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Abstract

We propose a domain decomposition method for advection-diffusion-
reaction equations based on Nitsche’s transmission conditions. The ad-
vection dominated case is stabilized using a continuous interior penalty
approach based on the jumps in the gradient over element boundaries. We
prove the convergence of the finite element solutions of the discrete prob-
lem to the exact solution and we propose a parallelizable iterative method.
The convergence of the resulting domain decomposition method is proved
and this result holds true uniformly with respect to the diffusion param-
eter. The numerical scheme that we propose here can thus be applied
straightforwardly to diffusion dominated, advection dominated and hyper-
bolic problems. Some numerical examples are presented in different flow
regimes showing the influence of the stabilization parameter on the perfor-
mance of the iterative method and we compare with some other domain
decomposition techniques for advection–diffusion equations.
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1 Introduction

The solution of large computational problems calls for efficient linear solvers.
Domain decomposition has proved to be an attractive way to allow for paral-
lel solving of large problems. A formulation for domain decomposition using a
generalization of Nitsche’s method for weak boundary conditions has been con-
sidered, for instance, by Becker, Hansbo and Stenberg [2, 24] and by Heinrich
and Pietsch [16] for the Poisson problem. This formulation was then general-
ized to the case of advection-diffusion problems by Toselli [26] using SUPG type
stabilization and more recently by Burman [5]. In this last case, continuous inte-
rior penalty (IP) stabilization was used to make the method be stable in all flow
regimes. The IP finite element method for continuous approximation spaces was
introduced by Douglas and Dupont [12] and analyzed by Burman and Hansbo
in [7] and by Burman in [5].

In this paper we will give a detailed analysis of the domain decomposition
method using Nitsche’s method. In particular we consider a fully parallel iter-
ative splitting method for advection-diffusion-reaction problems, and we prove
its convergence. The present result also automatically carries over to discon-
tinuous Galerkin interior penalty formulations of advection-diffusion problems.
Overlapping domain decomposition methods for discontinuous Galerkin methods
was considered by Lasser and Toselli [19] and sub-structuring iterative methods
for domain decomposition using SUPG type stabilized continuous approximation
was considered by Rapin and Lube [23]. For an overview of results on domain de-
composition for non-symmetric problems see Quarteroni and Valli [22] or Toselli
and Widlund [27] and references therein. The advantages of the method pro-
posed in this paper is to allow for continuous and discontinuous approximation
with uniform stability properties with respect to the Peclet number. The dis-
continuous formulation naturally leads to an iterative method and allows for
conservation locally in each sub-domain. The continuous approximation on the
other hand is better suited to handle different diffusive regimes since the IP sta-
bilization parameter is independent of the diffusion parameter. Numerical tests
show that the proposed method is robust with respect to varying coefficients.
As a model problem we propose the advection-diffusion-reaction equation

{

β · ∇u + σu −∇ · ε∇u = f in Ω,

u = 0 on ∂Ω,
(1)

where Ω is a bounded open connected subset of R
d with a Lipschitz boundary ∂Ω,

d = 2 or 3 the space dimension, β ∈ [W 1,∞(Ω)]d is a velocity field, ε ∈ L∞(Ω),
ε > 0 a diffusion coefficient and σ > 0 the reaction coefficient, f ∈ L2(Ω). The
analysis extends to the case ε = 0 in the obvious way if the boundary conditions
of the continuous problem are modified and β is such that the problem remains
well-posed. We assume that the following coercivity condition holds:

σ −
1

2
∇ · β ≥ σ0 > 0, (2)
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and we define the associated parameter σ1 by

σ1 := ess supx∈Ω
|σ −∇ · β|2

σ0
.

Consider a decomposition of the domain Ω into the disjoint sub-domains Ωi

i = 1, ..., N , with boundaries ∂Ωi and with corresponding shape regular disjoint
triangulations Th,i, such that Th = ∪N

i=1Th,i = ∪N
i=1Ω̄i = Ω̄. Note that we do

not suppose that neighboring meshes are conforming over the inter-subdomain
boundary. The set of interior faces of each triangulation Th,i will be denoted by
Fi. On each triangulation we define a finite element space Vh,k,i associated with
the sub-domain Ωi,

Vh,k,i := {vh : vh ∈ H1(Ωi); vh|K ∈ Pk(K),∀K ∈ Th,i}

where Pk(K) denotes the space of polynomials of degree ≤ k on K and we
let Vh =

∑N
i=1 Vh,k,i. For every function vh ∈ Vh we introduce the restriction

to sub-domain Ωi, vh,i = vh|Ωi
. To each sub-domain boundary we associate

the outward oriented normal ni. We will always assume that the solution is
sufficiently smooth, i.e. u ∈ H1(Ω) ∩ (∪N

i=1H
2(Ωi)) and we will assume (weak)

continuity of fluxes between sub-domains. Typically the diffusion parameter ε
may be discontinuous over some sub-domain interface, provided the interface is
smooth. Let hK denote the diameter of an element K, and %K the radius of the
largest inscribed ball in K. We henceforth assume that for all meshes Th,i there
holds

cT ≤ max
K∈Th,i

hK

%K
(3)

with the same positive parameter cT . We introduce a mesh parameter function
h̃(x)|K = hK and let h = maxK∈Th,i

hK . Moreover we shall assume that there
exists a constant ρ > 1 such that for all elements K in Th,i, i = 1, . . . , N we have

max
K′∈N (K)

hK′ ≤ ρ min
K′∈N (K)

hK′ , (4)

where N (K) is the set of elements K ′ such that K̄ ∩ K̄ ′ 6= ∅. Property (4) is a
local quasi-uniformity property of the mesh. The jump [x]|E of a quantity x over
a face E will be defined by [x(ξ)]|E = limδ→0(x(ξ − nEδ) − x(ξ + nEδ)), where
ξ ∈ E and nE denotes a normal vector to the face E for interior faces where the
normal is fixed but arbitrary, while for faces on a subdomain boundary E ∈ ∂Ωi

the normal is outward oriented with respect to the subdomain Ωi and denoted
ni. Subscripts will be omitted when there is no ambiguity. For faces such that
E ∩ ∂Ω 6= ∅ we set [x(ξ)]|E ≡ limδ→0 x(ξ − nEδ). By {x(ξ)}|E we denote the
average value of x over face E, {x(ξ)}|E = limδ→0

1
2(x(ξ−nEδ)+x(ξ+nEδ)). We

will also use the weighted average {x(ξ)}w|E = limδ→0(w
−x(ξ−nEδ)+w+x(ξ +

nEδ)) where w− and w+ are two positive weights such that w−+w+ = 1 and for
faces on the boundary ∂Ω we define {x(ξ)}|E = {x(ξ)}w|E = limδ→0 2x(ξ−nEδ).
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Furthermore we will use the notation (x, y)X =
∫

X
x · y dx, 〈x, y〉∂X =

∫

∂X
x ·

y ds with the element-wise counterparts (x, y)X,h =
∑

K∈X

∫

K
x · y dx and

〈x, y〉∂X,h =
∑

E∈∂X

∫

E
x · y ds. Let ‖x‖X = (x, x)

1
2
X denote the L2-norm over X

with the element-wise counter part ‖x‖X,h = (x, x)
1
2
X,h. The norm of the space

Hi(X) will be denoted ‖x‖i,X with i = 0, 1, 2, . . .. The notations ‖x‖X and
‖x‖0,X are equivalent. The latter will be used only where it is more appropriate.
For other functional spaces the notation will be made completely explicit. We
will use c and C to denote generic positive constants independent of hK but not
necessarily of the local mesh geometry.

2 A domain decomposition method based on interior

penalties

In this section we will show how domain decomposition using Nitsche’s method
leads to a continuous/discontinuous Galerkin type penalty methods in a natural
way. The approximation is chosen to be continuous on each subdomain. We
consider problem (1) on Ω and by taking Vh as trial and test space we propose
the finite element method: find uh ∈ Vh such that

A(uh, vh) + J(uh, vh) + B(uh, vh) = (f, vh), ∀vh ∈ Vh, (5)

where

A(uh, vh) :=
N
∑

i=1

(

((σ −∇ · β)uh, vh)Ωi
+ (ε∇uh,∇vh)Ωi

− (uh, β · ∇vh)Ωi

)

,

J(uh, vh) :=

N
∑

i=1

∑

E∈Fi

〈

γ̃1,i(hE)‖β · n‖L∞(E)[∇uh · n], [∇vh · n]
〉

E
,

B(uh, vh) :=

N
∑

i=1

(

〈

β · n+
i uh, [vh]

〉

∂Ωi
−

1

2
〈{ε∇uh · ni}w, [vh]〉∂Ωi

−
1

2
〈{ε∇vh · ni}w, [uh]〉∂Ωi

+

〈

γbc{ε}w

h̃
[uh], [vh]

〉

∂Ωi

)

,

and β · n±
i := 1

2(|β · ni| ± β · ni). The discretization of the advection term cor-
responds to the standard upwind flux after integration by parts. Note that the
bilinear form A corresponds to a standard Galerkin formulation in each sub-
domain, supplemented with boundary terms on the inner and outer boundaries
that appear naturally in the formulation to assure coercivity or consistency. We
observe that terms associated with non-homogeneous boundary data do not ap-
pear since we consider u = 0 on ∂Ω. The interior penalty stabilization term
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has been decomposed into one term controlling the jumps in the gradient over
interior faces of each sub-domain Ωi, that is J(uh, vh), and the terms controlling
the jump of the solution over interior boundaries of neighboring sub-domains,
the upwind flux term and the penalty term 〈(γbc{ε}w/h̃)[uh], [vh]〉∂Ωi

. The sta-
bilization parameter γ̃1,i(hE) = γip,ih

2
E is only depending on the mesh geometry

of the sub-domain triangulation Th,i.

Remark 2.1 If the triangulation of each sub-domain consists of a single triangle
then the formulation (5) is equivalent to a standard interior penalty discontinu-
ous Galerkin method for (1). This follow immediately by noting that the interior
penalty term on the gradient jumps vanishes since there are no interior faces in
the sub-domains.

Remark 2.2 Recalling the framework for discontinuous Galerkin methods based
on interior penalties by Arnold et al. [1], we observe that the definition of the
coupling term B(uh, vh) can be made more general by introducing a parame-
ter s that allows to switch between a symmetric and a non-symmetric version.
Precisely, we consider

B(uh, vh) :=
N
∑

i=1

(

〈

β · n+
i uh, [vh]

〉

∂Ωi
−

1

2
〈{ε∇uh · ni}w, [vh]〉∂Ωi

−
s

2
〈{ε∇vh · ni}w, [uh]〉∂Ωi

+

〈

γbc{ε}w

h̃
[uh], [vh]

〉

∂Ωi

)

,

where the symmetric and the non-symmetric cases are obtained by s = 1 and
s = −1 respectively. In this work we mainly consider s = 1, but for comparison
the non-symmetric case will be addressed in section 4.

2.1 A priori error estimate

In this section we will prove that the finite element solution obtained from for-
mulation (5) converges to the exact solution of (1). The a priori error estimate
is proved using the techniques from [2] for the Nitsche matching conditions com-
bined with the technique of [5] for the interior penalty stabilization. The main
idea behind the stabilization based on the jump in the gradient between adjacent
elements is to introduce a least squares control over the part of the convective
derivative that is not in the finite element space. A key result is the following
lemma. For a proof of the underlying approximation result between discrete
spaces we refer to [18] and for a proof in the context of interior penalty sta-
bilization we refer to [6]. First we define the Oswald quasi-interpolant π∗

h (see
[17]).

Definition 2.1 For each node xi, let ni be the number of elements containing
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xi as a node. We define a quasi-interpolant π∗
h of degree k by

π∗
hv(xi) :=

1

ni

∑

{K :xi∈K}

v|K(xi), ∀v ∈ {v : v|K ∈ Pk(K)},

Theorem 2.1 (Stability) Let βh ∈ [Vh,1,i]
d be the Lagrange interpolant of β and

let uh ∈ Vh,k,i. Then there exists a constant γip,i ≥ c0 > 0, depending only on
the local mesh geometry, such that

‖h̃
1
2 (βh · ∇uh − π∗

h(βh · ∇uh))‖2
Ωi

≤ Ji(uh, uh)

with

Ji(uh, uh) =
∑

E∈Fi

∫

E

γip,ih
2
E‖βh · n‖L∞(E)[∇uh]2 ds (6)

Remark 2.3 Clearly then ‖h̃
1
2 (βh · ∇uh − π∗

h(βh · ∇uh))‖2
Ωi

≤ J(uh, uh) since
‖βh · n‖L∞(E) ≤ ‖β · n‖L∞(E).

We define a triple norm on each sub-domain as,

|||wh|||
2
i = ‖σ

1
2
0 wh‖

2
Ωi

+ ‖ε
1
2∇wh‖

2
Ωi

+ Ji(wh, wh) (7)

and the global triple norm taking into account also the interface interaction
terms as

|||wh|||
2 =

N
∑

i=1

(

|||wh|||
2
i + ‖δ(ε, β)[wh]‖2

∂Ωi

)

(8)

where δ(ε, β) = γbc{ε}w

h̃
+ 1

2 |β · n|. In what follows, we will also make use of the

quantity δ+(ε, β) = γbc{ε}w

h̃
+ 1

2β ·n+. The explicit dependence of δ and δ+ from
ε and β will be omitted later on when there is no ambiguity of notation. For
the continuity of the bilinear form we will also use the modified norm

|]wh[|2 =
∑N

i=1

(

‖σ
1
2
1 wh‖

2
Ωi

+ ‖β‖L∞(Ω)‖h̃
− 1

2 wh‖
2
Ωi

+ ‖ε
1
2∇wh‖

2
Ωi

+‖(β · n)+
1
2 wh‖

2
∂Ωi\∂Ω + Ji(wh, wh)

)

+ ‖(h̃ε)
1
2∇wh · n‖2

∂Ωi
+ ‖δ(ε, β)wh‖

2
∂Ωi

.

(9)
To prove convergence of the discrete solutions of formulation (5) to the ex-
act solution of (1) we will first prove three preliminary lemma giving Galerkin
orthogonality, coercivity and approximability. Existence of discrete solutions
follows by the coercivity and convergence and is proved in Theorem 2.2.

We first recall a trace inequality and the standard inverse inequality that we
will use repeatedly:

‖v‖2
0,∂K ≤ C

(

h−1
K ‖v‖2

K + hK ‖v‖2
1,K

)

∀v ∈ H1(K), (10)

‖∇v‖K ≤ Cinvh
−1
K ‖v‖K . (11)

For a proof of (10) we refer to [25, p. 26] and for a proof of (11) we refer to [9].
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Lemma 2.1 (Galerkin Orthogonality) Let u ∈ ∪N
i=1H

2(Ωi) be the exact so-
lution of (1) and uh be the solution to (5) then there holds

A(u − uh, vh) + B(u − uh, vh) + J(u − uh, vh) = 0, ∀vh ∈ Vh.

Proof. By assumption we have that [−ε∇u · n + β · nu] = [u] = 0 in the sense of
traces and since u ∈ ∪N

i=1H
2(Ωi) there holds J(u, vh) = 0. Therefore using the equality

[ab] = [a]{b} + {a}[b] and the fact that {ε∇u · n}w − β · n+u = {ε∇u · n − β · nu} we
have

A(u, vh) + B(u, vh) + J(u, vh)

= A(u, vh) −
1

2

N
∑

i=1

〈{ε∇u · n}w, [vh]〉∂Ωi
+

N
∑

i=1

〈

β · n+u, [vh]
〉

∂Ωi

= A(u, vh) −
1

2

N
∑

i=1

〈{ε∇u · n − β · nu}, [vh]〉∂Ωi

= A(u, vh) −
1

2

N
∑

i=1

∫

∂Ωi\∂Ω

[(ε∇u · n − β · nu)vh] ds − 〈ε∇u · n − β · nu, vh〉∂Ω . (12)

By an integration by parts in each subdomain we obtain

A(u, vh) =
N
∑

i=1

{(ε∇u,∇vh)Ωi
− (u, β · ∇v) + ((σ −∇ · β)u, v)Ωi

}

=

N
∑

i=1

(−ε∆u + β · ∇u + σu, vh)Ωi
+

N
∑

i=1

〈ε∇u · n − β · nu, vh〉∂Ωi

=

N
∑

i=1

(f, vh)Ωi
+

1

2

N
∑

i=1

∫

∂Ωi\∂Ω

[(ε∇u · n − β · nu)vh] ds + 〈ε∇u · n − β · nu, vh〉∂Ω .

It then follows from (12) that

A(u, vh) + B(u, vh) + J(u, vh) = (f, vh)

combining this equality with (5) completes the proof. 2

Lemma 2.2 (Coercivity) For the formulation (5) there holds

c|||zh||| ≤ A(zh, zh) + B(zh, zh) + J(zh, zh), ∀zh ∈ Vh

Proof. We essentially only need to show that the weakly imposed boundary and
interface conditions do not destroy coercivity. We have

A(zh, zh) + B(zh, zh) =

N
∑

i=1

(

∫

Ωi

(σ −∇ · β) z2
h dx + ‖ε

1

2∇zh‖
2
Ωi

− (zh, β · ∇zh)Ωi

+
〈

β · n+zh, [zh]
〉

∂Ωi
− 〈{ε∇zh · n}w, [zh]〉∂Ωi

+

〈

γbcε

h̃
[zh], [zh]

〉

∂Ωi

)

. (13)
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Consider the third term on the right hand side of (13). Integration by parts yields

N
∑

i=1

(β · ∇zh, zh)Ωi
= −

1

2
(∇ · β zh, zh)Ω +

N
∑

i=1

1

2
〈β · n zh, zh〉∂Ωi

= −
1

2
(∇ · β zh, zh)Ω +

N
∑

i=1

1

4

〈

β · n, [z2
h]
〉

∂Ωi\∂Ω
+

1

2
〈β · n zh, zh〉∂Ω . (14)

Applying (14) to the third term of (13) and using the equality a(a − b) = 1
2 (a2 − b2 +

(a − b)2) we get

N
∑

i=1

(

−(zh, β · ∇zh)Ωi
+
〈

β · n+zh, [zh]
〉

∂Ωi

)

=
N
∑

i=1

(1

2
(∇ · β zh, zh)Ωi

−
1

4

〈

β · n, [z2
h]
〉

∂Ωi\∂Ω

+
1

2
〈|β · n| zh, zh〉∂Ω +

1

2

〈

β · n+, [z2
h]
〉

∂Ωi\∂Ω
+

1

2

〈

β · n+[zh], [zh]
〉

∂Ωi\∂Ω

)

(15)

By observing that
∑N

i=1
1
2

〈

β · n+, [z2
h]
〉

∂Ωi\∂Ω
=
∑N

i=1
1
4

〈

β · n, [z2
h]
〉

∂Ωi\∂Ω
we conclude

that

N
∑

i=1

(

−(zh, β · ∇zh)Ωi
+
〈

β · n+zh, [zh]
〉

∂Ωi

)

=

N
∑

i=1

(1

2
(∇ · β zh, zh)Ωi

+
1

2
〈|β · n| zh, zh〉∂Ω +

1

2

〈

β · n+[zh], [zh]
〉

∂Ωi\∂Ω

)

. (16)

We now consider the second, fifth and sixth term of (13). The non-symmetric boundary
integral is split using a Cauchy-Schwarz inequality followed by Young’s inequality and
controlled by the symmetric terms in the following fashion:

N
∑

i=1

(

‖ε
1

2∇zh‖
2
Ωi

− 〈{ε∇zh · n}w, [zh]〉∂Ωi
+

〈

γbc{ε}w

h̃
[zh], [zh]

〉

∂Ωi

)

≥
N
∑

i=1

(

‖ε
1

2∇zh‖
2
Ωi

− 2α‖(h̃ε)
1

2∇zh · n‖2
∂Ωi

+

〈(

γbc −
1

4α

)

{ε}w

h̃
[zh], [zh]

〉

∂Ωi

)

. (17)

As a consequence of the trace inequality (10) and inverse estimates we have

‖(h̃ε)
1

2∇zh · n‖2
∂Ωi

≤ Ct‖ε
1

2∇zh‖
2
Ωi

(18)

and by choosing α = (4Ct)
−1 and γbc = 2Ct we conclude that

N
∑

i=1

(

‖ε
1

2∇zh‖
2
Ωi

− 〈{ε∇zh · n}w, [zh]〉∂Ωi
+

〈

γbc{ε}w

h̃
[zh], [zh]

〉

∂Ωi

)

≥
1

2

N
∑

i=1

(

‖ε
1

2∇zh‖
2
Ωi

+

〈

γbc{ε}w

h̃
[zh], [zh]

〉

∂Ωi

)

. (19)
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Combining the results of (13), (16), (19) and applying once again (18) and recalling the

condition (2) the lemma follows, with a constant c = 1
2 . 2

Remark 2.4 The constant Ct depends only on the mesh regularity and can be
given an explicit expression in the case of piecewise linear elements (see [2])
for high order elements it can be computed by solving a small local eigenvalue
problem (see [15]).

We will now proceed and prove approximability properties of the triple norm.
The L2-projection of u onto Vh will be denoted πhu and the nodal interpolation
will be denoted ihu. To avoid globally quasi uniform meshes we need a stability
estimate for the L2-projection in weighted norms. This problem was considered
in [13] and more recently in [3]. In [3] the following weighted stability estimate
was proven

‖φ∗πhu‖Ω ≤ C‖φ∗u‖Ω, (20)

where φ∗ is a piecewise linear weighting function satisfying

|∇φ∗|K | ≤ ηh−1
K max

x∈K
φ∗ (21)

for all K. Stability holds for η sufficiently small. We will use this stability result
to prove the following

Lemma 2.3 If the polynomial order of the finite element space is k and u ∈
Hk+1(Ω) then there holds for ρ sufficiently small,

∑

K∈Th,i

(h−1
K ‖(πhu − u)‖2

K + hK‖∇(πhu − u)‖2
K) ≤ C

∑

K∈Th,i

h2k+1
K ‖u‖2

k+1,K . (22)

Proof. First note that by adding and subtracting the nodal interpolant ihu in the
H1 contribution of the inequality (22) and applying a local inverse inequality we have

∑

K∈Ti,h

hK‖∇(πhu − u)‖2
K

≤ C
∑

K∈Ti,h

(C2
invh−1

K ‖(πhu − ihu)‖2
K + hK‖∇(ihu − u)‖2

K). (23)

Hence it is sufficient to consider the L2-part:
∑

K∈Ti,h
h
− 1

2

K ‖(πhu − u)‖2
K .

Take φ∗ = π∗
hh

− 1

2

K . We must prove that this function satisfies (21) and that η can be
made as small as needed by diminishing ρ. By the definition of the Oswald interpolant
and the local quasi-regularity (4) one readily verifies that ∀K ∈ Th,i

max
x∈K

|∇φ∗| ≤ h−1
K

∣

∣

∣

∣

max
K′∈N (K)

h
− 1

2

K′ − min
K′∈N (K)

h
− 1

2

K′

∣

∣

∣

∣

≤ h−1
K (ρ

1

2 − 1) min
K′∈N (K)

(h
− 1

2

K′ ).
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Hence, using that minK′∈N (K)(h
− 1

2

K′ ) ≤ minx∈K φ∗ we have |∇φ∗|K | ≤ (ρ
1

2−1)h−1
K minx∈K φ∗

on K and therefore η(ρ) = (ρ
1

2 − 1) can be made arbitrary small by choosing ρ small.
Applying now the weighted stability estimate we have

∑

K∈Th

h−1
K ‖(πhu − u)‖2

K ≤ ρ
1

2 ‖φ∗(πhu− u)‖2
Ω

≤ 2ρ
1

2 (‖φ∗(πhu − ihu)‖2
Ω + ‖φ∗(ihu − u)‖2

Ω)

≤ C(ρ)‖φ∗(ihu − u)‖2
Ω ≤ C(ρ)

∑

K

h2k+1
K ‖u‖2

k+1,Ω.

2

Lemma 2.4 (Approximability) Assume that the family of meshes Th,i is lo-
cally quasi uniform with ρ such that Lemma 2.3 holds. Let u ∈ ∪N

i=1H
s(Ωi) with

s ≥ k + 1 ≥ 2 and let πhu denote the standard L2-projection of u onto Vh; then
we have that

|||πhu − u||| ≤ C(ε
1
2H(0, u) + ‖β‖

1
2

L∞(Ω)H(1, u) + σ
1
2
0 H(2, u))

where C is independent of σ, ε, β and h but depends on the mesh geometry and

H(α, u) =





N
∑

i=1

∑

K∈Th,i

h2k+α
K ‖u‖2

k+1,K





1
2

.

Proof. It follows from the stability of the L2-projection and standard interpolation

results that ‖σ
1

2

0 (πhu − u)‖Ωi
≤ σ

1

2

0

(

∑

K∈Th,i
h

2(k+1)
K ‖u‖2

k+1,K

)
1

2

. We then write ξh =

πhu − ihu where ih denotes the nodal interpolant and note that ξh = πh(u − ihu). By
the H1-stability of the L2-projection on locally quasi-uniform meshes [4, 11] we may
write

‖∇ξh‖Ωi
≤ ‖∇(u− ihu)‖Ωi

≤ C





∑

K∈Th,i

h2k
K ‖u‖2

k+1,K





1

2

. (24)

It immediately follows by means of the triangular inequality that

‖ε
1

2∇(u − πhu)‖2
Ωi

≤ Cε
∑

K∈Th,i

h2k
K ‖u‖2

k+1,K .

and by an application of the inverse inequality and Lemma 2.3 we have
∑

K∈Th,i

h3
K‖∇ξh‖

2
1,Ω ≤ C

∑

K∈Th,i

hK‖∇ξh‖
2
Ω ≤

∑

K∈Th,i

h2k+1
K ‖u‖2

k+1,K . (25)

Using the trace inequality (10), (24) and (25) it follows

‖(εh̃)
1

2∇(πhu − u) · n‖2
∂Ωi

≤ C
∑

K∈Th,i

(

ε‖∇(πhu − u)‖2
K + εh2

K‖∇(πhu − u)‖2
1,K

)

≤ Cε
∑

K∈Th,i

h2k
K ‖u‖2

k+1,Ωi
.

10



Using once again (10), (24) and (25) we get in a similar fashion

J1(u − πhu, u− πhu)

≤ C

N
∑

i=1

γip,i‖β‖L∞(Ωi)

∑

K∈Th,i

(

‖h̃
1

2∇(u − πhu)‖2
K + ‖h̃

3

2∇(u − πhu)‖2
1,K

)

≤
N
∑

i=1

‖β‖L∞(Ωi)

∑

K∈Th,i

h2k+1
K ‖u‖2

k+1,Ωi

Finally we note that for the boundary term we have, using (10) and (24),

〈πhu − u, πhu − u〉∂Ωi
≤

∑

K:∂K∩∂Ωi 6=∅

h−1
K ‖πhu − u‖2

K + hK‖∇(πhu − u)‖2
K

≤
∑

K∈Th,i

h2k+1
K ‖u‖2

k+1,Ωi

which concludes the proof. 2

As an immediate consequence of the above result and Lemma 2.3 we have

Corollary 2.1 Under the same assumptions as in Lemma 2.4 we have that

|]πhu − u[| ≤ C(ε
1
2H(0, u) + ‖β‖

1
2

L∞(Ω)H(1, u) + σ
1
2
1 H(2, u))

where C is independent of σ, ε, β and h but depends on the mesh geometry.

Theorem 2.2 (Convergence) Let u ∈ ∪N
i=1H

s(Ωi) with s ≥ k + 1 ≥ 2 be the
solution of (1) and let uh ∈ Vh be the solution of (5) then the following a priori
error estimate holds

|||u − uh||| ≤ C

(

ε
1
2H(0, u) + ‖β‖

1
2

L∞(Ω)H(1, u) +

(

σ
1
2
1 +

|β|
W1,∞(Ω)

σ0

)

H(2, u)

)

Proof. We decompose the error in the two parts η = u − πhu and ξh = πhu − uh. It
follows that u − uh = η + ξh By Lemma 2.4 we know that

|||η||| ≤ C(ε
1

2H(0, u) + ‖β‖
1

2

L∞(Ω)H(1, u) + σ
1

2

0 H(2, u))

and it is therefore sufficient to study ξh = πhu − uh. Using Lemma 2.2 we have

c|||ξh|||
2 ≤ A(ξh, ξh) + B(ξh, ξh) + J(ξh, ξh)

and by Galerkin orthogonality

c|||ξh|||
2 ≤ A(η, ξh) + B(η, ξh) + J(η, ξh).

After an integration by parts in the convective term and an application of the Cauchy-
Schwarz inequality in all other terms we have

c|||ξh|||
2 ≤ |]η[| |||ξh||| + |(η, β · ∇ξh)|

11



Using know the orthogonality of the L2-projection and Lemma 2.1 we may write

c|||ξh|||
2 ≤ |]η[| |||ξh||| + |(η, βh · ∇ξh − π∗βh · ∇ξh)| + |(η, (β − βh) · ∇ξh)

≤ |]η[| |||ξh||| + ‖β‖L∞(Ω)‖h̃
− 1

2 η‖J(ξh, ξh)
1

2 + |β|W 1,∞(Ω)‖η‖ ‖h̃∇ξh‖

≤ |]η[| |||ξh||| + Ci

|β|W 1,∞(Ω)

σ0
‖η‖ |||ξh|||.

The theorem now follows by the approximation Lemma 2.4 and Corollary 2.1. 2

Remark 2.5 The a priori error analysis carried out in this section holds true
for any admissible choice of the weights w+, w− (such that w+, w− > 0 and
w+ + w− = 1) that appear in the definition of {·}w as also proved in [16] and
[24]. In the following section we propose a definition of these weights according
to the specific characteristics of the problem at hand.

2.2 Optimal choice of the averaging weights

To make the notation simpler, let us assume that only two sub-domains Ωi are
considered with corresponding diffusivities εi , i = 1, 2. In this case, let ∂Ω1 \∂Ω
be the interface between the sub-domains and let n1 be the outer normal with
respect to Ω1, then we define the weighted average on the interface as follows
{x(ξ)}w = limδ→0(w1x(ξ − n1δ) + w2x(ξ + n1δ)).

β .n 1

β .n 1

Ω1 Ω2

>0

<0

Figure 1: The model situation.

The regularity assumptions on the solution u can be expected to hold only
as long as εi ≥ ε0 > 0 in all the sub-domains and the the inter-subdomain
boundaries are smooth enough. In case εi vanishes in a subdomain the weights
wi may be chosen so as to guarantee that the matching conditions automatically
recover the physically correct behavior, relaxing the continuity of u but keeping
the continuity of the fluxes. It turns out that balancing the diffusive fluxes
yields a numerical scheme with the right asymptotic behavior if the diffusion
coefficient vanishes in some sub-domain. Let us exemplify this on a model case.
We consider a domain Ω split into two neighboring sub-domains Ω1 and Ω2

with a diffusion coefficient ε that is a regular function in each sub-domain, but
discontinuous across the interface ∂Ω1 ∩ ∂Ω2. We choose the weights w1 and w2

such that,

wi(ξ) := lim
δ→0

ε(ξ + δni)

ε(ξ + δni) + ε(ξ − δni)
, ∀ξ ∈ ∂Ω1 ∩ ∂Ω2, i = 1, 2, (26)
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where ni is the outward unit normal with respect to Ωi. We observe that such
weights always satisfy w1(ξ) + w2(ξ) = 1 for all ξ ∈ ∂Ω1 ∩ ∂Ω2. Moreover, in
the case of smooth diffusivity across the interface, our choice coincides with the
classical one w1 = w2 = 1

2 . Furthermore, let us define ω(ξ) := w1(ξ)ε1(ξ) =
w2(ξ)ε2(ξ). Our choice of the weights implies that {εi∇uh ·ni}w = 2ω{∇uh ·ni}
which shows that our method turns out to consider the arithmetic average of
the gradients instead of the arithmetic average of the diffusion fluxes in order to
construct the consistency term. Using these weights the coupling term between
Ω1 and Ω2 becomes,

B(uh, vh) =

2
∑

i=1

(

〈

β · n+uh, [vh]
〉

∂Ωi\∂Ω
− 〈ω{∇uh · n}, [vh]〉∂Ωi\∂Ω

−〈ω{∇vh · n}, [uh]〉∂Ωi\∂Ω +

〈

γbc2ω

h̃
[uh], [vh]

〉

∂Ωi\∂Ω

)

.

Consider the case when ε1 goes to zero, then only the upwind flux term remains.
One may readily verify that the coupling term B(uh, vh) corresponds to the weak
formulation of the following conditions

−ε2∇u2,h · n1 + β · n1u2,h = β · n1u1,h on ∂Ω1 \ ∂Ω where β · n1 > 0,

u1,h = u2,h and − ε2∇u2,h · n1 = 0 on ∂Ω1 \ ∂Ω where β · n1 < 0,

that was proposed for the hybrid elliptic-hyperbolic coupling in Gastaldi and
Quarteroni [14] (see also [10]). By the symmetry of the weights the same holds in
the case ε2 = 0. The convergence analysis of the iterative method and numerical
experience also indicates that this choice of w1 and w2 is the only viable for the
iterative algorithm.

3 An iterative splitting method

To introduce and analyze the iterative method we will restrict the discussion to
the case of two sub-domains Ωi, i = 1, 2, with interface ∂Ωi \ ∂Ω 6= ∅. Never-
theless, the generalization to the multi-domain case is straightforward and will
be addressed later on. We denote with uh,i ∈ Vh,k,i the restriction on Ωi of
the global numerical solution. For the sake of simplicity, we also identify with
uh,i the function on Ω that is obtained by extending uh,i to zero outside Ωi. If
we consider the formulation (5) and decouple the subdomains by using some
approximation uk

h,j of uh,j with j 6= i as boundary data from the neighboring

sub-domain with respect to Ωi, we obtain the iterative scheme. Given uk
h,1, u

k
h,2,

for k = 1, 2, . . ., find uk+1
h,1 ∈ Vh,1 such that

A(uk+1
h,1 , vh,1) + B̃(uk+1

h,1 , uk
h,2, vh,1) + J(uk+1

h,1 , vh,1) + S(uk+1
h,1 , uk

h,1, vh,1) =

(f, vh,1) (27)

13



and uk+1
h,2 ∈ Vh,2 such that

A(uk+1
h,2 , vh,2) + B̃(uk+1

h,2 , uk
h,1, vh,2) + J(uk+1

h,2 , vh,2) + S(uk+1
h,2 , uk

h,2, vh,2) =

(f, vh,2), (28)

where

S(uk+1
h,i , uk

h,i, vh,i) =
∑

E∈Gh

〈

γit

h̃
(uk+1

h,i − uk
h,i), vh,i

〉

E

are the terms that stabilize the iterations and the trace mesh is defined by

Gh = {E 6= ∅ : E = ∂Ki ∩ ∂Kj ; ∀ Ki ∈ Th,i; ∀ Kj ∈ Th,j; i 6= j},

and we recall that h̃(x)|E = hE for all E ∈ Gh.
The stabilization term S(uk+1

h,i , uk
h,i, vh,i) corresponds to iteration relaxation

and is mandatory to get good convergence properties. If S is omitted we can
not prove convergence of the triple norm. In fact explicit control of the error
in the jump over the interface is lost and numerical experience shows very poor
convergence as well for S = 0. Moreover, we note that the stabilization term is
consistent in the sense that S(uh,i, uh,i, vh,i) = 0. Finally, we have denoted with
B̃(uh,i, uh,j, vh,i), i, j = 1, 2 j 6= i the interace/boundary penalty bilinear form
after the iterative splitting, which is defined as follows,

B̃(uh,i, uh,j , vh,i) = 〈β · n+
i uh,i, vh,i〉∂Ωi\∂Ω + 〈β · n−

i uh,j, vh,i〉∂Ωi\∂Ω

− 〈wiεi∇uh,i · ni + wjεj∇uh,j · ni, vh,i〉∂Ωi\∂Ω − 〈εiwi∇vh,i · ni, uh,i − uh,j〉∂Ωi\∂Ω

+ 〈2
γbc{ε}w

h̃
(uh,i − uh,j), vh,i〉∂Ωi\∂Ω + 〈

γbcε

h̃
uh,i, vh,i〉∂Ωi∩∂Ω

+ 〈β · n+uh,i, vh,i〉∂Ωi∩∂Ω − 〈εi∇uh,i · n, vh,i〉∂Ωi∩∂Ω − 〈εi∇vh,i · n, uh,i〉∂Ωi∩∂Ω.

Since the data on Ωj are taken at the earlier iteration for both domains the two
problems are decoupled and can be solved in parallel.

The present setting can easily be generalized to the case of several subdo-
mains. Let Ω̄ = ∪N

i=1Ω̄i be the partition in N subdomains and let Γij = ∂Ωi∩∂Ωj

be the corresponding interfaces. Then, since the definition of A and J are already
general with respect to N , problems (27) and (28) do not need to be modified in
the multidomain case, provided that the definition of B̃(uh,i, uh,j , vh,i) is adapted

by replacing 〈·, ·〉∂Ωi\∂Ω with
∑N

i,j=1 〈·, ·〉Γij
. Thanks to the generality of the con-

struction of Gh the term S(uh,i, uh,i, vh,i) remains unchanged. Moreover, in the
multidomain case, the system of equations (27)-(28) should be complemented
with one equation for each new subdomain. Although the formal generalization
to the multidomain case is straightforward, we do not consider it here in order
to reduce the notational complexity in the analysis of the iterative method.

Lemma 3.1 The subproblems (27) and (28) are well posed in Vh,i with respect
to the norm ||| · |||i.
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Proof. An immediate consequence of Lemma 2.2 restricted to one sub-domain. 2

We define the splitting error as ek
h = uh − uk

h where uh is the solution to the
finite element formulation of (5) and uk

h is the solution after k iterations of (27)
and (28). We will now state and prove the main result of this section.

Theorem 3.1 The iterative method defined by the problems (27) and (28) con-
verges when the relaxation parameter γit is chosen big enough. More precisely,
there exists a positive constant c (that is the coercivity constant of theorem 2.2)
such that,

c

∞
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

∣ek
h

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
≤
∑

i=1,2

( c

2

∥

∥

∥

∥

ε
1
2
i ∇e0

h,i

∥

∥

∥

∥

2

Ωi

+
∥

∥

∥(δ+)
1
2 e0

h,i

∥

∥

∥

2

∂Ωi\∂Ω
+
∥

∥

∥

(γit

h̃

)
1
2
e0
h,i

∥

∥

∥

2

∂Ωi\∂Ω

)

(29)

Proof. By subtracting the decoupled formulation given by (27) and (28) from the
formulation (5) we have

A(ek+1
h,1 , vh,1) + B̃(ek+1

h,1 , ek
h,2, vh,1) + J(ek+1

h,1 , vh,1) + S(ek+1
h,1 , ek

h,1, vh,1) = 0 (30)

and

A(ek+1
h,2 , vh,2) + B̃(ek+1

h,2 , ek
h,1, vh,2) + J(ek+1

h , vh,2) + S(ek+1
h,2 , ek

h,2, vh,2) = 0. (31)

We now choose vh,i = ek+1
h,i to obtain

A(ek+1
h , ek+1

h ) + B̃(ek+1
h,1 , ek

h,2, e
k+1
h,1 ) + B̃(ek+1

h,2 , ek
h,1, e

k+1
h,2 ) + J(ek+1

h , ek+1
h )

+
∑

i=1,2

S(ek+1
h,i , ek

h,i, e
k+1
h,i ) = 0.

Proceeding now by adding and subtracting B(ek+1
h , ek+1

h ) we may write

A(ek+1
h , ek+1

h ) + B(ek+1
h , ek+1

h ) + J(ek+1
h , ek+1

h ) +
∑

i=1,2

S(ek+1
h,i , ek

h,i, e
k+1
h,i )

= B(ek+1
h , ek+1

h ) − B̃(ek+1
h,1 , ek

h,2, e
k+1
h,1 ) − B̃(ek+1

h,2 , ek
h,1, e

k+1
h,2 ). (32)

The first three terms on the left hand side will be controlled by the coercivity lemma
2.2, while the term that stabilizes the iterations can be rewritten as follows,

∑

i=1,2

S(ek+1
h,i , ek

h,i, e
k+1
h,i ) =

∑

i=1,2

∑

E∈Gh

〈
γit

h̃
(ek+1

h,i − ek
h,i), e

k+1
h,i 〉E

=
1

2

∑

i=1,2

[∥

∥

∥

(γit

h̃

)
1

2

ek+1
h,i

∥

∥

∥

2

∂Ωi\∂Ω
−
∥

∥

∥

(γit

h̃

)
1

2

ek
h,i

∥

∥

∥

2

∂Ωi\∂Ω

+
∥

∥

∥

(γit

h̃

)
1

2

(ek+1
h,i − ek

h,i)
∥

∥

∥

2

∂Ωi\∂Ω

]

. (33)

It remains to bound the interface residual of the right hand side

R(ek
h,1, e

k+1
h,1 , ek

h,2, e
k+1
h,2 ) = B(ek+1

h , ek+1
h )− B̃(ek+1

h,1 , ek
h,2, e

k+1
h,1 )− B̃(ek+1

h,2 , ek
h,1, e

k+1
h,2 ).

The residual R is different from zero only on the interface of the subdomains and consists
of three parts:
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(A). the advective interface flux term from the advection term;

(B). the symmetric interface flux term from the laplacian;

(C). the interface penalization term.

We now rearrange the terms for the three above mentioned cases.
(A) The advective interface fluxes

∑

i,j=1,2
i6=j

[

〈β · n+
i ek+1

h,i , ek+1
h,i − ek+1

h,j 〉∂Ωi\∂Ω − 〈β · n+
i ek+1

h,i , ek+1
h,i 〉∂Ωi\∂Ω − 〈β · n+

i ek
h,i,−ek+1

h,j 〉∂Ωi\∂Ω

]

=
∑

i,j=1,2
i6=j

[

〈β · n+
i (ek

h,i − ek+1
h,i ), ek+1

h,j − ek+1
h,i 〉∂Ωi\∂Ω + 〈β · n+

i (ek
h,i − ek+1

h,i ), ek+1
h,i 〉∂Ωi\∂Ω

]

We observe that,

〈β · n+
i (ek

h,i − ek+1
h,i ), ek+1

h,j − ek+1
h,i 〉∂Ωi\∂Ω

≤
1

4µi

‖(β · n+
i )

1

2 (ek
h,i − ek+1

h,i )‖2
∂Ωi\∂Ω + µi‖(β · n+

i )
1

2 [ek+1
h ]‖2

∂Ωi\∂Ω

and

〈β · n+
i (ek

h,i − ek+1
h,i ), ek+1

h,i 〉∂Ωi\∂Ω

=
1

2
‖(β ·n+

i )
1

2 ek
h,i‖

2
∂Ωi\∂Ω−

1

2
‖(β ·n+

i )
1

2 ek+1
h,i ‖2

∂Ωi\∂Ω−
1

2
‖(β ·n+

i )
1

2 (ek+1
h,i −ek

h,i)‖
2
∂Ωi\∂Ω

By combining these results we obtain,

∑

i,j=1,2
i6=j

[

〈β · n+
i (ek

h,i − ek+1
h,i ), ek+1

h,j − ek+1
h,i 〉∂Ωi\∂Ω + 〈β · n+

i (ek
h,i − ek+1

h,i ), ek+1
h,i 〉∂Ωi\∂Ω

]

≤
∑

i=1,2

[

µi‖|β · ni|
1

2 [ek+1
h ]‖2

∂Ωi\∂Ω +
1 − 2µi

4µi

‖|β · ni|
1

2 (ek
h,i − ek+1

h,i )‖2
∂Ωi\∂Ω

+
1

2
‖(β · n+

i )
1

2 ek
h,i‖

2
∂Ωi\∂Ω −

1

2
‖(β · n+

i )
1

2 ek+1
h,i ‖2

∂Ωi\∂Ω

]

(34)

(B) The boundary part of the laplacian operator may then be written

−
1

2

∑

i,j=1,2
i6=j

[

2〈{ε∇ek+1
h · ni}w, ek+1

h,i − ek+1
h,j 〉∂Ωi\∂Ω

−〈ω∇ek+1
h,i · ni + ω∇ek

h,j · ni, e
k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ek+1

h,i · ni, e
k+1
h,i − ek

h,j〉∂Ωi\∂Ω

−〈ω∇ek
h,i · ni + ω∇ek+1

h,j · ni,−ek+1
h,j 〉∂Ωi\∂Ω − 〈ω∇ek+1

h,j · ni, e
k
h,i − ek+1

h,j 〉∂Ωi\∂Ω

]
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that can be rewritten as follows,

−
1

2

∑

i,j=1,2
i6=j

[

〈ω∇ek+1
h,j · ni, e

k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ek

h,j · ni, e
k
h,i〉∂Ωi\∂Ω

−〈ω∇ek+1
h,i · ni, e

k+1
h,j 〉∂Ωi\∂Ω + 〈ω∇ek

h,i · ni, e
k
h,j〉∂Ωi\∂Ω

+〈ω∇(ek
h,i − ek+1

h,i ) · ni, e
k+1
h,j − ek

h,j〉∂Ωi\∂Ω

+〈ω∇(ek+1
h,j − ek

h,j) · ni, e
k+1
h,i − ek

h,i〉∂Ωi\∂Ω

]

where we remind that w1ε1 = w2ε2 = ω. For this choice of the averaging weights the
first four terms vanish, precisely

∑

i,j=1,2
i6=j

[

〈ω∇ek+1
h,j · ni, e

k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ek

h,j · ni, e
k
h,i〉∂Ωi\∂Ω

−〈ω∇ek+1
h,i · ni, e

k+1
h,j 〉∂Ωi\∂Ω + 〈ω∇ek

h,i · ni, e
k
h,j〉∂Ωi\∂Ω

]

= 0.

By means of Cauchy-Schwarz and Young’s inequalities, we have for the fifth term,

〈ω∇(ek
h,i−ek+1

h,i )·ni, e
k+1
h,j −ek

h,j〉∂Ωi\∂Ω =
∑

E∈Gh

〈ω
1

2∇(ek
h,i−ek+1

h,i )·ni, ω
1

2 (ek+1
h,j −ek

h,j)〉E

≤
∑

E∈Gh

2
[

h
1

2

E‖ω
1

2∇(ek
h,i − ek+1

h,i ) · ni‖E · h
− 1

2

E ‖ω
1

2 (ek+1
h,j − ek

h,j)‖E

]

≤
∑

E∈Gh

[

αihE‖ω
1

2∇(ek
h,i − ek+1

h,i ) · ni‖
2
E + (αihE)−1‖ω

1

2 (ek+1
h,j − ek

h,j)‖
2
E

]

Then, by virtue of trace and inverse inequalities (see remark 2.4) there exists a positive
constant Ct such that,

∑

E∈Gh

hE‖ω
1

2∇(ek
h,i − ek+1

h,i ) · ni‖
2
E ≤ Ct‖wi‖L∞(∂Ωi\∂Ω)‖ε

1

2

i ∇(ek
h,i − ek+1

h,i )‖2
Ωi

≤ Ct‖wi‖L∞(∂Ωi\∂Ω)

[

‖ε
1

2

i ∇ek
h,i‖

2
Ωi

+ ‖ε
1

2

i ∇ek+1
h,i ‖2

Ωi

]

We proceed analogously for the term 〈ω∇(ek+1
h,j − ek

h,j) · ni, e
k+1
h,i − ek

h,i〉∂Ωi\∂Ω.
Summing up all the contributions we obtain that,

−
1

2

∑

i,j=1,2
i6=j

[

2〈ω∇(ek
h,i − ek+1

h,i ) · ni, e
k+1
h,j − ek

h,j〉∂Ωi\∂Ω

+〈ω∇ek+1
h,j · ni, e

k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ek

h,j · ni, e
k
h,i〉∂Ωi\∂Ω

−〈ω∇ek+1
h,i · ni, e

k+1
h,j 〉∂Ωi\∂Ω + 〈ω∇ek

h,i · ni, e
k
h,j〉∂Ωi\∂Ω

]

≤
∑

i=1,2

[

αiCt‖wi‖L∞(∂Ωi\∂Ω)

(

‖ε
1

2

i ∇ek+1
h,i ‖2

Ωi
+ ‖ε

1

2

i ∇ek
h,i‖

2
Ωi

)

+
‖wiεi‖L∞(∂Ωi\∂Ω)

αi

‖(h̃)−
1

2 (ek+1
h,i − ek

h,i)‖∂Ωi\∂Ω

]

(35)
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(C) For the interface penalization term we get

∑

i,j=1,2
i6=j

[

〈
(

γbc{ε}w

h̃

)

(ek+1
h,i − ek+1

h,j ), ek+1
h,i − ek+1

h,j 〉∂Ωi\∂Ω

−〈
(

γbcω

h̃

)

(ek+1
h,i − ek

h,j), e
k+1
h,i 〉∂Ωi\∂Ω − 〈

(

γbcω

h̃

)

(ek+1
h,j − ek

h,i), e
k+1
h,j 〉∂Ωi\∂Ω

]

By means of algebraic manipulations, we obtain

〈
(

γbcω

h̃

)

(ek+1
h,i − ek

h,j), e
k+1
h,i 〉∂Ωi\∂Ω + 〈

(

γbcω

h̃

)

(ek+1
h,j − ek

h,i), e
k+1
h,j 〉∂Ωi\∂Ω

= 〈
(

γbcω

h̃

)

(ek+1
h,i − ek

h,i), e
k+1
h,j − ek+1

h,i 〉∂Ωi\∂Ω + 〈
(

γbcω

h̃

)

(ek+1
h,i − ek

h,i), e
k+1
h,i 〉∂Ωi\∂Ω

+ 〈
(

γbcω

h̃

)

(ek+1
h,j − ek

h,j), e
k+1
h,i − ek+1

h,j 〉∂Ωi\∂Ω + 〈
(

γbcω

h̃

)

(ek+1
h,j − ek

h,j), e
k+1
h,j 〉∂Ωi\∂Ω

+ ‖
(

γbc{ε}w

h̃

)
1

2

[ek+1
h ]‖2

∂Ωi\∂Ω

By virtue of the particular choice of the weights that gives 2ω = {ε}w and by means
of standard inequalities we observe that,

〈
(

γbcω

h̃

)

(ek+1
h,i − ek

h,i), e
k+1
h,j − ek+1

h,i 〉∂Ωi\∂Ω + 〈
(

γbcω

h̃

)

(ek+1
h,j − ek

h,j), e
k+1
h,j − ek+1

h,j 〉∂Ωi\∂Ω

≤
1

4µi

[

‖
(

γbcω

h̃

)
1

2

(ek+1
h,i − ek

h,i)‖
2
∂Ωi\∂Ω + ‖

(

γbcω

h̃

)
1

2

(ek+1
h,j − ek

h,j)‖
2
∂Ωi\∂Ω

]

µi

[

‖
(

γbcω

h̃

)
1

2

[ek+1
h ]‖2

∂Ωi\∂Ω + ‖
(

γbcω

h̃

)
1

2

[ek+1
h ]‖2

∂Ωi\∂Ω

]

=
1

4µi

‖
(

γbc{ε}w

h̃

)
1

2

(ek+1
h,i − ek

h,i)‖
2
∂Ωi\∂Ω + µi‖

(

γbc{ε}w

h̃

)
1

2

[ek+1
h ]‖2

∂Ωi\∂Ω

and that,

∑

j=1,2

〈
(

γbcω

h̃

)

(ek+1
h,j − ek

h,j), e
k+1
h,j 〉∂Ωi\∂Ω

=
1

2

∑

j=1,2

[

‖
(

γbcω

h̃

)
1

2

ek+1
h,j ‖2

∂Ωi\∂Ω − ‖
(

γbcω

h̃

)
1

2

ek
h,j‖

2
∂Ωi\∂Ω + ‖

(

γbcω

h̃

)
1

2

(ek+1
h,j − ek

h,i)‖
2
∂Ωi\∂Ω

]

=
1

2

[

‖
(

γbc{ε}w

h̃

)
1

2

ek+1
h,i ‖2

∂Ωi\∂Ω − ‖
(

γbc{ε}w

h̃

)
1

2

ek
h,i‖

2
∂Ωi\∂Ω + ‖

(

γbc{ε}w

h̃

)
1

2

(ek+1
h,i − ek

h,i)‖
2
∂Ωi\∂Ω

]

Summing up all the terms of the residual (C) we have,

∑

i=1,2

[

〈
(

γbc{ε}w

h̃

)

(ek+1
h,i − ek+1

h,j ), ek+1
h,i − ek+1

h,j 〉∂Ωi\∂Ω

−〈
(

γbc{ε}w

h̃

)

(ek+1
h,i − ek

h,j), e
k+1
h,i 〉∂Ωi\∂Ω − 〈

(

γbc{ε}w

h̃

)

(ek+1
h,j − ek

h,i), e
k+1
h,j 〉∂Ωi\∂Ω

]

≤
∑

i=1,2

[

1 − 2µi

4µi

‖
(

γbc{ε}w

h̃

)
1

2

(ek+1
h,i − ek

h,i)‖
2
∂Ωi\∂Ω + µi‖

(

γbc{ε}w

h̃

)
1

2

[ek+1
h ]‖2

∂Ωi\∂Ω

+
1

2
‖
(

γbc{ε}w

h̃

)
1

2

ek
h,i‖

2
∂Ωi\∂Ω −

1

2
‖
(

γbc{ε}w

h̃

)
1

2

ek+1
h,i ‖2

∂Ωi\∂Ω

]

(36)

18



By putting together (34), (35), (36) we obtain the following inequality,

R(ek
h,1, e

k+1
h,1 , ek

h,2, e
k+1
h,2 )

≤
∑

i=1,2

[

αiCt‖wi‖L∞(∂Ωi\∂Ω)

(

‖ε
1

2

i ∇ek+1
h,i ‖2

Ωi
+ ‖ε

1

2

i ∇ek
h,i‖

2
Ωi

)

+ µi‖δ
1

2 [ek+1
h ]‖2

∂Ωi\∂Ω

+
1 − 2µi

4µi

‖δ
1

2 (ek+1
h,i − ek

h,i)‖
2
∂Ωi\∂Ω +

‖wiεi‖L∞(∂Ωi\∂Ω)

αi

‖h̃− 1

2 (ek+1
h,i − ek

h,i)‖
2
∂Ωi\∂Ω

+
1

2
‖(δ+)

1

2 ek
h,i‖

2
∂Ωi\∂Ω −

1

2
‖(δ+)

1

2 ek+1
h,i ‖2

∂Ωi\∂Ω

]

. (37)

It should be noted that the right hand side of the above expression (37) consists of terms
that are either telescoping or of one of the following forms:

• terms containing ∇ek+1
h,i ;

• terms containing a part [ek+1
h ];

• terms containing a part ek+1
h,i − ek

h,i.

The first and the second contributions will be controlled by the triple norm and the last
type of contributions will be controlled by the relaxation terms of (33). More precisely,
by replacing (37) and (33) in (32) we obtain,

∑

i=1,2

[

c‖σ
1

2

0 ek+1
h,i ‖2

Ωi
+ cJ(ek+1

h,i , ek+1
h,i )

+

(

γit

2
−

‖wiεi‖L∞(∂Ωi\∂Ω)

αi

)

‖h̃− 1

2 (ek+1
h,i − ek

h,i)‖
2
∂Ωi\∂Ω −

1 − 2µi

4µi

‖δ
1

2 (ek+1
h,i − ek

h,i)‖
2
∂Ωi\∂Ω

+(c − αiCt‖wi‖L∞(∂Ωi\∂Ω))‖ε
1

2

i ∇ek+1
h,i ‖2

Ωi
− αiCt‖wi‖L∞(∂Ωi\∂Ω)‖ε

1

2

i ∇ek
h,i‖

2
Ωi

+c‖δ
1

2 [ek+1
h ]‖2

∂Ωi∩∂Ω + (c − µi)‖δ
1

2 [ek+1
h ]‖2

∂Ωi\∂Ω

+
1

2
‖(δ+)

1

2 ek+1
h,i ‖2

∂Ωi\∂Ω −
1

2
‖(δ+)

1

2 ek
h,i‖

2
∂Ωi\∂Ω

+
1

2

∥

∥

∥

(γit

h̃

)
1

2

ek+1
h,i

∥

∥

∥

2

∂Ωi\∂Ω
−

1

2

∥

∥

∥

(γit

h̃

)
1

2

ek
h,i

∥

∥

∥

2

∂Ωi\∂Ω

]

≤ 0. (38)

Then, we choose the coefficients of Young’s inequality, αi and µi, as follows,

αi <
c

2Ct‖wi‖L∞(∂Ωi\∂Ω)
e.g. αi =

c

4Ct‖wi‖L∞(∂Ωi\∂Ω)
; µi < c e.g. µi =

c

2
,

and as a consequence of that, the relaxation parameter γit becomes,

γit ≥
8Ct‖wi‖L∞(∂Ωi\∂Ω)‖wiεi‖L∞(∂Ωi\∂Ω)

c

+
max[1 − c, 0]

2c

(

γbc‖{ε}w‖L∞(∂Ωi\∂Ω) + ‖β · nh̃‖L∞(∂Ωi\∂Ω)

)

, i = 1, 2 (39)
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this allows us to rewrite (38) as follows

c

2

∣

∣

∣

∣

∣

∣ek+1
h

∣

∣

∣

∣

∣

∣

2
+
∑

i=1,2

[ c

4

∥

∥

∥ε
1

2

i ∇ek+1
h,i

∥

∥

∥

2

Ωi

−
c

4

∥

∥

∥ε
1

2

i ∇ek
h,i

∥

∥

∥

2

Ωi

+
1

2

∥

∥

∥(δ+)
1

2 ek+1
h,i

∥

∥

∥

2

∂Ωi\∂Ω
−

1

2

∥

∥

∥(δ+)
1

2 ek
h,i

∥

∥

∥

2

∂Ωi\∂Ω

+
1

2

∥

∥

∥

(γit

h̃

)
1

2

ek+1
h,i

∥

∥

∥

2

∂Ωi\∂Ω
−

1

2

∥

∥

∥

(γit

h̃

)
1

2

ek
h,i

∥

∥

∥

2

∂Ωi\∂Ω

]

≤ 0.

Finally, summing up from k = 0 to k = M − 1 we obtain,

c
M−1
∑

k=0

∣

∣

∣

∣

∣

∣ek+1
h

∣

∣

∣

∣

∣

∣

2
+
∑

i=1,2

(∥

∥

∥(δ+)
1

2 eM
h,i

∥

∥

∥

2

∂Ωi\∂Ω
+
∥

∥

∥

(γit

h̃

)
1

2

eM
h,i

∥

∥

∥

2

∂Ωi\∂Ω

)

≤
∑

i=1,2

( c

2

∥

∥

∥ε
1

2

i ∇e0
h,i

∥

∥

∥

2

Ωi

+
∥

∥

∥(δ+)
1

2 e0
h,i

∥

∥

∥

2

∂Ωi\∂Ω
+
∥

∥

∥

(γit

h̃

)
1

2

e0
h,i

∥

∥

∥

2

∂Ωi\∂Ω

)

which implies (29).

2

Remark 3.1 The general statement (39) implies the following choices of γit.
When εi > 0 for i = 1, 2 we have c = 1

2 and γbc ≥ 2Ct in order to ensure
coercivity. Then we replace in (39) and we obtain:

γit ≥ 2Ct

(

1 + 8‖wi‖L∞(∂Ωi\∂Ω)

)

‖wiεi‖L∞(∂Ωi\∂Ω) + ‖β ·nh̃‖L∞(∂Ωi\∂Ω), i = 1, 2.

For sufficiently small h̃ this expression can be summarized as γit ' γbc‖ε‖L∞(Ω).
When ε1 = 0 and ε2 > 0 (or vice versa) we have w1 > 0 and w2 = 0. As a result
of that the formula above becomes,

γit ≥
1

2
‖β · nh̃‖L∞(∂Ωi\∂Ω) that is

γit

h
≥

1

2
‖β · n‖L∞(∂Ωi\∂Ω)

When ε1 = ε2 = 0 the coercivity constant becomes c = 1. As a result of that
(39) requires γit ≥ 0.

4 Numerical results

All the numerical experiments presented in the sequel are obtained with the
library FreeFem++ (http://www.freefem.org/ff++/index.htm).

4.1 Approximation and convergence properties of the iterative

splitting method

In this section we analyze the convergence of the iterative splitting method with
respect to the mesh size h = maxi=1,2 maxK∈Th,i

hK , the number of subdomains
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Table 1: Convergence study with respect to h for conforming meshes.

2 subdomains, h = 0.1

P1 FEM P2 FEM

ε = 1 ‖u − uh‖0,Ω ‖u − uh‖1,Ω ‖u − uh‖0,Ω ‖u − uh‖1,Ω

2h 2.44 10−2 5.82 10−1 3.37 10−4 5.05 10−2

h 5.59 10−3 2.65 10−1 4.62E-005 1.26 10−2

order 2.19 1.17 2.95 2.07

ε = 10−3 ‖u − uh‖0,Ω ‖u − uh‖1,Ω ‖u − uh‖0,Ω ‖u − uh‖1,Ω

2h 1.65 10−2 5.97 10−1 8.88 10−4 6.04 10−2

h 3.64 10−3 2.73 10−1 1.02 10−4 1.47 10−2

order 2.24 1.16 3.21 2.10

ε = 0 ‖u − uh‖0,Ω ‖u − uh‖1,Ω ‖u − uh‖0,Ω ‖u − uh‖1,Ω

2h 1.69 10−2 6.13 10−1 9.95 10−4 6.32 10−2

h 3.80 10−3 2.82 10−1 1.23 10−4 1.57 10−2

order 2.22 1.16 3.10 2.07

4 subdomains h = 0.08

P1 FEM P2 FEM

ε = 1 ‖u − uh‖0,Ω ‖u − uh‖1,Ω ‖u − uh‖0,Ω ‖u − uh‖1,Ω

2h 1.50 10−2 4.48 10−1 1.76 10−4 3.25 10−2

h 3.38 10−3 2.06 10−1 1.65E-005 7.68 10−3

order 2.15 1.12 3.42 2.08

N and the value of the penalty parameters γit, γbc and γip,i i = 1, 2 for different
values of the diffusion parameters εi and of the transport field β. To this aim,
we consider problem (1) where σ = 1 is fixed and f is chosen so that

u(x, y) = exp(xy) sin(πx) sin(πy), (40)

is the exact solution of the problem (1) on a domain Ω =]0, 1[×]0, 1[ that has
been split into N = n2 subdomains such that Ω̄ = ∪N

i=1Ω̄i = ∪n
i1,i2=1[(i1 −

1)/n, i1/n]×[(i2−1)/n, i2/n] obtaining a checkerboard partition of size H = 1/n.
The simplest case of 2 subregions Ω̄1 = [0, 1

2 ]× [0, 1] and Ω̄2 = [12 , 1]× [0, 1] is also
addressed. For each subdomain, we introduce N quasi-uniform meshes Th,i that
can be either conforming or non conforming on their interfaces but for the tests
presented here we consider conforming discretizations. For the comparison of
different cases we choose u0

h,i = 0 for i = 1, . . . , N and we consider a convergence
test on the triple norm of the incremental error, namely the iterations are stopped
if |||uk+1

h − uk
h|||/|||u

k+1
h ||| ≤ tol.

First of all, we aim to verify with numerical experiments the infinitesimal
order with respect to h provided by theorem 2.2. Table 1 shows that the opti-
mal order of convergence is preserved both for linear and quadratic conforming
elements. From now on, we will denote for simplicity ‖ · ‖1,Ω ≡ (

∑N
i=1 ‖ · ‖1,Ωi

)
1
2 .
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Table 2: The number of iterations necessary to converge with respect to a toler-
ance tol = 10−6 and on a quasi-uniform mesh of size h = 0.1 and a partition in
2 subdomains. Several combinations of the parameters γbc and γit in the case of
the symmetric (right) and skew-symmetric coupling term (left) are addressed.
In this case ε = 1 and β = [1, 1].

γit/γbc 2 100 2 101 2 102 2 10−2 2 10−1 2 100 2 101 2 102

2 10−3 100 802 >1000 36 25 107 809 >1000
2 10−2 101 803 >1000 34 25 107 810 >1000
2 10−1 109 809 >1000 25 23 116 816 >1000
2 100 188 873 >1000 107 116 195 880 >1000
2 101 874 >1000 >1000 809 815 880 >1000 >1000
2 102 >1000 >1000 >1000 >1000 >1000 >1000 >1000 >1000

Secondly, we aim to investigate the influence on the convergence rate of the
iterative method of the parameters γbc and γit that appear in the equations (27),
(28). We study the number of iterations that the method needs to satisfy a tol-
erance tol = 10−6 on the relative incremental error for several combinations of
γbc and γit. Table 2 suggests that an effective choice is to consider the small
values of γbc provided that the discrete problems (27), (28) remain well posed
according to lemma 2.2. Recalling remark 2.2, we analyze separately the sym-
metric and the non-symmetric version of the coupling term B(uh, vh). In the
symmetric case, lemma 2.2 requires that γbc = 2Ct. In this case, table 2 shows
that the theoretical estimate obtained in remark 3.1 is too restrictive for diffu-
sion dominated problems. Indeed, much smaller values of the estimated ones
ensure better convergence properties. On the contrary, the numerical experi-
ments presented in table 5 suggest that the estimate of remark 3.1 is effective
for advection dominated problems. For the non-symmetric case the limitations
on γbc necessary to obtain positivity of the discrete bilinear form change com-
pletely, in agreement with the analysis of interior penalty discontinuous Galerkin
methods, see [1]. Indeed, only the restriction γbc > 0 is necessary. In this set-
ting, the convergence properties of the iterative algorithm are much improved.
Conversely, the approximation properties of the scheme are compromised since
the discrete problem (5) is not adjoint consistent and thus it does not enjoy
optimal approximation properties in the L2 norm (see [1] for a complete discus-
sion). For the relaxation parameter γit we observe that in this case the choice
γit ' γbc ' 2 10−1 is effective.

The key point of this section is the characterization of the dependence of the
convergence properties from the maximal mesh element size h and the number
of subdomains N for different values of ε and β. More precisely, we analyze the
diffusion dominated regimen (ε = 1), the transition regimen (ε = 10−3) and the
hyperbolic regimen (ε = 0). Indeed, figure 2 and table 3 show that the behavior
of the method differs form one regimen to another. First of all, although theorem
3.1 does not characterize the convergence behavior of the iterative method (27)-
(28), figure 2 puts into evidence that the incremental error is reduced according
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to the law Ck, where k is the iteration index and the constant 0 < C < 1 is the
convergence rate. Following this assumption, the number of iterations needed to
satisfy a suitable tolerance on the incremental error is directly proportional to
the convergence rate. As a consequence of that, table 3 shows that in the diffu-
sion dominated regimen the convergence rate is inversely proportional to h and
H. Following the heuristic motivations that are presented in [22] and [27], the
inverse dependence on H can be explained observing that an iterative method
that only exchanges information between neighboring subregions necessarily re-
quires a number of steps to converge that is at least equal to the diameter of
the dual graph corresponding to the subdomain partition, which is equivalent
to O(H−1) when the diameter of Ω is unitary. The dual graph is constructed
by introducing a vertex for each subregion and an edge between two subregions
that share an interface. The inverse dependence on h is a consequence of (39)
(see also remark 3.1) which states that the relaxation term must be proportional
to ‖ε‖L∞(Ω)/h. Accordingly, by refining the mesh by a factor two, the number
of iterations is doubled. Always in agreement with remark 3.1 and with the fact
that the relaxation term is allowed to vanish together with ε, the convergence
rate of the method is less sensitive with respect to h for the transition case and
completely insensitive with respect to the mesh size in the hyperbolic case. In-
deed, when ε = 0 the number of iterations is only inversely dependent on H and
it is exactly equivalent to the number of steps that are needed to propagate the
information along the diagonal of the checkerboard mesh defined by the sub-
domains, since the transport field is oriented along the diagonal. Furthermore,
table 4 suggests that these results do not deteriorate if the orientation of the
transport field β is modified. Indeed, this is an advantage of the method pro-
posed here with respect to the family of non-overlapping domain decomposition
methods arising from transmission conditions of Robin type, whose convergence
may result to be slow when the transport field is tangential to the interface, [21].
This benefit is due to the use of the upwind flux for the the advection term. As
a consequence of that, the corresponding transmission conditions are not sym-
metric with respect to β, in contrast to what happens for the family of methods
inspired by transmission conditions of Robin type. Finally, we observe that in
the hyperbolic case a multiplicative (Gauss-Seidel) iterative scheme is more pre-
forming than the additive (Jacobi) method. For instance, since the subdomains
in the checkerboard partition have been numbered by rows, when the transport
field β is oriented in the vertical direction the multiplicative algorithm converges
in 2 iterations, irrespectively of h and H.

4.2 Comparison of iterative methods

In order to assess the performance of the iterative method based on Nitsche’s
transmission conditions (denoted with a in table 5 and defined by problems (27)
and (28)) we compare it with the non overlapping Schwarz method proposed
in [20] (denoted with b) and with the overlapping Schwarz method (denoted
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Table 3: The number of iterations necessary to converge with respect to a tol-
erance tol = 10−6 for several configurations of the partition in subdomains and
several values of ε. γbc = 2, γit = γbc‖ε‖L∞(Ω) and β = [1, 1] are fixed.

H, N 1/2, 4 1/3, 9 1/4, 16
h 0.13 0.06 0.12 0.06 0.12 0.07

ε = 1 237 445 309 579 388 723
order h −0.85 −0.91 −1.08
order H – −0.65 −0.77

ε = 10−3 12 14 14 17 16 20
order h −0.21 −0.28 −0.39
order H – −0.48 −0.56

ε = 0 4 4 6 6 8 8
order h 0 0 0
order H – −1 −1

Table 4: The number of iterations necessary to converge with respect to a tol-
erance tol = 10−6 for different combinations of β and ε and for the case of 16
subdomains and h = 0.12. γbc = 2, γit = γbc‖ε‖L∞(Ω) are fixed.

ε = 1 ε = 10−3 ε = 0

β = [1, 1] 388 16 8
β = [1, 0] 389 16 5
β = [0, 1] 389 16 5

Figure 2: Convergence history of the iterative method for ε = 1.0 (right) and
ε = 10−3 (left) for the numerical tests on the coarse grids of table 3.
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with c). For this comparison, we consider the test case proposed in the previous
section where the domain Ω has been split in two subdomains, Ω1 = [0, 1

2 ]× [0, 1]
and Ω2 = [12 , 1] × [0, 1]. In the case of the overlapping Schwarz method we also
introduce two overlapping domains Ω∗

1 = [0, 1
2 + 1

2δ]×[0, 1], Ω∗
2 = [12−

1
2δ, 1]×[0, 1]

and corresponding discretizations T ∗
h,i, i = 1, 2. Let V ∗

h,i be the finite element

spaces defined on these meshes. Then, given u0
h,i, for k = 1, 2, . . . we look for

uk
h,i ∈ V ∗

h,i, i = 1, 2 such that

A(uk+1
h,1 , vh,1) + J(uk+1

h,1 , vh,1) = (f1, vh,1) , ∀vh,1 ∈ V ∗
h,1, ûk+1

h,1 = uk
h,2, on ∂Ω∗

1 ∩ Ω∗
2,

A(uk+1
h,2 , vh,2) + J(uk+1

h,2 , vh,2) = (f2, vh,2) , ∀vh,2 ∈ V ∗
h,2, ûk+1

h,2 = uk
h,1, on ∂Ω∗

2 ∩ Ω∗
1,

uk+1
h,i =

1

2
ûk+1

h,i +
1

2
uk

h,i, i = 1, 2.

Recalling that the convergence of the overlapping Schwarz method can be
accelerated by increasing the thickness of the overlapping region, that is δ, we
consider three cases δ = h̄, δ = 2h̄ and δ = 4h̄, where h̄ is the characteristic size
of the quasi-uniform discretizations of Ω∗

1 and Ω∗
2. The comparison with these

cases will give a measure of the convergence performance of our method.
In table 5, we compare the convergence and the approximation properties

of these methods for the diffusion dominated, the transition and the hyperbolic
regimens. The analysis of this table immediately shows that the method that
we propose here is effective for the advection dominated and the hyperbolic
regimens. In this case Nitsche’s method a provides in general the best perfor-
mances both for the convergence and the approximation properties for a fixed
tolerance on the incremental error tol = 10−6 and a given quasi-uniform mesh
with h = 0.05.

In the diffusion dominated case, the convergence of the method a in the
symmetric case is partially slowed down by the relaxation term. We have already
observed that the choice γit = γbc‖ε‖L∞(Ω), motivated by the theoretical estimate
derived in remark 3.1, is not optimal. Indeed, the number of iterations needed
to fulfill a tolerance of 10−6 on the incremental error is reduced from 354 to 190
if the parameter γit is divided by a factor 100. In any case, this correction does
not make method a with s = 1 (see remark 2.2) to be competitive with method
b in the diffusion dominated case. Conversely, we observe that the convergence
properties of the non-symmetric version of method a is very satisfactory while the
approximation error in the L2 norm reflects the sub-optimality of this method.
By comparing the properties of the symmetric and the non-symmetric versions
of method a, we observe that it may be possible to blend the benefits of the two
methods by setting up an hybrid strategy (see table 5, method a-hybrid). This
consists in applying method a with s = −1, γbc = γit = 2 10−1 until the tolerance
equal to 10−6 is satisfied on the relative incremental error. As reported in table
5, this procedure requires 43 iterations. Then, starting from the discrete solution
computed in this way, we apply method a with s = 1, γbc = 2, γit = 2 10−1 in
order to improve the approximation error. This method requires 65 additional
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Table 5: The number of iterations necessary to converge with respect to a tol-
erance tol = 10−6 and the approximation error on a given quasi-uniform mesh
characterized by h = 0.05 and a partition in 2 subdomains. Several instances of
the iterative algorithms a, b and c are considered. The instance of algorithm a
with symmetric coupling terms is denoted with s = 1 while the non-symmetric
version is denoted with s = −1.

diffusion dominated regimen ε = 1, β = [1, 1]

Method N. iter. ‖u − uh‖0,Ω ‖u − uh‖1,Ω

a, s = 1, γbc = 2, γit = γbc‖ε‖L∞(Ω) 354 1.38 10−3 1.32 10−1

a, s = 1, γbc = 2, γit = 10−2γbc‖ε‖L∞(Ω) 190 1.38 10−3 1.32 10−1

a, s = −1, γbc = 2 10−1, γit = 2 10−1 43 1.93 10−3 1.25 10−1

a-hybrid 108 1.37 10−3 1.32 10−1

b 96 1.37 10−3 1.32 10−1

c, δ = h̄ 210 3.25 10−3 1.27 10−1

c, δ = 2h̄ 115 2.35 10−3 1.28 10−1

c, δ = 4h̄ 65 2.02 10−3 1.36 10−1

transition regimen ε = 10−3, β = [1, 1], γbc = 2 and γit = γbc‖ε‖L∞(Ω).

Method N. iter. ‖u − uh‖0,Ω ‖u − uh‖1,Ω

a, s = 1 12 8.76 10−4 1.33 10−1

a, s = −1 13 8.75 10−4 1.33 10−1

b 17 1.03 10−3 1.47 10−1

c, δ = h̄ 46 1.00 10−3 1.37 10−1

c, δ = 2h̄ 56 1.27 10−3 1.41 10−1

c, δ = 4h̄ 42 1.21 10−3 1.51 10−1

hyperbolic regimen ε = 0, β = [1, 1], γbc = 2 and γit = 0.

Method N. iter. ‖u − uh‖0,Ω ‖u − uh‖1,Ω

a, s = ±1 2 9.48 10−4 1.40 10−1

b 57 2.44 10−3 2.96 10−1

c, δ = h̄ 52 1.10 10−3 1.45 10−1

c, δ = 2h̄ 59 1.48 10−3 1.52 10−1

c, δ = 4h̄ 45 1.39 10−3 1.63 10−1
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iterations to converge and it reduces the L2 approximation error of the non-
symmetric case from 1.93 10−3 to 1.37 10−3, that is equivalent to the error of the
symmetric case. Since it is accurate and it converges rapidly, the hybrid method
outperforms both the symmetric and the non-symmetric versions of method a. In
the diffusive case, the hybrid method results to be almost equivalent to method b.
These considerations promote further studies on the hybrid method and suggest
to investigate in detail wether the non-symmetric formulation might be applied
as a preconditioner for the symmetric case. Finally, an heuristic comparison
with the overlapping Schwarz methods c suggests that the method b behaves as
an additive overlapping Schwarz algorithm with a relatively generous overlap of
magnitude δ = 2h̄ ≡ 6% of the diameter of Ω. On the other hand, the symmetric
Nitsche’s method a is almost equivalent to the overlapping method with small
overlap δ = h̄ ≡ 3%.

From the point of view of computational cost we observe that the scheme
(27)-(28) requires more effort for the construction of the finite element matrix
corresponding to the coupling terms B(uh, vh) than the family of Robin-Robin
methods. Indeed, for the Robin-Robin methods the coupling matrix is easily
constructed since it corresponds to a mass matrix on the degrees of freedom at
the interface. Moreover in our case the bandwidth of the coupling matrix is
increased because of the presence of first order derivatives in the coupling terms.
This drawback is balanced by the fact that basic Robin-Robin iterative split-
ting methods preserve the optimal approximation properties of lagrangian finite
elements only if a super-penalty technique is applied, see [8]. This technique,
however, compromises the convergence properties of the iterative algorithm.

4.3 Approximation of problems with discontinuous coefficients

In this section, we apply the numerical scheme (27)-(28) for the approximation
of advection diffusion problems with discontinuous coefficients. To this purpose,
the domain Ω has been split in two subdomains, Ω1 = [0, 1

2 ] × [0, 1] and Ω2 =
[12 , 1]× [0, 1] with ε(x) = 2 10−2 for x ∈ Ω1, ε(x) = 1.0 for x ∈ Ω2 and β = [1, 0].
In the case σ = 0 and f = 0, the exact solution on each subregion Ω1,Ω2 can
be easily expressed as an exponential function with respect to the x coordinate
independently from the y coordinate. The global solution u(x, y) is provided
by choosing the value at the interface x = 1

2 in order to ensure the following
matching conditions,

lim
x→ 1

2

−

u(x, y) = lim
x→ 1

2

+
u(x, y), and lim

x→ 1
2

−

−ε(x)∂xu(x, y) = lim
x→ 1

2

+
−ε(x)∂xu(x, y).

More precisely, we set u(0, y) = 1, u(1, y) = 0 and by consequence of the match-
ing conditions, we obtain

u
(1

2
, y
)

=
[u(0, y) exp( β

2ε1
)

1 − exp( β
2ε1

)
+

u(1, y)

1 − exp( β
2ε2

)

][ exp( β
2ε1

)

1 − exp( β
2ε1

)
+

1

1 − exp( β
2ε2

)

]−1
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Figure 3: The nodal interpolant on a very refined mesh of the exact solution u
of the test problem at hand (left). The numerical approximation uh obtained
with method A (middle) and method B (right) in the case of the discretization
characterized by h1 = 0.1.

Table 6: The quantitative comparison of the accuracy of methods A and B.
The L2 norm, ‖uh − u‖0,Ω, the H1 norm, ‖uh − u‖1,Ω, and the maximum norm,
‖uh − u‖L∞(Ω) are displayed.

‖u − uh‖0,Ω ‖u − uh‖1,Ω ‖u − uh‖L∞(Ω)

h method A method B method A method B method A method B

0.1 1.81 10−2 2.78 10−2 2.07 1.78 2.13 10−1 1.71 10−1

0.05 6.98 10−3 8.95 10−3 1.31 1.06 1.07 10−1 6.32 10−2

0.026 2.56 10−3 2.66 10−3 7.49 10−1 5.82 10−1 1.40 10−1 2.34 10−2

As a result of that, the exact solution in each subdomain can be expressed as,

u1(x, y) =
u(1

2 , y) − exp( β
2ε1

)u(0, y) + [u(0, y) − u( 1
2 , y)] exp(βx

ε1
)

1 − exp( β
2ε1

)

u2(x, y) =
u(1, y) − exp( β

2ε2
)u(1

2 , y) + [u( 1
2 , y) − u(1, y)] exp(

β(x− 1
2
)

ε2
)

1 − exp( β
2ε2

)
.

The resulting function is represented in figure 3. We aim to compare on
the test problem defined above the accuracy of the scheme (27)-(28) with linear
elements, precisely Vh =

∑2
i=1 Vh,1,i (denoted with A) with the classical la-

grangian linear elements over the whole domain Ω (denoted with B). We point
out that in both cases the continuous interior penalty stabilization method with
γip,i = 2 10−2 has been applied to cure the instability of finite elements in the
case of advection dominated problems. We compare the two schemes on a family
of quasi-uniform triangulations on Ω1 and Ω2 that are conforming at the interface
of the subdomains and are characterized by a decreasing maximal element size
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h1 = 0.1, h2 = 0.05 and h3 = 0.026. The quantitative analysis of the accuracy
is based on the following indicators, the L2 norm of the error, ‖uh − u‖0,Ω, the
H1 norm, ‖uh − u‖1,Ω that is well defined since u ∈ H1(Ω) and the maximum
norm, ‖uh − u‖L∞(Ω). The quantitative data are reported in table 6 while a
visual comparison is given figure 3. The analysis of the results suggests that the
scheme (27)-(28) performs well for the approximation of problems with discon-
tinuous coefficients when the mesh size is not small enough to fully resolve the
boundary layers arising in the neighborhood of the region of discontinuity. The
benefit of the scheme presented here with respect to the application of classical
lagrangian elements over Ω emerges if we consider the L2 norm. For the mesh
size h1 method A provides numerical solutions that are smoother than method
B (see figure 3), where spurious oscillations appear in the neighborhood of the
boundary layer that arise because of the discontinuity of ε. However, we observe
that the L∞ error of method B is smaller than in the case of method A, since
for this method L∞ errors arise when the very steep boundary layer across the
discontinuity of ε is approximated with a jump. Finally, the analysis of the H 1

norm of the errors suggests that method B seems to be more prone to approxi-
mate the gradients of the solution in the boundary layer, although this benefit
is effective when the computational mesh becomes fine enough to reasonably
approximate the boundary layer.

5 Concluding remarks

In conclusion, the discretization scheme and the associated iterative method that
we have proposed here result to be appealing for advection dominated problems
and in the case of discontinuous coefficients. Indeed, in these cases the method
is competitive both from the point of view of computational effort and accuracy.
A key role for the good properties when treating such problems is played by the
average weights and the upwind treatment of the advection term in the interior
penalty strategy applied to couple the subdomains.
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