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L. Dedè], S. Micheletti], S. Perotto]

30th October 2006

] MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica “F. Brioschi”

Politecnico di Milano
via Bonardi 9, 20133 Milano, Italy

{luca.dede,stefano.micheletti,simona.perotto}@mate.polimi.it

Keywords: Anisotropic mesh adaption; Goal-oriented analysis; Gradient re-
covery procedure; Advection-diffusion-reaction problems.

AMS Subject Classification: 65N30, 65N15, 65N50, 35J20, 76R99

Abstract

In this paper we aim at controlling physically meaningful quantities with
emphasis on environmental applications. This is carried out by an efficient
numerical procedure combining the goal-oriented framework [Acta Numer.
10 (2001) 1] with the anisotropic setting introduced in [Numer. Math. 89
(2001) 641]. A first attempt in this direction has been proposed in [Appl.
Numer. Math. 51 (2004) 511]. Here we improve this analysis by carrying
over to the goal-oriented framework the good property of the a posteriori
error estimator to depend on the error itself, typical of the anisotropic
residual based error analysis presented in [Comput. Methods Appl. Mech.
Engrg. 195 (2006) 799; Numerical Mathematics and Advanced Applications
- Enumath2001 Springer Verlag Italia (2003) 731]. On the one hand this
dependence makes the estimator not immediately computable; nevertheless,
after approximating this error via the Zienkiewicz-Zhu gradient recovery
procedure [Internat. J. Numer. Methods Engrg. 24 (1987) 337; Internat.
J. Numer. Methods Engrg. 33 (1992) 1331], the resulting estimator is
expected to exhibit a higher convergence rate than the one in [Appl. Numer.
Math. 51 (2004) 511]. As the broad numerical validation attests, the
proposed estimator turns out to be more efficient in terms of d.o.f.’s per
accuracy or equivalently, more accurate for a fixed number of elements.

∗The research has been partly supported by the project COFIN 2005 Numerical Modelling

in Fluid Dynamics with Application to the Cardiovascular System and Environment.
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1 Introduction and motivations

In this work we aim at devising effective numerical techniques in view of en-
vironmental applications. For example we may be interested in studying the
distribution of some pollutants in atmosphere or in water. This could be the
case if one wants to measure the concentration of the pollutant (due to emissions
by industrial plants or chimneys) in an observation area, e.g. a town, in order
to keep it below a desired threshold, or if one desires to monitor the concentra-
tion of contaminants in a branch of a river caused, for instance, by industrial or
agricultural waste material (see, e.g., [10]).
With a view to simulating such kind of phenomena one is led to monitoring or
accurately computing quantities of interest, such as concentrations rather than
fluxes in localized portions of the domain. Mathematically these quantities are
identified by proper functionals, typically represented by interior or boundary
integrals. The necessity to deal with physically meaningful quantities justifies
the employment of a goal-oriented analysis. The basic feature of this approach
consists of estimating, within a user-defined tolerance, the exact (but unknown)
functional, evaluating the functional itself on a suitable computable approxima-
tion (see, e.g., [2, 3, 16, 25]). The overhead of this analysis is the introduction
of an auxiliary problem, the so-called adjoint (or dual) problem. The final out-
come of the goal-oriented analysis is an a posteriori estimator for the error on
the target quantity.

Under reasonable assumptions (see, e.g., [10]) the phenomena at hand can be
described by linear advection-diffusion-reaction equations. In particular when
considering the transport of a pollutant, strongly advection-dominated flows are
routinely involved, which means to deal with situations characterized by evident
directional features or steep gradients rather than large curvatures (just think of
boundary or internal layers). To sharply capture all these troublesome aspects
without spoiling the overall computational cost, an efficient remedy is provided
by the widely employed mesh adaption technique. With this respect, a further
improvement in terms of saving on the computational cost can be achieved via
an anisotropic adaptivity (see, for instance, [5, 15, 17, 27, 1, 8, 12, 19, 32]). The
main idea consists of smartly orienting, sizing and shaping the elements of the
computational mesh at hand in order to both contain the number of the d.o.f.’s
and increase the numerical accuracy.
In this paper we combine the goal-oriented framework with the anisotropic set-
ting. This will allow us to control a quantity of interest on a properly adapted
mesh, hopefully with the least number of d.o.f.’s as possible. The resulting com-
putational “machinery” turns out to have the good potentialities for facing the
environmental problems of interest in an effective way.
The paper is structured as follows. After presenting the mathematical problem
at hand in Section 2, we introduce the anisotropic setting in Section 3. An
a posteriori error estimator for the energy norm is derived in Section 4. This
analysis has to be meant mainly for familiarizing with the a posteriori framework
as well as a hint in view of the goal-oriented setting. Some numerical results
related to this first a posteriori error estimator are gathered in Section 5 along
with the actual adaptive algorithm. Section 6 deals with the goal-oriented a
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posteriori analysis. In particular two alternative anisotropic error estimators are
addressed and compared numerically in Section 7. Finally some conclusions are
drawn in the last section.

2 The problem at hand

In this section we introduce our model problem, i.e., the advection-diffusion-
reaction (ADR) equation. In more detail, in view of advection dominated cases,
we consider a SUPG type stabilized formulation [4]. The ADR equation reads:





−∇ · (µ∇u) + b · ∇u+ γu = f in Ω,
u = 0 on ΓD,
µ∇u · n = g on ΓN ,

(1)

where Ω ⊂ R
2 is a polygonal domain with boundary ∂Ω, ΓD and ΓN are suitable

measurable nonoverlapping partitions of ∂Ω with ΓD 6= ∅ and such that ∂Ω =
ΓD ∪ ΓN , and n is the unit outward normal vector to ∂Ω. Moreover we assume
that the source f ∈ L2(Ω), the diffusivity µ ∈ L∞(Ω), with µ ≥ µ0 > 0,
the reaction coefficient γ ∈ L∞(Ω), the advective field b ∈ [L∞(Ω)]2, with
∇ · b ∈ L∞(Ω) and − 1

2∇ · b + γ ≥ 0, a.e. in Ω, and the Neumann datum
g ∈ L2(ΓN ) are assigned functions.
Notice that throughout the paper, we use a standard notation to denote the
Sobolev spaces of functions with Lebesgue measurable derivatives and their norm
[20].
The weak form of (1) is:

find u ∈ V : B(u, v) = F (v) ∀v ∈ V, (2)

where V = H1
ΓD

(Ω) = {v ∈ H1(Ω) : v|ΓD
= 0}, while the bilinear form B(·, ·)

and the linear functional F (·) are:

B(u, v) =

∫

Ω
(µ∇u · ∇v + b · ∇u v + γuv) dΩ, (3)

F (v) =

∫

Ω
fv dΩ +

∫

ΓN

gv dΓ. (4)

Existence and uniqueness of the solution of (2) follow immediately from the
above hypotheses ([26]).
In order to discretize problem (2), let {Th}h be a family of conforming decom-
positions [6] of Ω into triangles K of diameter hK , such that there is always
a vertex of Th on the interface between ΓD and ΓN . Let Vh = {vh ∈ C0(Ω) :
vh|K ∈ P1,∀K ∈ Th, vh|ΓD

= 0} ⊂ V denote the subspace of affine functions,
P1 being the space of polynomials of (total) degree less than or equal to one.
As we are interested in applications where advection may strongly dominate
over diffusion and reaction, a proper discretization scheme must be employed to
limit the spurious oscillations of the numerical solution. Thus we consider the
strongly consistent SUPG type method:

find uh ∈ Vh : Bh(uh, vh) = Fh(vh) ∀vh ∈ Vh, (5)
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with

Bh(u, v) = B(u, v) +
∑

K∈Th

τK (−∇ · (µ∇u) + b · ∇u+ γu,b · ∇v)K , (6)

Fh(v) = F (v) +
∑

K∈Th

τK (f,b · ∇v)K , (7)

where (·, ·)K denotes the L2-inner product on K, while τK are suitable stabiliza-
tion parameters to be defined later (see Remark 3.3).
By simply subtracting (5) from (2), with v = vh, we get the “skew orthogonality”
property

B(eh, vh) =
∑

K∈Th

τK (−∇ · (µ∇uh) + b · ∇uh + γuh − f,b · ∇vh)K ∀vh ∈ Vh,

(8)
eh = u−uh being the discretization error. If further u enjoys a higher regularity,
i.e. u ∈ {v ∈ H1(Ω) : ∇ · (µ∇v) ∈ L2(K),∀K ∈ Th}, the standard Galerkin
orthogonality property with respect to the stabilized bilinear form Bh(·, ·) holds

Bh(eh, vh) = 0 ∀vh ∈ Vh. (9)

3 The anisotropic framework

Throughout this section we recall the anisotropic framework ([11, 12, 13]) on
which the a posteriori analysis is based.

Let us consider the standard invertible affine map TK : K̂ → K from a
reference triangle K̂ to the general one K ∈ Th, such that, for any x ∈ K

x = (x1, x2)
T = TK(x̂) = MK x̂ + tK with x̂ ∈ K̂, (10)

where MK ∈ R
2×2 and tK ∈ R

2. The most suitable choice for K̂ coincides with
the triangle with vertices (−

√
3/2,−1/2), (

√
3/2,−1/2), (0, 1), that is with the

equilateral triangle inscribed in the unit circle, with barycenter located at the
origin.
The anisotropic information of each triangle K is derived moving from the spec-
tral properties of the Jacobian MK . First let us introduce the polar decomposi-
tion MK = BKZK of MK into a symmetric positive definite and an orthogonal
matrix, BK , ZK ∈ R

2×2, respectively. Then let us further factorize the ma-
trix BK in terms of its eigenvectors ri,K and eigenvalues λi,K , with i = 1, 2,
as BK = RT

KΛKRK with ΛK = diag (λ1,K , λ2,K) and RT
K = [r1,K , r2,K ]. Thus

the shape and the orientation of each element K are completely characterized
by these quantities: the eigenvectors ri,K provide us with the directions of the
semi-axes of the ellipse circumscribing K, while the eigenvalues λi,K measure
the length of such semi-axes (see Fig. 1).

Remark 3.1 In the analysis below ZK and tK do not play any role as they are
associated with a rigid rotation and a shift, respectively.
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Figure 1: The affine map TK from the reference triangle K̂ to the triangle K
with the geometrical quantities λ1,K , λ2,K , r1,K and r2,K highlighted.

Without loosing generality, we assume that λ1,K ≥ λ2,K , so that the so-called
stretching factor is

sK =
λ1,K

λ2,K
≥ 1, (11)

s bK being identically equal to 1.
In view of the a posteriori analysis in Sections 4 and 6, we introduce the

Clément interpolant ([7]), defined, in the case of linear finite elements, as

I1
hv(x) =

∑

Nj∈NΩ∪NΓN

Pjv(Nj)ϕj(x) ∀v ∈ L2(Ω), (12)

where ϕj is the Lagrangian basis function associated with the node Nj , while
Pjv denotes the plane associated with the patch ∆j of the elements sharing node
Nj and defined by the relations

∫

∆j

(Pjv − v)ψ dΩ = 0 with ψ = 1, x1, x2. (13)

Notice that the sum in (12) runs only on the internal mesh vertices NΩ and on
those on the Neumann boundary NΓN

.
Due to the local feature of the anisotropic interpolation estimates, we refer to
the restriction of I1

hv to the element K as I1
Kv.

Under the further assumptions

#∆K ≤ N and diam(T−1
K (∆K)) ≤ C∆ ' O(1), (14)

with card · and diam(·) the cardinality and the diameter of a given set, the
constant C∆ ≥ h bK

, and ∆K denoting the patch of all the elements sharing at
least a vertex with K, we can prove (see [12, 13, 23]) the following
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Proposition 3.1 Let v ∈ H1(Ω). Then there exist constants Ci = Ci(N,C∆),
with i = 1, 2, 3, such that, for any K ∈ Th, it holds

‖v − I1
Kv‖L2(K) ≤ C1

[
2∑

i=1

λ2
i,K

(
rT
i,KGK(v)ri,K

)
]1/2

, (15)

|v − I1
Kv|H1(K) ≤ C2

1

λ2,K

[
2∑

i=1

λ2
i,K

(
rT
i,KGK(v)ri,K

)
]1/2

, (16)

‖v − I1
Kv‖L2(∂K) ≤ C3h

1

2

K

[
sK

(
rT
1,KGK(v)r1,K

)
+

1

sK

(
rT
2,KGK(v)r2,K

)]1/2

,

(17)
where

GK(v) =
∑

T∈∆K




∫

T

(
∂v

∂x

)2

dΩ

∫

T

(
∂v

∂x

) (
∂v

∂y

)
dΩ

∫

T

(
∂v

∂x

)(
∂v

∂y

)
dΩ

∫

T

(
∂v

∂y

)2

dΩ




(18)

is a 2 × 2 symmetric positive semi-definite matrix.

Remark 3.2 Conditions (14) essentially avoid too distorted patches in the ref-
erence framework. This eases the derivation of the interpolation estimates above
as they are actually carried out in the reference setting and then mapped back
to the general one. On the other hand, the same conditions do not limit the
anisotropic features (stretching factor and orientation) of each K in ∆K, but
rather the corresponding variation in ∆K (see [24] for examples of acceptable
and not acceptable patches).

Moreover the following result holds (see [23] for the proof):

Proposition 3.2 For any function v ∈ H1(Ω) and two constants α, β > 0, it
holds

min{α, β} ≤
α

(
rT
1,KGK(v)r1,K

)
+ β

(
rT
2,KGK(v)r2,K

)

|v|2
H1(∆K)

≤ max{α, β}, (19)

GK(·) being defined as in (18).

Remark 3.3 With reference to the SUPG type stabilized formulation (5)-(7),
the following anisotropic recipe is used:

τK =





λ2
2,K

12µK
if PeK < 1,

λ2,K

2‖b‖L∞(K)
if PeK ≥ 1,

(20)

where PeK = λ2,K‖b‖L∞(K)/(6µK) is the local Péclet number, while µK =
min
x∈K

µ(x) [24].
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4 An a posteriori error estimator for the energy norm

In this section we derive an anisotropic a posteriori error estimate for the energy
norm |||eh||| = (B(eh, eh))1/2 of the discretization error associated with the ADR
equation (1). In more detail we move from a standard residual-based approach
[33] properly combined with the anisotropic analysis in Section 3. The present
analysis generalizes the result in [28] to the case of a non-constant convective
term as well as to mixed boundary conditions.
First let us anticipate some notations used in the main result of this section. For
any K ∈ Th, let

rK(uh) = (f + ∇ · (µ∇uh) − b · ∇uh − γuh) |K , (21)

and

jK(uh)|E =





0 for any E ∈ ∂K ∩ Eh,D,

2 (g − (µ∇uh)|K · nK) |E for any E ∈ ∂K ∩ Eh,N ,

− [µ∇uh · n]E for any E ∈ ∂K ∩ Eh,int,

(22)

be the interior and the boundary residuals associated with the approximation uh,
respectively, where Eh,int denotes the set of the internal edges of the skeleton Eh

of the triangulation Th, while Eh,D and Eh,N stand for the Dirichlet and Neumann
subset of Eh, respectively. With the notation

[µ∇uh · n]E := (µ∇uh)|K · nK + (µ∇uh)|K′ · nK′ (23)

defined on the edge E separating elements K and K ′, we refer to the jump of
the diffusive flux on the interface.
We are in a position to state the desired anisotropic error estimate (see also
[23, 28]).

Proposition 4.1 Let u ∈ V be the solution of the weak problem (2) and uh ∈ Vh

be the corresponding approximation via (5). Then it holds

|||eh||| ≤ C


 ∑

K∈Th

αKρK(uh)wK(eh)




1/2

, (24)

with αK = (λ1,Kλ2,K)1/2,

ρK(uh) =

(
1 + τK

‖b‖L∞(K)

λ2,K

)
‖rK(uh)‖L2(K)+

1

2

(
hK

λ1,Kλ2,K

)1/2

‖jK(uh)‖L2(∂K),

(25)

wK(eh) =

[
sK

(
rT
1,KGK(eh)r1,K

)
+

1

sK

(
rT
2,KGK(eh)r2,K

)]1/2

, (26)

where C = C(N,C∆), τK is the stabilization parameter defined as in (20), the
matrix GK(·) is defined as in (18), while the residuals rK(uh) and jK(uh) are
given by (21) and (22), respectively.
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Proof. From the definition (3) of the bilinear form B(·, ·) and thanks to the weak
form (2), we have

B(eh, v) = F (v) − B(uh, v) =
∑

K∈Th

{∫

K

fv dΩ +

∫

∂K∩ΓN

gv dΓ

}

−
∑

K∈Th

∫

K

(µ∇uh · ∇v + b · ∇uh v + γuhv) dΩ,

(27)

for any v ∈ V . Notice that we have split the integrals element-wise with the aim of
localizing the a posteriori estimator. After integrating by parts in the second sum at
the right-hand side of (27), we obtain

B(eh, v) =
∑

K∈Th

{∫

K

fv dΩ +

∫

∂K∩ΓN

gv dΓ

}

−
∑

K∈Th

{∫

K

(−∇ · (µ∇uh) + b · ∇uh + γuh) v dΩ

+

∫

∂K∩Eh,N

µ∇uh · nKv dΓ +

∫

∂K∩Eh,int

µ∇uh · nKv dΓ

}
.

(28)

Observe that the integration by parts is possible consistently with the regularity of uh

since we are working on each element K. Thanks to the definitions (21) and (22), we
get

B(eh, v) =
∑

K∈Th

{∫

K

rK(uh)v dΩ +
1

2

∫

∂K

jK(uh)v dΓ

}
, (29)

the factor 1/2 taking into account the fact that each internal edge E shares two elements
of the triangulation. A suitable combination of the “skew orthogonality” property (8)
together with the definition (21) of the internal residual rK(uh) and with identity (29)
(also used with v = vh), yields

B(eh, v) = B(eh, v) −B(eh, vh) −
∑

K∈Th

τK (rK(uh),b · ∇vh)L2(K)

=
∑

K∈Th

{∫

K

rK(uh)(v − vh) dΩ +
1

2

∫

∂K

jK(uh)(v − vh) dΓ

− τK

∫

K

rK(uh)b · ∇vh dΩ

}
.

(30)

Adding and subtracting the quantity τK

∫

K

rK(uh)b · ∇v dΩ to (30) and using the

Cauchy-Schwarz inequality, we have

|B(eh, v)| ≤
∑

K∈Th

{
‖rK(uh)‖L2(K)

[
‖v − vh‖L2(K)

+ τK ‖b · ∇(v − vh)‖L2(K) + τK ‖b · ∇v‖L2(K)

]

+
1

2
‖jK(uh)‖L2(∂K)‖v − vh‖L2(∂K)

}
.

(31)

The two terms involving the advective field b can be further bounded as

‖b · ∇(v − vh)‖L2(K) ≤ ‖b‖L∞(K) |v − vh|H1(K),

‖b · ∇v‖L2(K) ≤ ‖b‖L∞(K) |v|H1(K),
(32)
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while, from Proposition 3.2 with α = sK and β = 1/sK , it holds

|v|H1(K) ≤ |v|H1(∆K) ≤
1

λ2,K

[
2∑

i=1

λ2
i,K

(
rT

i,KGK(v)ri,K

)
]1/2

. (33)

Coming back to (31) and choosing the arbitrary function vh as the Clément interpolant
of v, i.e. vh = I1

hv ∈ Vh, we can exploit Proposition 3.1 along with relations (32) and
(33) to get

|B(eh, v)| ≤
∑

K∈Th

{[
(λ1,Kλ2,K)1/2

(
C1 + (1 + C2) τK

‖b‖L∞(K)

λ2,K

)
‖rK(uh)‖L2(K)

+C3
1

2
h

1/2
K ‖jK(uh)‖L2(∂K)

][
sK

(
rT
1,KGK(v)r1,K

)
+

1

sK

(
rT
2,KGK(v)r2,K

) ]1/2}
.

(34)

Result (24) follows after taking v = eh and identifying C with max{C1, 1 +C2, C3}. ��
Notice that estimate (24) is not useful yet in view, for instance, of an adaptive

procedure, the right-hand side depending on the discretization error eh itself. On
the other hand, due to the presence of such error, we expect the whole right-
hand side of (24) to go to zero, as the mesh gets finer and finer. In order
to exploit this nice feature we aim at approximating the weights wK(eh) in
(24) via suitable computable quantities. Due to their dependence on the first-
order derivatives of the error, a convenient strategy consists of resorting to the
well-known Zienkiewicz-Zhu (ZZ) recovery procedure [34, 35, 36]. Denoting the

recovered gradient of uh with ∇ZZuh =
(
(∇ZZuh)1, (∇ZZuh)2

)T
, we substitute

the matrix GK(eh) in the definition (26) of wK(eh) with

[GK(e∗h)]i,j =
∑

T∈∆K

∫

T

(
(∇ZZuh)i −

∂uh

∂xi

)(
(∇ZZuh)j −

∂uh

∂xj

)
dΩ, (35)

for i, j = 1, 2. We can now define the fully computable a posteriori error estima-
tor which will drive the anisotropic mesh adaption procedure used throughout
the numerical validation in the section below.

Definition 4.1 Let uh ∈ Vh be the solution of the discrete problem (5). Then
the energy norm of the discretization error eh can be estimated by the quantity

η =


 ∑

K∈Th

η2
K




1/2

, (36)

the local indicator ηK being given by

ηK =

(
αKρK(uh)wK(e∗h)

)1/2

, (37)

where αK and ρK(uh) are defined as in Proposition 4.1, while

wK(e∗h) =

[
sK

(
rT
1,KGK(e∗h)r1,K

)
+

1

sK

(
rT
2,KGK(e∗h)r2,K

)]1/2

. (38)
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Remark 4.1 The isotropic counterpart of the estimator (36) can be obtained
by enforcing λ1,K = λ2,K ' hK . Notice that with this choice the weight (26)
collapses to |eh|H1(∆K). No gradient recovery procedure is needed, a simplification
of such a term occurring in this case (see the derivation of standard residual based
error estimators, for instance in [33]).

Remark 4.2 The general structure of the recovered gradient ∇ZZuh is

∇ZZuh(x) =
∑

Nj∈N
Ω

∇ZZuh(Nj)ϕj(x), (39)

NΩ being the set of all the nodes in Th. Observe that ∇ZZuh is piecewise linear,
the hat functions ϕj coinciding with the hat basis functions of Vh. Different
recipes are available in the literature to compute the coefficients ∇ZZuh(Nj)
(see, for instance, [21, 30, 34, 35, 36]). One of the most popular choice, namely
the continuous SPR procedure, can be related to the previously defined Clément
interpolant I1

h. In more detail, it suffices picking v = ∂uh/∂xi, for i = 1, 2, in
(12) and (13). If further one approximates the mass matrix involved in (13) via
the trapezoidal quadrature rule, then one obtains for the coefficients in (39) the
explicit expression

∇ZZuh(Nj) =
1

|∆j|
∑

T∈∆j

|T | (∇uh)|T , (40)

| · | denoting the d-measure function, with d = 1, 2 (see [30]). Recipe (39)-(40)
will be employed in all the numerical test cases.

5 Control of the energy norm: numerical assessment

The purpose of this section is twofold: first we provide an actual procedure to
exploit the a posteriori error estimator (36), then some numerical results are
discussed.

5.1 The adaptive procedure

We employ a metric-based adaptive procedure exploiting the estimator (36) in
a predictive fashion. Two different approaches are typically pursued:

(a) given a constraint on the maximum number of elements, find the mesh
providing the most accurate numerical solution;

(b) given a constraint on the accuracy of the numerical solution, find the mesh
with the least number of elements.

We here detail the (b) approach, while providing some comments on the (a)
one in Remark 5.1. Let us first recall that a metric is induced by a symmetric
positive definite tensor field M̃ : Ω −→ R

2. We aim at clarifying the interplay
between metric and mesh. For any given mesh Th, we can define a piecewise
constant metric M̃Th

, such that, M̃Th
|K = M̃K = B−2

K = RT
KΛ−2

K RK , for any
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K ∈ Th, the matrices being the ones defined in Section 3. With respect to this
metric, any triangle K is unit equilateral, i.e.

‖e‖fMTh

=

∫ |e|

0

√
tT M̃Th

(s)t ds = 1,

with t the unit tangent vector along the edge e.
Suppose now that a metric M̃ is given. We show how an optimal mesh with
respect to M̃ can be defined in terms of a “matching condition”. With this
respect, it is convenient to diagonalize the tensor field M̃ as M̃ = R̃T Λ̃−2R̃, with
Λ̃ = diag(λ̃1, λ̃2) and R̃T = [̃r1, r̃2] positive diagonal and orthogonal matrices,
respectively. For practical reasons, we approximate the quantities λ̃1, λ̃2, r̃1 and
r̃2 defining M̃ by piecewise constant functions over the triangulation Th, such
that r̃i|K = r̃i,K , λ̃i|K = λ̃i,K , for any K ∈ Th and with i = 1, 2. Then we
introduce the matching condition:

Definition 5.1 A mesh Th matches a given metric M̃ if, for any K ∈ Th,

M̃ |K = M̃Th
|K , (41)

i.e. r̃i,K = ri,K, λ̃i,K = λi,K, for i = 1, 2.

We stress that in our case the tensor field M̃ is not explicitly given. Rather it
must be obtained by solving the optimization problem (b) reformulated with re-
spect to the optimal metric (rather than the optimal mesh) in view of Definition
5.1. Thus the optimal metric will be our actual “unknown”.
In more detail, the determination of M̃ and of the corresponding matching tri-
angulation is obtained via an iterative method. For clarity, we point out that, at

each iteration j, we deal with three entities: the actual mesh T (j)
h , the new met-

ric M̃ (j+1) computed on T (j)
h , and the updated mesh T (j+1)

h matching M̃ (j+1).

Problem (5) is first solved on T (j)
h . Then its solution is used to set up suitable

local optimization problems, with the aim of identifying the metric M̃ (j+1) ap-
proximating the optimal metric M̃ , solution to (b). Via the matching condition

(41), the new mesh T (j+1)
h is then built. Let us detail the local optimization

procedure. We rewrite the local estimator ηK in (37) as

η2
K =

|K|3/2

|K̂|1/2
ρ̃K(uh)

[
sK

(
rT
1,KG̃K(e∗h)r1,K

)
+

1

sK

(
rT
2,KG̃K(e∗h)r2,K

)]1/2

︸ ︷︷ ︸
(∗)

,

(42)
where

ρ̃K(uh) =
ρK(uh)

|K|1/2
and G̃K(e∗h) =

GK(e∗h)

|K| (43)

are the scaled residual and recovered gradient matrix, respectively, and the rela-

tion αK =

√
|K|/|K̂ | has been advocated. This scaling is driven with the aim of

making all terms in the right-hand side of (42) approximately independent of the
measure of triangle K, at least asymptotically (i.e., when the mesh is sufficiently
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fine), thus lumping this information only in a multiplicative constant. In view
of (b) we first observe that minimizing the number of elements is equivalent to
maximizing the area |K| of each element. As we demand also that the local error
indicator ηK be equal to a desired constant (the local tolerance τ) according to
an equidistribution criterion, the only way to satisfy (b) is to minimize the term
(∗) in (42). This amounts to solving the following local constrained minimization
problem:

find sK , r1,K such that

I(sK , r1,K) = sK

(
rT
1,KG̃K(e∗h)r1,K

)
+

1

sK

(
rT
2,KG̃K(e∗h)r2,K

)
is minimum,

(44)
with sK ≥ 1, ‖r1,K‖2 = ‖r2,K‖2 = 1 and r1,K · r2,K = 0, ‖ · ‖2 denoting the
standard Euclidean norm. The solution to this problem is given in the following

Proposition 5.1 The solution (s̃K , r̃1,K) of (44) is given by

s̃K =

√
σ1,K

σ2,K
, r̃1,K = p2,K , (45)

σ1,K and σ2,K being the maximum and minimum eigenvalues of the matrix
GK(e∗h), while p1,K and p2,K are the associated eigenvectors.

For the corresponding proof see [23] where we provide also a practical recipe to

by-pass the rare occurrence σ2,K = 0. In order to fully compute M̃ (j+1), after

computing s̃K and r̃1,K , we need only to compute the two eigenvalues λ̃1,K and

λ̃2,K separately. This is achieved by resorting to the above-cited equidistribution
principle (ηK = τ , ∀K), yielding

λ̃1,K =
√
s̃Kq, λ̃2,K =

√
q

s̃K
, (46)

with

q =

[
τ4

|K̂|2(ρ̃K(uh))2 (s̃Kσ2,K + σ1,K/s̃K)

]1/3

. (47)

To summarize, the adaptive algorithm used in practice reads

1. set j = 0 and build the background mesh T (j)
h ;

2. solve problem (5);

3. solve the local minimization problem (44) for s̃K and r̃1,K;

4. via the equidistribution principle, compute λ̃1,K and λ̃2,K;

5. build up the new metric M̃ (j+1);

6. construct the new mesh T (j+1)
h matching the metric M̃ (j+1);

7. if a suitable stopping criterion is met, exit; else go to (2).

12



Remark 5.1 If one is interested in the approach (a), the above adaptive pro-
cedure can be recycled except for the choice of the tolerance τ which is not any
more user-defined, but it depends on the desired number of elements.

5.2 Numerical tests

Now we shall assess the reliability of the anisotropic a posteriori error estimator
(36). In particular we compare the performance of such estimator with the
isotropic corresponding one (see Remark 4.1), still driven by a metric based
approach. The mesh generator employed in all test cases below is BAMG [18].

Test case E1: the “ramp” case.
This is an academic test case with available exact solution aiming at providing a
quantitative analysis of the proposed estimator. In more detail, referring to the
ADR equation (1), we assume µ = 10−3, b = (1, 0)T , γ = 0, Ω = (0, 4)× (−1, 1),
ΓD = ∂Ω, and the source term f is chosen such that the exact solution of (1) is

u(x1, x2) = x1

(
1 − e−50(4−x1)

)(
1 − e−50(x2+1) − e−50(1−x2)

)
, (48)

exhibiting three boundary layers along the horizontal and outflow boundaries
(see Fig. 2). Notice that we are in the presence of a highly advection dominated
problem as the global Peclét number is Pe = ‖b‖L∞(Ω)L/(2µ) = 2000, with
L = 4.

In the spirit of approaches (a) and (b) of the above adaptive procedure, we
carry out two comparisons, with the same accuracy and with the same number of
elements. In Fig. 4 we compare the meshes obtained employing the anisotropic
(left) and isotropic (right) estimator with a similar accuracy on the exact error
equal to 0.33. Notice that in the anisotropic case only 500 elements are required
versus 3200 demanded in the isotropic case. Moreover most of the triangles in
the anisotropic case are stretched along the three boundary layers.
Figure 3 shows the meshes (anisotropic on the left and isotropic on the right)

Figure 2: Contour-lines (left) and surface plot (right) of the exact solution for
test case E1.
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Figure 3: Anisotropic (left) versus isotropic (right) adapted mesh with the same
number of elements (2500) for test case E1.
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Figure 4: Anisotropic (left) versus isotropic (right) adapted mesh with a similar
accuracy (0.33) for test case E1.

obtained by fixing the number of mesh elements chosen equal to 2500. The
energy norm of the error in the anisotropic case is 1.38 · 10−1 compared with
the value 3.92 · 10−1 for the isotropic case, yielding a gain of 1/3 in accuracy.
Observe that the additional 2000 triangles of the anisotropic grid with respect
to Fig. 4 are essentially “squeezed” in the boundary layers, the central area
remaining almost unchanged. In Fig. 5 we highlight a detail of the meshes in
Fig. 4 (on the left) and Fig. 3 (on the right) in correspondence with a portion of
the outflow boundary. In both cases the anisotropic grids are clearly stretched
along the boundary layer, thus allowing for a sharper capturing of the steep
solution. Analogous comments hold for the horizontal boundary layers except
that, as these are parabolic layers, their thickness is O(

√
µ) while the outflow

boundary is O(µ) large.

14



3.8 3.9 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

3.8 3.9 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

3.96 3.98 4
0

0.05

0.1

0.15

3.96 3.98 4
0

0.05

0.1

0.15

Figure 5: Zooms of the adapted meshes in Fig. 4 (left) and 3 (right) for test case
E1.

Now we check the convergence properties of the proposed adaptive procedure.
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Figure 6: Convergence histories associated with the uniform refinement (�),
anisotropic adapted mesh (∗) and the isotropic one (O) for test case E1.

In particular, in Fig. 6 we compare the convergence histories characterizing both
the anisotropic and isotropic error estimators along with that associated with
a uniform refinement. The trend for the first two estimators exhibits the same
slope even if the line corresponding to the anisotropic estimator is shifted below
the isotropic one. The mesh adaption driven by uniform refinement seems to
lead to a slower convergence. The conclusions drawn from Figs 4 and 3 are
further justified by Fig. 6: the error reduction is about 1/3 for the anisotropic
versus the isotropic case with the same number of elements, while the saving in
the number of elements is about 6-7 times as much.

In Table 1 we deal with the computational cost issue1. From the first row

1The computations are carried out on an AMD Athlon 1.33 GHz processor, with 256 KB of
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Table 1: CPU time (in seconds) for the anisotropic and isotropic mesh adaption
procedure with the same accuracy (first row) and number of elements (second
row) for test case E1.

Anisotropic Isotropic

|||eh||| ' 0.33 7.86 108
]Th = 2500 83.4 68.8

Figure 7: Advective field (left) and contour-lines of the reference solution (right)
for test case E2.

the shorter CPU time of the anisotropic adaptive procedure is clearly due to
the much lower number of elements at hand. On the other hand with the same
number of elements the anisotropic procedure is slightly more expensive: this is
no surprise, since the anisotropic error estimator involves the discretization error
eh in its definition, this requiring an overhead due to the ZZ recovery procedure.

Test case E2: the “two chimney” case.
We now deal with a problem motivated by a real environmental issue. In par-
ticular, we want to study the diffusion and the transport of a pollutant emitted
in air by industrial chimneys in the presence of strong wind (see also [9, 29] for
an optimal control approach in this application).
For this test case we choose in (1) µ = 10−3, b = (1, 0.5 sin(πx1))

T , γ = 0,
Ω = (−1, 1) × (−0.8, 0.8), ΓD = {x1 = −1}, g = 0 and f = 100χE1∪E2

, where
χEi

is the characteristic function associated with the emission area Ei, with
i = 1, 2, Ei being the squared subdomains centered at (−0.5, 0.2) and (0,−0.2),
respectively, with side equal to 0.05. Figure 7 displays the advective flow field
(left) along with the reference solution (right) computed on a sufficiently fine
uniform grid.
In Fig. 8 we contrast the meshes yielded by the anisotropic (left) and isotropic

Memory Cache and 256 MB of RAM.
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Figure 8: Anisotropic (left) versus isotropic (right) adapted mesh with the same
number of elements (2300) for test case E2.

(right) adaptive procedure with the same number of triangles, i.e. 2300. By
comparing Fig. 8 with 7 it is easily seen that both the adapted meshes detect
the pollutant wakes. However it is also evident that the anisotropic grid fits
more accurately all the internal layers characterizing the reference solution. In
fact, zooming on the lower chimney (see Fig. 9), it can be appreciated the “coars-
ening” in the middle of the wake in the anisotropic case completely absent in
the isotropic mesh. Note also that the misleading uniform distribution of the
elements in the isotropic case is actually due to the small dimension of the zoom
box.
The better accuracy of the anisotropic approximation is further corroborated by
the contour-lines in Fig. 10, compact in the anisotropic case while scattered on
the isotropic mesh. Also remarkable is the accuracy of the anisotropic solution
inside the emission area.

6 The goal-oriented anisotropic analysis

In view of environmental applications one may be interested in accurately ap-
proximating physically relevant quantities such as, for instance, concentrations
around critical areas of the domain, or fluxes across sections of interest. These
goal quantities can be mathematically represented by suitable linear (or non-
linear) functional J of the solution. The goal-oriented framework fully fits this
need ([3, 16]). The merging of this approach with the anisotropic framework
has already been carried out for the ADR equation and also the Stokes problem
[11, 14].
In this section after deriving an error estimate equivalent, up to a constant, to
the one in [11], we provide an alternative approach for the case of a linear J
preserving the nice feature of the estimate (24) to depend on the error, i.e. to
likely converge at a faster rate.
The main ingredient of the goal-oriented analysis is the introduction of an auxil-
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Figure 9: Detail of the anisotropic (left) versus isotropic (right) adapted mesh
around the lower chimney for test case E2.

Figure 10: Contour-lines around the lower chimney on the anisotropic (left) and
isotropic (right) grid for test case E2.

iary problem, the so-called adjoint (or dual) problem related to the functional J
at hand. Let J : V −→ R be the linear goal functional. Thus the dual problem
associated with the ADR (primal) problem (2) reads:

find z ∈ V : Bh(v, z) = J(v) ∀v ∈ V, (49)

the stabilized bilinear form Bh(·, ·) being defined in (6). The corresponding
discrete problem is

find zh ∈ Vh : Bh(vh, zh) = J(vh) ∀vh ∈ Vh. (50)

A first anisotropic bound on the functional J(eh) of the discretization error can
now be stated.

Proposition 6.1 Let u, z ∈ V be the solutions of the primal and dual problems
(2) and (49), respectively, and uh, zh ∈ Vh be the corresponding approximations
satisfying (5) and (50), respectively. Moreover, let us assume that u is smooth
enough such that the standard Galerkin orthogonality (9) holds. Then the fol-
lowing estimate can be proved,

|J(eh)| ≤ C
∑

K∈Th

αKρK(uh)wK(z), (51)
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with C = C(N,C∆), αK, ρK(uh) defined as in Proposition 4.1, while

wK(z) =

[
sK

(
rT
1,KGK(z)r1,K

)
+

1

sK

(
rT
2,KGK(z)r2,K

)]1/2

.

Proof. By suitably combining the dual formulation (49) together with the Galerkin
orthogonality (9), the definitions of Bh(·, ·) in (6) and of the strong form of the ADR
equation in (1), we get

J(eh) = Bh(eh, z) = Bh(eh, z − vh)

= B(eh, z − vh) +
∑

K∈Th

τK (rK(uh),b · ∇(z − vh)) ∀vh ∈ Vh.
(52)

Using (29) with v = z − vh ∈ V , we have:

J(eh) =
∑

K∈Th

{∫

K

rK(uh)(z − vh) dΩ +
1

2

∫

∂K

jK(uh)(z − vh) dΓ

+τK

∫

K

rK(uh)b · ∇(z − vh) dΩ

}
.

(53)

Using the Cauchy-Schwarz inequality, the functional of the error can be bounded as

|J(eh)| ≤
∑

K∈Th

{
‖rK(uh)‖L2(K)

[
‖z − vh‖L2(K) + τK‖b‖L∞(K)|z − vh|H1(K)

]

+
1

2
‖jK(uh)‖L2(∂K)‖z − vh‖L2(∂K)

}
∀vh ∈ Vh.

(54)

The choice vh = I1
hz ∈ Vh together with Proposition 3.1 leads us to the final result

(51), C coinciding now with the maximum of the interpolation constants C1, C2, C3 in

Proposition 3.1. � �

Remark 6.1 The use of the stabilized dual weak form (49), at variance with
[11], is justified in view of Proposition 6.2. The same kind of estimate is obtained
in both cases, the only change consisting of a different value for the constant C
in (51), with C = max(C1, 1 + C2, C3) in [11].

As in the case of Proposition 4.1 the right-hand side of (51) cannot be used yet
as an a posteriori error estimator, the exact adjoint solution z being in general
unknown. An actual estimator can be obtained via the following

Definition 6.1 Let uh, zh ∈ Vh be the solutions of the discrete problems (5)
and (50), respectively. Then the error on the functional J can be estimated by
the quantity

ηJ1 =
∑

K∈Th

ηJ1

K , (55)

ηJ1

K being the local error indicator given by

ηJ1

K = αKρK(uh)wK(z∗) (56)

where αK and ρK(uh) are still defined as in Proposition 4.1, while

wK(z∗) =

[
sK

(
rT
1,KGK(z∗)r1,K

)
+

1

sK

(
rT
2,KGK(z∗)r2,K

)]1/2

, (57)

GK(z∗) being computed relying on the ZZ recovery procedure applied to zh.
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We have now all the tools necessary to introduce the variant of the estimator
ηJ1 , hopefully enjoying better approximation properties.

Proposition 6.2 An estimate alternative to (51) for the functional of the dis-
cretization error is provided by the relation

|J(eh)| ≤ C
∑

K∈Th

αKρK(uh)wK(ez), (58)

ez = z − zh being the dual discretization error and with

wK(ez) =

[
sK

(
rT
1,KGK(ez)r1,K

)
+

1

sK

(
rT
2,KGK(ez)r2,K

)]1/2

. (59)

Proof. Result (58) follows simply by mimicking the proof of Proposition 6.1 choosing

in the end vh = zh + I1
h(z − zh). � � Analogously to estimate

(24) the weight of the right-hand side of (58) depends on the unknown error, in
this case the dual one. We follow the same approach as in Section 4 (see (35))
where the matrix GK(ez) in the definition of wK(ez) is replaced by the matrix
of the recovered gradients GK(e∗z) given by

[GK(e∗z)]i,j =
∑

T∈∆K

∫

T

(
(∇ZZzh)i −

∂zh
∂xi

)(
(∇ZZzh)j −

∂zh
∂xj

)
dΩ, (60)

for i, j = 1, 2. The fully computable estimator for J(eh) is provided in

Definition 6.2 With the same notations as in Definition 6.1, the global aniso-
tropic a posteriori error estimator for the functional of the discretization error
eh is

ηJ2 =
∑

K∈Th

ηJ2

K , (61)

ηJ2

K being the local error indicator given by

ηJ2

K = αKρK(uh)wK(e∗z), (62)

the weight wK(e∗z) being

wK(e∗z) =

[
sK

(
rT
1,KGK(e∗z)r1,K

)
+

1

sK

(
rT
2,KGK(e∗z)r2,K

)]1/2

. (63)

7 Goal-oriented analysis: numerical assessment

This section replies Section 5 in the goal-oriented framework and with reference
to the estimators (55) and (61). In particular, due to the similar structure of the
estimator (36) with the new ones ηJ1 and ηJ2 , the description of the adaptive
procedure is here kept to a minimum.
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7.1 The adaptive procedure

The procedure employed to derive the constrained minimization problem (44)
can be mimicked also for the goal-oriented estimators (55) and (61). The sub-
stantial differences are essentially two: the new definition of the objective func-
tion I(sK , r1,K) involves the scaled matrices G̃K(z∗) and G̃K(e∗z) instead of the

matrix G̃K(e∗h); then notice that the local estimators (56) and (62) do not en-
tail any square root in contrast to the local estimator (37). The analogue of
Proposition 5.1 can thus be stated

Proposition 7.1 The optimal metric M̃ is identified by the following choices:

λ̃1,K =
√
s̃Kq, λ̃2,K =

√
q

s̃K
, r̃1,K = p2,K ,

where

s̃K =

√
σ1,K

σ2,K
, q =

[
τ2

|K̂|2(ρ̃K(uh))2 (s̃Kσ2,K + σ1,K/s̃K)

]1/3

,

σ1,K and σ2,K are the maximum and the minimum eigenvalues of the matrix

G̃K(z∗) or G̃K(e∗z) according to the choice ηJ1 or ηJ2 , respectively and with pi,K

the corresponding eigenvectors.

The adaptive algorithm detailed in Section 5.1 will be exploited as is in the
numerical validation below.

7.2 Numerical tests

In the following we compare the performances of the estimators ηJ1 and ηJ2 on
three test cases, the first one purely academic, the others being instead aimed
at environmental applications. In particular, as we are dealing with a goal-
oriented approach, the linear functional J(·) in (49) will be chosen on the basis
of environmental motivations.

Test case G1: the “ramp” case.
We come back to the test case E1 in Section 5.2, now reviewed in a goal-oriented
setting. The target functional is J(u) =

∫
D u dΩ = 0.2741, D being the rectangle

with coordinates (3, 0.9), (4, 0.9), (4, 1) and (3, 1) (see the boxed area in the top-
right corner of Fig. 11). The corresponding dual solution is displayed in Fig. 11:
as the dual source term involves a localized quantity and the problem is strongly
advective dominated, the dual solution is confined to the upper horizontal slab of
the domain, i.e. the region feeding the information into the region D. In Fig. 12
we show the anisotropic grids driven by the estimators ηJ1 (left) and ηJ2 (right),
sharing the same number of triangles (about 1600). A qualitative comparison
among these meshes and the anisotropic ones in Fig. 4 and 3 highlights the
significant role played by the functional J in the goal-oriented case: the three
boundary layers exhibited by the primal solution are no longer detected, while
only the region carrying information towards the rectangle D is refined. A
suitable zoom of the meshes in Fig. 12 in correspondence with the top side of
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Figure 11: Contour-lines of the adjoint solution for test case G1.
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Figure 12: Anisotropic adapted mesh driven by ηJ1 (left) versus ηJ2 (right) with
the same number of elements (1600) for test case G1.
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Figure 13: Zooms of the meshes in Fig. 12 associated with ηJ1 (left) and ηJ2

(right) for test case G1.

the domain is provided in Fig. 13. The two details emphasize the less anisotropic
exasperated nature of the mesh identified by the estimator (61). This is to be
expected due to the dependence of the matrix GK on the dual error rather than
on the dual solution.
Finally, we compare the convergence histories associated with ηJ1 , ηJ2 and the
isotropic counterpart of ηJ2 , i.e. ηJ2

iso (see [3] for an instance of the corresponding
recipe). As Fig. 14 demonstrates, the anisotropic estimator (61) exhibits a faster
convergence compared with both ηJ1 and ηJ2

iso. This implies a lower number of
triangles in order to guarantee a given accuracy or, likewise, a higher accuracy
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Figure 14: Convergence histories associated with the anisotropic estimators ηJ1

(O), ηJ2 (�) and the isotropic estimator ηJ2

iso (∗) for test case G1.

for a fixed number of d.o.f.’s.
Test case G2: the “channel” case.

This test case deals with an environmental problem modeling transport of pol-
lution in water. In particular, two pollutant sources E1 and E2 are placed in a
river characterized by a dry area (an island, for example) localized in the center
of the domain. Our aim is the evaluation of the average value of the pollutant
concentration in a zone D of interest (e.g., a fish or beach area). Figure 15 (left)
sketches this setting. With reference to the ADR equation (1), the advective field
b (see Fig. 15, right) is computed by solving the incompressible Navier-Stokes
equations with the following data: the Reynolds number is chosen equal to 100,
a parabolic inflow profile with average value 1 is enforced at the inflow boundary
{x1 = 0}, while a no slip condition holds on the land borders and a homogeneous
Neumann condition is assigned at the outflow {x1 = 8}. As far as the other data
of equation (1) is concerned, we take µ = 10−3, γ = 0, ΓD = {x1 = 0} and the
source term f = 100χE1∪E2

. Finally the output functional is J(u) =
∫
D u dΩ.

As reference solution we choose the approximation computed on a uniform mesh
with 51008 triangles, thus the goal value being equal to 1.2355. The contour-lines
of the primal and dual solutions are displayed in Fig. 16, left and right, respec-
tively. We can appreciate that only the emission area E1 influences the zone
of interest D as a consequence of the strong horizontal advective field (notice
also the perturbation on the dual solution due to the dry area). This is further
confirmed by the adaptive grids yielded by ηJ1 and ηJ2 , for a fixed number of
elements (about 1500), as shown in Fig. 17 (left and right, respectively). A
zoom of the adapted mesh around the emission source E1 is provided in Fig. 18:
the grid associated with the estimator ηJ1 is clearly the most anisotropic one.
Finally, concerning the converge history, similar conclusions as in Fig. 14 can be
drawn (see Fig. 19).

Test case G3: the “PIT tag detection” case.
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Figure 15: Domain (left) and advective field b (right) for test case G2.

Figure 16: Contour-lines for the primal (left) and dual (right) solution for test
case G2.

0 1 2 3 4 5 6 7 8
−1

0

1

2

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

1.5

2

Figure 17: Anisotropic adapted mesh driven by ηJ1 (left) versus ηJ2 (right) with
the same number of elements (1500) for test case G2.
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Figure 18: Zooms of the meshes in Fig. 17 associated with ηJ1 (left) and ηJ2

(right) for test case G2.
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Figure 19: Convergence histories associated with the anisotropic estimators ηJ1

(O), ηJ2 (�) and the isotropic estimator ηJ2

iso (∗) for test case G2.

This test case can be regarded as an environmental problem concerning with
Radio Frequency IDentification (RFID) of animals. In particular we deal with
a PIT (Passive Integrated Transponder) technology providing a variety of iden-
tification and monitoring solutions for fish and wildlife research (see e.g., [31]).
PIT tags have been used for over twenty years to permanently identify individ-
ual animals. The small size of PIT tags, also known as “microchips”, virtually
eliminates negative impact on animals with little or no influence on growth-rate,
behavior or health, and makes recapture unnecessary, thus reducing handling
time and stress to the animal. The principle of RFID is to use a signal transmit-
ted between an electronic device, such as a “tag”, “transponder” or “microchip”
and a reading device, such as a “scanner”, “reader” or “transceiver”. The RFID
or EID (Electronic IDentification) devices most widely used in animals are pas-
sive. Passive integrated transponders have no battery so the microchip remains
inactive until read with a scanner. The scanner sends a low frequency signal to
the microchip within the tag providing the power needed to send its unique code
back to the scanner and positively identify the animal.

In our test case we simulate a typical monitoring situation in the case of
fishes, under the 2D approximation that the vertical motion of the fishes is
negligible. Suppose that a school of fishes are PIT tagged and then continuously
released in a small area off sea. We are then interested in measuring the fish
flux across a rectangular creel located downwind a strong eddy. We also assume
that the phenomenon takes place in an area whose size is large compared with
the dimension of the fishes so that the fish random motion by “diffusion” is
dominated by the convective effects. We model the fish evolution by the steady
ADR equation (1). The domain Ω = (−1, 1)2 is reported in Fig. 20 (left), along
with the dump area E and the creel (−0.05, 0.05) × (−1, 0). The advective field
b is approximated by the elliptic contracting spiral

b = (b1, b2)
T = (x2 − 0.1x1, 3(−x1 − 0.1x2))

T , (64)
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with ∇ · b = −0.4, and the corresponding flow field is shown in Fig. 20 (right).
As for the other data of the ADR equation (1), we take µ = 10−3, γ = 0,
f = 100χE , E being the squared release area of side 0.1 centered at (0.5,0.5),
and ΓN = ∅.
The goal functional is given by J(u) = −

∫
Creel b1u dΩ ' 7.885 · 10−2, as approx-

imated on a uniform fine grid consisting of 86144 elements.
The color plots of the reference primal and adjoint solutions are displayed
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Figure 20: Domain (left) and advective flow field (right) for test case G3.

Figure 21: Color plot of the primal (left) and adjoint (right) reference solutions
for test case G3.

in Fig. 21 (left) and (right), respectively. In Fig. 22 we show the anisotropic
adapted mesh, with about 1250 triangles, obtained by means of the estimators
ηJ1 (left) and ηJ2 (right). Both the meshes highlight the regions mostly affecting
the computation of the output functional J according to the interplay between
the primal and the adjoint solutions. In particular, as shown in Fig. 22, the dual
solution provides us with a qualitative information by selecting the area involved
in the adaptivity. On the other hand, the details of the mesh inside this area
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Figure 22: Anisotropic adapted mesh driven by ηJ1 (left) and ηJ2 (right) with
the same number of elements (1250) for test case G3.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure 23: Zooms around the creel of the meshes in Fig. 22 associated with ηJ1

(left) and ηJ2 (right) for test case G3.

are due to both the strong gradients of the dual solution and to the intensity of
the primal solution which gets lower and lower as we move towards the center
of the domain (see Fig. 21). Both the estimators detect the same critical area
by placing anisotropic triangles along the primal streamline, though the layers
associated with ηJ2 are larger than the ones corresponding to ηJ1 . Notice also
that the orientation of the triangles around the center of the domain is quite
different.
Figure 23 provides zooms around the creel of the adapted meshes of Fig. 22. Ob-
serve the crowding and the strong anisotropic features of the triangles yielded
by ηJ1 (on the left) due to the large gradient of the adjoint solution in that area.
On the other hand the estimator ηJ2 , depending on the gradient of the error of
the adjoint solution, exhibits less apparent anisotropic characteristics.
In Fig. 24 we gather the convergence histories associated with the estimators
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Figure 24: Convergence histories associated with the anisotropic estimators ηJ1

(O), ηJ2 (�) and the isotropic version of estimator ηJ2 , ηJ2

iso, (∗) for test case G3.

ηJ1 , ηJ2 and ηJ2

iso. The same type of conclusions as in the previous test cases
can be inferred: the estimator ηJ2 allows for a better convergence rate with
respect to ηJ1 . The isotropic version of the estimator ηJ2 , i.e., ηJ2

iso, leads to
errors larger than those yielded by ηJ1 and ηJ2 , for a fixed number of elements,
or equivalently, to a saving of d.o.f’s when the same tolerance is considered.

Figure 25: Color plot of the primal (left) and adjoint (right) reference solutions
for test case G3 with fishing.

We now consider a variant of the previous test case in which we include the ef-
fect of a strong (and possibly fraudulent) fishing activity taking place downwind
the monitoring region. We model this phenomenon by adding a reaction term
γ of value 100 in the region F = (−1,−0.25) × (−0.05, 0.05). The color plots
of the reference primal and adjoint solutions, computed on the same fine mesh
as above, are shown in Fig. 25 (left) and (right), respectively. Note the “bar-
rier” effect due to the presence of the fishing area. The goal functional is still
J(u) = −

∫
Creel b1u dΩ ' 6.057 · 10−2, which is slightly lower than the previous
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Figure 26: Anisotropic adapted mesh driven by ηJ1 (left) and ηJ2 (right) with
the same number of elements (1250) for test case G3 with fishing.
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Figure 27: Zooms of the meshes in Fig. 26 associated with ηJ1 (left) and ηJ2

(right) for test case G3 with fishing.

case due the capture of fishes. In Fig. 26 we provide the anisotropic adapted
meshes, with about 1250 triangles, associated with the estimators ηJ1 (left) and
ηJ2 (right). On comparing Fig. 22 with Fig. 26, the most striking evidence is
that in the left and top parts of the domain the grid is not refined as the fish-
ing activity is actually interrupting the flow. Moreover, the refinement localized
along the region F in Fig. 26 (right) is maybe due to a poor approximation of
the dual solution z. Figure 27 details the adapted meshes in Fig. 26 around
the creel. As in Fig. 23, it is apparent the more anisotropic nature of the grid
associated with ηJ1 . In Fig. 28 we plot the convergence histories corresponding
to the estimators ηJ1 , ηJ2 and ηJ2

iso. Similar conclusions as in the previous test
cases hold.
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Figure 28: Convergence histories associated with the anisotropic estimators ηJ1

(O), ηJ2 (�) and the isotropic version of estimator ηJ2 , ηJ2

iso, (∗) for test case G3
with fishing.

8 Conclusions

We have shown via some basic test cases that an a posteriori driven anisotropic
mesh adaption procedure can be effective in tackling environmental applications
modeled by the ADR equation (1), especially in the presence of strong advective
fields. In more detail, for a desired accuracy the CPU time reduces considerably
due to the lower number of elements required by the anisotropic procedure. In
addition, the combined use of anisotropic adaption together with a goal-oriented
analysis turns out to be resolvent in view of the monitoring of quantities of
physical interest in environmental applications. The natural successive step will
lead us to an anisotropic optimal control approach.
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