development of a fault and computational mesh evolution.

where Vr = V2 −V1 is the relative slip velocity of one side of the fault with
respect to the other. Because of the linear distribution of the velocity with
respect to the position, the shear stress is constant inside the shear band and
its value is τ = µsb

L
Vr. So the shear stress acting between the two sides of the

fault is proportional to the relative slip velocity. The proportionality factor
µsb/L can be tuned by choosing both µsb and L.

Figure 3 reports a computational example of extensional sedimentary basin:
the shear band and also the computational mesh that follows the geometrical
evolution of the system can be observed.

4.2 Salt flux

Seismic lines are often interpreted in 2D, because the assumption of plane
strain is usually accepted as a good approximation in sedimentary basins
without salt. This approximation loses accuracy when evaporites are found
inside the basins. This is caused by the high mobility of salt, as opposed to
the higher strength of the overburden rocks.
Analyzing 3D–seismic data it can be noted that salt diapirs and tongues, are
fully 3D structures and a reduction to a 2D section model can be a rough
approximation in particular conditions. In order to take into account the full
3D migration of salt, geologists often reconstruct basins geohistory without
respecting the constraint of area conservation in 2D. This procedure can be
numerically reproduced if the plain strain assumption is abandoned and a lat-
eral salt flux (i.e. the movement of salt out of the section plane) is prescribed.
From a computational point of view, this corresponds to a relaxation of the
divergence constraint in two dimensions. In fact the velocity satisfies the in-
compressibility constraint in three dimension

∂u1

∂x
+

∂u2

∂y
+

∂u3

∂z
= 0. (23)
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(a) t = 14Ma (b) t = 8 Ma (c) t = 0 Ma

Figure 4. Evolution of a salt tongue in a extensional basin. The boxes represent the
salt flux area. The evacuation intervals are [18Ma, 14Ma], [9Ma, 8 Ma], [4Ma,
0Ma].

If we assume that
∂u3

∂z
= Sf (x, t) is a given function of space and time that

prescribes lateral salt flux, we can rewrite (23) as div u = −Sf (x, t), where u =
(u1, u2)

T is the unknown plane–velocity to be computed in a two–dimensional
simulation. The reformulation of problem (4) that includes lateral salt flux
reads: find (u, p) such that

− div (µ(ΠD(u))D(u)) +∇p = f in Ω,

div u = −Sf (x, t) in Ω.

We restrict our analysis to the following special class of flux function Sf (x, t) =∑N
i=1 Si(x)fi(t), in which it is possible to decouple the spatial part from the

temporal part and each addendum represents an event of salt evacuation.
More precisely, Si(x) = χΩfi

is the characteristic function of a subdomain
Ωfi

(for instance the box in figure 4), fi(t) = giχ[tsi ,tei ]
, for every i = 1, . . . , N

are characteristic functions of the time intervals {[tsi , tei ]}i of intensity gi that
modulate the intensity in time of the salt flux, N is the number of lateral flux
events. Figure 4 shows a realistic case of a salt tongue in an extensional basin.

5 Thermal modeling of a sedimentary basin

Natural salt flow or halokinesis generally occurs at shallow crustal levels where
temperature is relatively low, i.e. less than 423 ÷ 473 K (e.g., see [20]). Un-
der these conditions the main deformation mechanism is creeping. Creep is
the term given to the material deformation that occurs as a result of long
term exposure to levels of stress that are below the yield or ultimate strength.
Rather than failing suddenly with a fracture, the material permanently strains
over a longer period of time until it finally fails. Creep does not happen upon
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sudden loading but the accumulation of creep strain in longer times causes
failure of the material. Initially, the strain rate slows with increasing strain.
This is known as primary creep. The strain rate eventually reaches a mini-
mum and becomes near-constant. This is known as secondary or steady-state
creep. In tertiary creep, the strain-rate exponentially increases with strain.
The creep strain rate is typically the rate in the secondary stage. The link
between stress and steady state creep rate depends on the creep mechanism.
Commonly creeping deformation is governed by two mechanism: dislocation
creep and diffusional creep. At high stresses (relative to the shear modulus),
creep is controlled by dislocation, while at lower stresses the diffusional creep is
dominant. The rate of creep is well approximated by a power law dependence

of the stress in the material T(u, θ) = µce
− Q

Rθ |D|kD, where µc is a parameter
related to the material being crept and the sub-mechanism controlling creep,
Q is the activation energy for creep, R the universal gas constant, θ the abso-
lute temperature and k a generic power–law exponent.
Numerous experiments have been conducted on a wide variety of natural salts
to understand the creep behaviour of rocksalt. Investigated conditions cover
temperatures in the range 293÷473 K, strain rates down to 1010 s−1 and con-
fining pressures typically up to 30 MPa. At experimental flow stresses below
∼15 MPa and strain rates below ∼ 10−7 s−1 it is generally agreed that these
experiments show flow by dislocation creep (see [11,48]).

5.1 Physical Model

Neglecting inertial forces, the equations of conservation of mass, momentum
and thermal energy can be written in the Boussinesq approximation (see [24])
as

− div T(u, θ) +∇p = ρg, (24a)

div u = 0, (24b)

∂θ

∂t
+ (u · ∇)θ = div(κ∇θ) +

H

ρcp

, (24c)

where θ is the absolute temperature, κ the thermal diffusivity, H the internal
heating per unit of volume and cp the specific heat at constant pressure. To
close the system we add the state equation for density

ρ(x, t) = ρ0[1− α(θ(x, t)− θ0)] , (25)

where α is the thermal expansion coefficient and ρ0 is the thermally unper-
turbed density at the reference temperature θ0, and the rheological model for
viscosity

µ(x, t) = µ0 exp

(
E + ρgzV

Rθ
− E0 + ρ0gl0V0

Rθ0

)
, (26)
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where E is the activation energy, V the activation volume, z the depth, g
the value of gravity acceleration and µ∗ is the thermally unperturbed viscos-
ity, E0, l0, V0 are reference values for activation energy, depth and activation
volume. According to experimental data for the thermal regime, we assume
as a value of ∆θ the average geothermal gradient (∂θ/∂z) of 30 K/km. The
thermal diffusivity of the salt is much higher (approximatively 5 times) than
the diffusivity of the surrounding sediment, and this has a strong influence
on the temperature distribution in and around the salt. For models of salt
diapirism with a typical vertical length scale of 4 Km, the thermal Rayleigh
number, Ra = ρgα∆θh3/κµ, is around unity, much smaller than the critical
Rayleigh number (see [9]), and thermal buoyancy forces can be neglected. In
addition, the thermal diffusion time h2/κ, (where h is the depth of the layer
and κ is the thermal diffusivity) is much shorter than the turn-over time of
the system. For example, taking h = 4km, and the accepted thermal diffusiv-
ity for salt (κ = 5 · 10−6m2s−1) the diffusion time scale is 105 Ma, compared
with 10-100 Ma for a diapir to reach its mature stage [20]. This implies that
thermal advection can be neglected and the temperature in and around the
salt can be calculated from the steady-state heat diffusion equation. We ne-
glect here possible effects of convection in ground water surrounding the salt.
Following this physical assumption and considering the case in which the heat
generation term H is zero, equation (24c) reduces to

div(κ∇θ) = 0. (27)

Thanks to the dimensional analysis, problem (24) reduces to (6) in which
density and rheologic parameters are given by (25) and (26). Table 1 resumes
the characteristic physical values for the thermal evolution of a sedimentary
basin and involved in dimensional analysis.

5.2 The Mathematical Model

We describe the salt deformation using a Stokes non–linear system in Ω(t) ⊂
Rd (d = 2, 3) with moving interface Γt coupled with the thermal field. Also in
this context the interface Γt (see Figure 1), separating Ω+ and Ω− is character-
ized as the loci of discontinuity of the density. Our model for diapiric growth
can be formulated as the set of equations (24a),(24b), (27). They are com-
pleted by the state equations (25) and (26) for ρ and µ and by the advection
equations for the thermally unperturbed density and viscosity

∂ρ0

∂t
+ u · ∇ρ0 = 0 in Ω,

∂µ0

∂t
+ u · ∇µ0 = 0 in Ω,
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Symbol Definition Unit Value

κ thermal diffusivity m2s−1 5 · 10−6

θ temperature K 270÷800

∆θ temperature gradient K 30

R gas constant J mol−1K−1 8.314

α coeff. thermal expansion K−1 10−5

E activation energy J mol−1 2 · 104

V activation volume m3 mol−1 4 · 10−6

ρ0 density kg m−3 2.2 · 103

g gravity acceleration ms−2 9.8

l0 reference length m 5 · 103

µ0 viscosity Pa · s 1018

Table 1
Characteristic values of parameters and measure units involved in thermal diapir
evolution

−3 −2 −1 0 1 2 km
−3  

−2

−1

km
30
50
70
90
110
130

(a)

−3 −2 −1 0 1 2 km
−3  

−2

−1

km

110

90
70
50
30

(b)

−3 −2 −1 0 1 2 km
−3

−2

−1

km

110

90

70

50

30

(c)

−3 −2 −1 0 1 2 km
−3

−2

−1

km

110
90
70

50

30

(d)

Figure 5. Thermal anomaly induced by a growing salt diapir in sedimentary basin.
The figure represents the the isolines for temperature (◦C).

and with the following initial and boundary conditions:

u = 0, ∇θ · n = q on Γ1,

u · n2 = 0, (T− pI)n2 · t2 = 0, ∇θ · n = 0 on Γ2,

(T− pI)n3 = −pen3, θ = θtop on Γ3,

ρ(x, 0) = ρ0, µ(x, 0) = µ0 in Ω0,
17



(a) (b)

(c) (d)

Figure 6. Creeping deformation of a salt diapir. Evolution of the strain rate
10−13(s−1).

where θtop is the temperature at the free surface.

5.3 Numerical scheme

We propose a decoupled algorithm to solve numerically the system given by
equations (24a), (24b), (27). In our fractional scheme, this system is split in
two subsystems to be solved sequentially. To advance in time from tn to tn+1

we first compute the thermal field:

div(κ∇θn) = 0 in Ω(tn)

∇θn · n = q on Γ1, ∇θn · n = 0 on Γ2, θn = Te top on Γ3(t
n).

Then we solve the non–linear Stokes problem using the following fixed point
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iterations: for k = 1, 2, . . ., until convergence

− div T(un
k , θ

n) +∇pn
k = ρ(θn)g in Ω(tn),

div un
k = 0 in Ω(tn),

µ(x, tn) = µ0 exp

(
E + ρgzV

Rθn
− E0 + ρ0gl0V0

Rθ0

)
in Ω(tn),

ρ(x, tn) = ρ0[1− α(θn − θ0)] in Ω(tn),

un
k = 0 on Γ1,

un
k · n2 = 0, (T− pn

kI)n2 · t2 = 0 on Γ2,

(T− pn
kI)n3 = −pen3 on Γ3(t

n)

Then, using a Lagrangian technique we track the interfaces in order to update
the geometric structures (see [30]).
Figure 5 shows the evolution of the temperature field in a sedimentary basin
in presence of a growing diapir. Figure 6 shows the creeping strain rate in the
salt diapir.

6 A real life application

In this section we present the results of a simulation in which the proposed
algorithms were applied to reproduce the evolution of a real basin in the
Gulf of Mexico (see also [29]). This simulation is integrated in a more general
scheme for the analysis of a sedimentary basin. The first step is to interpret
the seismic data in order to build a reliable geometrical model of a present day
configuration of the different layers in the basin. Then a retro–deformation is
performed with the aid of the software tool 2DMove [26] and a some interme-
diate configurations are produced under interpretative hypotheses formulated
by the geologists. Finally, the proposed algorithms are applied to the initial
configuration in order to validate the physical consistency of the geometrical
reconstruction.

6.1 Geological Model and Restoration

The area selected for the present study is located in the northeastern portion of
the Gulf of Mexico basin. From Late Triassic to Jurassic the North American
plate began separation from the South American and African plates. Sepa-
ration was initiated by rifting, with the formation of grabens (see [39,14]).
The basic structural setting of the basement in the Gulf of Mexico formed in
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(a) Louann Salt

(b) Jurassic

(c) Cretaceous phase 1

Figure 7. Kinematic reconstruction from Louann Salt deposition to Lower Creta-
ceous time features already active in the Mesozoic time

Middle Jurassic time, with an important mantle upwelling and an extensional
phase producing wide areas of both thin and thick crust (see [14]). The subsi-
dence rate was higher for the thin crust than for the thick crust. Seawater is
interpreted to have intermittently occupied the Gulf of Mexico. The high rate
of evaporation of marine water caused the deposition of the salt found today
in the Gulf of Mexico basin. It is believed that thick salt was deposited on the
thin crust and in the structural lows of the thick crust (see [14]). Many geolo-
gists believe that oceanic crust formed in the center of the basin (see [39]) and
the salt previously deposited in a single widespread basin, was split, by seafloor
formation, into two regions: the northern region and the southern region (see
[27]). Since Late Jurassic time, the basin was characterized by subsidence due
to cooling and sediment loading (see [27]). During this period, the most impor-
tant mechanisms for the deformation of the sedimentary cover was related to
salt tectonics. From this point of view, the Gulf of Mexico basin presents some
of the most numerous and complex salt structures in the world. In Jurassic
time, sediment influx and progradation into the basin appears to have pro-
vided a differential loading that started the deformation of the autochthonous
salt. The understanding of this early deformation of the Jurassic salt is one
of the targets of the current study and an exceptionally clear example of the
relationships between sediment progradation and related salt tectonics. In our
reconstruction Upper Jurassic and Lower Cretaceous prograding wedges ex-
pelled most of the underlying salt. Starting in the Upper Jurassic, after the
salt deposition (see Figure 7(a)), sediments covered the platform-slope system
and salt started to flow (see Figure 7(b)). From Louann salt deposition time to
Jurassic time the salt area was preserved. During Cretaceous, the sedimentary
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(a) Cretaceous phase 2

(b) Cretaceous phase 3

Figure 8. Kinematic reconstruction at the middle Cretaceous time (Cretaceous phase
3). Some of the salt is moved away from the 2D plane

wedge experienced substantial growth: the progradation of sediments from the
north caused a prevailing flow of salt southward. The salt movement toward
the South was associated with depocenter migration in the same direction.
During the Early Cretaceous (Creta phase 1, Figure 7(c)), sediments covered
the area, especially in the northern depocenter. In this region, the area pre-
viously occupied by salt is now occupied by sediments. Salt flowed upward,
forming diapirs and salt anticlines along the section and, from Jurassic to Cre-
taceous phase 1; the area occupied by salt remained the same. During Early
Cretaceous time (Cretaceous phase 2, Figure 6.1) new geometries developed
with the rapid expulsion of salt from area A: the expulsion rollover and the
rollover syncline. Depocenters migrated from the northern area towards the
rollover syncline area. From Creta phase 1 time to Creta phase 2 time, the
area of salt decreased because the area previously occupied by salt in zone A
was now occupied by sediments in the rollover syncline.
From Early Cretaceous (Figure 7(c)) to middle Cretaceous (Cretaceous Phase
3, Figure 8) the total area of salt decreased considerably. The area previously
occupied by salt was now occupied by sediments of wedge 2. As the salt flowed
towards the salt anticline, as well as out of the plane of the section, a new
expulsion rollover developed (Figure 8). During the early Tortonian (Figure
9(b)), minor salt expulsion from salt anticlines towards the southern part of
the basin occurred and caused activation of synsedimentary faults 1, 2 and 3.
During the Messinian (Figure 9(c)), the final salt expulsion occurred along the
section causing the reactivation of the synsedimentary faults 1 and 2. From
Messinian to the present-day (Figure 9(d)), salt did not move along section
and the basin underwent regional subsidence. Our 2D kinematic reconstruc-
tion, described above, covers the evolution of the basin from the deposition of
the salt to present-day. Synsedimentary structural deformation demonstrates
strong relationships between sedimentation and salt kinematics as early as the
deposition of the first post-salt sequences. For this reason, numerical forward-
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(a) late Oligocene

(b) early Tortonian

(c) Messinian

(d) Present Day

Figure 9. Kinematic reconstruction from Louann Salt deposition to Lower Creta-
ceous time features already active in the Mesozoic time

modeling of salt dynamics, triggered by sediment loading, is the primary target
of the model described in the following paragraphs. The aim is to dynamically
reproduce the kinematics and the final geometries observed and described
above.

6.1.1 Numerical Simulation

The 2DMove key-frames associated to the main geological events, together
with the geological interpretation, providing boundary conditions and rock
properties, have been used as a guideline to reproduce the dynamic evolution.
In detail, for each geological event, we performed some numerical tests to
tune parameters that best reproduce the geometry coming from the restora-
tion, at the end of the event. The salt was described in the simulation as a

22



linear, viscous material with viscosity µ = 1019 Pa.s and density ρ = 1900
Kg/m3. For all the other lithologies in the section, the densities were modeled
as pseudo-plastic materials. The rheology parameters µ0 and r depend on the
rock composition and on depth to take into account the effects of the normal
geothermal gradient. This dependency reflects a decrease of µ0 and r with
depth.
Results of the numeric simulation are shown in Figure 10. In the initial geom-
etry (Late Jurassic) the salt is already present in the section. Then the first
two layers are gradually deposited between 160 Ma and 132 Ma and between
132 Ma and 94 Ma respectively. Under the load of those layers, the salt moves
upwards where the lithostatic pressure is weaker and the resulting motion is
in accord with models describing salt as a pressurized fluid ([41]). In the first
phase, the sediments cover mainly the northern area initiating a salt anticline.
In the second and third phases, we observe a rapid expulsion of salt concur-
rent with depocenter migration from the northern area toward the rollover
syncline area, with wedges forming against the salt anticline. Moreover, dur-
ing this stage the salt diapir is able to pierce the overburden. The next layer
is deposited between 94 Ma and 24 Ma with no evident structural changes
on the geological evolution of the section because it is thin and uniform, and
does not introduce a significant change in the distribution of the lithostatic
pressure. A significant deposition occurs between 24 Ma and 11 Ma inducing
the development of the first important active fault emanating from the top of
the salt. A similar effect is induced by the sedimentation that occurs between
11 Ma and 6 Ma. The concurrent extension enhances the shear motion along
the first fault and induces the activation of a second fault. The presence of
the two faults makes the left part of the sedimentary layers move along the
faults, thus squeezing the underlying salt out of the section until complete
welding occurs. The entire region (basement included) subsides and the last
layer uniformly covers the area. After the welding the faults become inactive
and thus they are not propagated across the last depositional layer.

Figure 11 shows some examples of the computational mesh with automatic
refinement in presence of fault systems.
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(a) Creataceous (94 Ma)

(b) Late Oligocene (24 Ma)

(c) Early Tortonian (11 Ma)

(d) Messinian (6 Ma)

(e) Present Day

Figure 10. Dynamic evolution of sedimentary basin in Gulf of Mexico. For the
dimensions we refer to the corresponding frames of the restoration (Figures 7, 8
and 9).
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