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Abstract

Optimal control and shape optimization techniques have an increasing
role in Fluid Dynamics problems governed by Partial Differential Equations
(PDEs). In this paper we consider the problem of drag minimization for a
body in relative motion in a fluid by controlling the velocity through the
body boundary. With this aim we handle with an optimal control approach
applied to the steady incompressible Navier–Stokes equations. We use the
Lagrangian functional approach and we adopt the Lagrangian multiplier
method for the treatment of the Dirichlet boundary conditions, which in-
clude the control function itself. Moreover we express the drag coefficient,
which is the functional to be minimized, through the variational form of the
Navier–Stokes equations. In this way we can derive, in a straightforward
manner, the adjoint and sensitivity equations associated with the optimal
control problem, even in presence of Dirichlet control functions. The problem
is solved numerically by an iterative optimization procedure applied to state
and adjoint PDEs which we approximate by the finite element method.

Keywords: optimal control problems; Navier–Stokes equations; drag minimization;
Dirichlet boundary control; Lagrangian multiplier method; finite element approxima-
tion.

Introduction

A popular problem in Fluid Dynamics consists in minimizing the drag coefficient of a
body in relative motion with a fluid [4, 9, 10, 12, 16, 19, 23]; in particular, one case
commonly studied is that of the steady incompressible Navier–Stokes equations with
constant density and viscosity. This problem can be recasted in the theory of optimal
control for Partial Differential Equations [1, 21], or as a problem of shape optimiza-
tion [12, 23]. In this paper we minimize the drag coefficient of the body by acting on
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the velocity at the boundaries of the body itself. This problem, which corresponds to
regulate the aspiration or the blowing of the boundary layer, can be formulated as an
optimal control problem, for which the control function is the Dirichlet boundary con-
dition [3, 9, 10, 15, 16, 18]. With this aim we adopt the Lagrangian functional approach
[4, 5, 6, 8] instead of calculating directly the gradient of the functional subject to mini-
mization [9, 10, 15, 16]. In this contest the main difficulty consists in the treatment of
the Dirichlet boundary control function, which does not match with the variational set-
ting provided by the Lagrangian functional approach, unless that suitable lifting terms
are introduced.
Different approaches have been considered in literature to overcome this difficulty in the
field of Navier–Stokes equations. In [3] the Nitsche’s method ([26]) is adopted in order
to suppress the recirculation in a backward facing step in a channel by regulating the
inflow velocity field. In [17, 18] both linear and non–linear penalized Neumann control
approaches for the solution of optimal control problems with Dirichlet control functions
are adopted. Moreover in [18] a Lagrangian multiplier method ([2]) is proposed for
the treatment of the Dirichlet control function (this strategy is also considered in [22]
for optimal control problems governed by elliptic PDEs). The approaches presented in
[17, 18] are applied for the minimization of the vorticity and the “distance” between the
velocity field and a desired one; sequential quadratic programming (SQP) methods (see
e.g. [13]) have been adopted for the solution of these optimal control problems.
In this paper we adopt, for our drag minimization problem, the Lagrangian multiplier
method for the treatment of the Dirichlet velocity control function on the body, in
analogy with the approaches outlined in [18] and in [22] (for elliptic PDEs). However for
the evaluation of the drag, or more in general the force acting on the body, we exploit the
variational form of the Navier–Stokes equations [11], instead of using the definition, the
latter being directly related to the integral of the stress acting on the body boundaries.
The two approaches, that are equivalent at the “continuous level”, are in fact different
at the “discrete level”. The one that we follow in this paper yields more accurate
computation of the drag coefficient [11] and, in the contest of optimization, reduces
the propagation of the discretization errors in the course of the iterative optimization
procedure. Moreover, this approach allows us to identify the Lagrangian multiplier
as the inward directed normal stress, to express the drag coefficient in terms of this
multiplier and, consequently, to obtain a simple expression for the adjoint equations.
For the numerical solution of the optimal control problem we adopt the steepest–descent
method [1], while the PDE system is discretized by means of the Finite Element (FE)
method. Finally, we report some numerical results concerning drag minimization (for
low Reynolds number), which prove the effectiveness of the outlined procedures.

An outline of this work is as follows. In Sec.1, we recall the Lagrangian functional
approach for optimal control problems in an abstract setting. Then we consider the
drag coefficient minimization problem for the incompressible Navier–Stokes equations,
introducing the evaluation of the drag coefficient by means of the variational form. Fi-
nally, we write the Lagrangian functional, adopting the Lagrangian multiplier method
for the treatment of the Dirichlet boundary conditions, and we formulate the adjoint
Navier–Stokes equations and the sensitivity equation. In Sec.2 we discuss the aspects
related to the numerical resolution of the optimal control problem: in particular we re-
call the steepest–descent method and the techniques adopted for the numerical solution
of the Stokes and Navier–Stokes equations. Finally, in Sec.3 we present some numerical
results and compare them for different values of the Reynolds number.
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1 Mathematical Model: the Optimal Control Problem

In this section we consider the optimal control problem in an abstract setting; then we
treat a flow control problem governed by the Navier–Stokes equations for the minimiza-
tion of the drag acting on a solid object.

1.1 The general setting for optimal control

Let us start with an abstract control problem, which, for the sake of simplicity, we con-
sider depending on scalar variables; however this formalism can be extended in straight-
forward manner to vectorial problems, like the Navier–Stokes equations which we will
consider in Sec.1.3.

The optimal control problem reads:

find u ∈ U , u = argmin J(v, u), with A(v) = f +B(u) and v ∈ V, (1)

where J(v, u) is the cost functional, A a differential operator on V with values in V ′,
B a differential operator on U into V ′, f a source term, V and U two Hilbert spaces.
The equation A(v) = f + B(u), which incorporates appropriate boundary conditions,
is called the state equation, v the state variable and u the control variable. Let us
notice that, in general, A(·) and B(·) are non linear differential operators in v and u
respectively.
For the analysis of the optimal control problem (1) we adopt the Lagrangian functional
framework ([4, 5, 6, 8]). This approach sets the control problem as a constrained mini-
mization problem, for which a Lagrangian functional is defined; the minimum, if exists,
is a stationary “point” of the Lagrangian functional. Conversely, the classical approach
developed by J.L. Lions [21] allows a full analysis of the problem, providing existence
and uniqueness results; incidentally, this technique is not always straightforward as the
Lagrangian functional one, which, however, does not always provide a suitable analysis
of the optimal control problem.
We define the Lagrangian functional as ([5]):

L(v, z, u) := J(v, u) +V 〈z, f +B(u) −A(v)〉V′ , (2)

where z ∈ V is the Lagrangian multiplier. The optimum of the control problem x∗ :=
(v∗, z∗, u∗) ∈ X (X := V × V × U), if it exists, is a stationary point of the Lagrangian
functional L(x), with x := (v, z, u) ∈ X , i.e.:

∇L(x∗)[y] = 0, y ∈ X , (3)

where differentiation is in Fréchet sense [20]. The system (3) is regarded as the Euler–
Lagrange system, for which we have the following three equations:







L,v (v, z, u)[ϑ] = 0, adjoint equation,
L,z (v, z, u)[φ] = 0, state equation,
L,u (v, z, u)[ψ] = 0, “sensitivity” equation,

(4)

where we have assumed y = (ϑ, φ, ψ). The first equation of the system (4) is regarded
as the adjoint equation, for which z ∈ V is defined as the adjoint variable. The third
equation is related to the sensitivity of the Lagrangian functional L(v, z, u) w.r.t. the
control variable u ∈ U .
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Let us apply the general expression for the Lagrangian functional (3) to the abstract
control problem stated in Eq.(1); to this aim we consider the weak form of the state
equation, given in Eq.(1) in distributional sense, which reads:

find v ∈ V : a(v)(φ) = (f, φ) + b(u)(φ), ∀φ ∈ V, (5)

where a(·)(·) and b(·)(·) are the semi–linear forms (linear in the second argument) as-
sociated respectively to the operators A(·) and B(·). The Lagrangian functional (2)
reads:

L(v, z, u) = J(v, u) + (f, z) + b(u)(z) − a(v)(z). (6)

By differentiating L(v, p, u) w.r.t. v ∈ V, we obtain the adjoint equation in weak form:

find z ∈ V : a′(v)(z, ϑ) = J,v (v, u)(ϑ), ∀ϑ ∈ V, (7)

where, for the sake of simplicity, we indicate a,v (v)(z, ϑ) as a′(v)(z, ϑ); let us notice
that the adjoint equation is linear in z ∈ V even if the state equation is non–linear in
the state variable. Similarly, by differentiating w.r.t. u ∈ U the third equation of the
Euler–Lagrange system (4), we obtain:

J,u (v, u)(ψ) + b′(u)(z, ψ) = 0, ψ ∈ U , (8)

where we indicate b,u (u)(z, ψ) with b′(u)(z, ψ). From the previous equation it is possible
to extract the sensitivity function δu ∈ U , which we will define in Sec.1.3 for the problem
under investigation.

1.2 Drag minimization for Navier–Stokes equations

We consider a body embedded in a 2D flow governed by the steady incompressible
Navier–Stokes equations for a Newtonian fluid with constant density and viscosity.

The goal consists in minimizing the drag coefficient by regulating the flow u across
the boundary ΓCTRL of the body in relative steady motion with the fluid; see Fig.s 1
and 2. By defining v as the velocity field, p as the pressure, µ as dynamic viscosity
coefficient, ρ as the density, the Navier–Stokes system reads [14, 26]:







































−∇ · T(v, p) + ρ(v · ∇)v = 0, in Ω,
∇ · v = 0, in Ω,
v = v∞, on ΓIN ,
v · n̂ = 0, (T(v, p)n̂) · t̂ = 0, on ΓSY M ,
T(v, p)n̂ = 0, on ΓOUT ,
v = 0, on ΓNS ,
v = u, on ΓCTRL,

(9)

where n̂ and t̂ are respectively the outward directed normal and tangential unit vectors
on the boundary Γi; the stress tensor T(v, p) reads:

T(v, p) = µ(∇v + ∇T v) − pI, (10)

being I the identity tensor. We impose inflow boundary conditions on ΓIN , symmetry
conditions on ΓSY M , no stress conditions on ΓOUT , no slip conditions on ΓNS and
Dirichlet conditions (u is the control variable) on the control boundary ΓCTRL, which
corresponds to impose the velocity on ΓCTRL. Let us notice that ∪iΓi = ∂Ω and
Γi ∩ Γj = ∅, ∀i, j.
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Figure 1: Domain for the control problem and boundary conditions.
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Figure 2: Boundary conditions on the body.

The functional to minimize is the drag coefficient cD(v, p), for which the problem that
we consider is:

find u = argmin cD(v, p), with cD(v, p) := −
1

q∞d

∮

ΓBODY

(T(v, p)n̂) · v̂∞ dΓ, (11)

and (v, p) depends on u through the state equations (9). The minus sign takes into
account that, by convention, the force is positive if acting on the fluid. In Eq.(11)
ΓBODY := ΓNS ∪ ΓCTRL, q∞ := 1

2ρV
2
∞, with v∞ = V∞v̂∞, v̂∞ is the unit vector
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directed as the incoming flow and d is the characteristic dimension of the body. Let us
notice that the drag q∞dcD assumes the dimensions of a force per unit length.
We assume a parabolic profile for the control flow, written in the form:

u = Ug(x), with g(x) := −4
(x − x1CTRL)(x2CTRL − x)

(x2CTRL − x1CTRL)2
n̂CTRL, (12)

where x1CTRL and x2CTRL are the abscissae of the endpoints of the boundary ΓCTRL,
while n̂CTRL is the outward directed unit vector normal to ΓCTRL. The effective control
variable is the parameter U ∈ R, which is the maximum value (in modulus) of the
parabolic flow of Eq.(12).

Weak formulation

For the analysis of the optimal control problem we introduce, similarly to what done in
Sec.1.1 for the general case, the weak form of the Navier–Stokes equations. This can be
done by introducing suitable functional spaces for v and p [14, 26], which account prop-
erly for Dirichlet boundary conditions; an alternative approach consists in introducing
the boundary conditions by means of a Lagrange multiplier approach [2, 18, 22]. This
last approach, which we will follow, allows a straightforward treatment of the boundary
conditions in the analysis of the optimal control problem, without introducing lifting
terms.

Let us introduce the following forms:

a(v,Φ) :=

∫

Ω

µ(∇v + ∇T v) · ∇Φ dΩ, (13)

b(p,Φ) := −

∫

Ω

p∇ · Φ dΩ, (14)

c(v,v,Φ) :=

∫

Ω

ρ(v · ∇)v · Φ dΩ. (15)

The Navier–Stokes equations in weak form, with boundary conditions introduced through
a Lagrange multiplier, read:

find v ∈ [H1(Ω)]2, p ∈ L2(Ω), w ∈ [H− 1

2 (ΓDS)]2 :

a(v,Φ) + b(p,Φ) + c(v,v,Φ) +

∫

ΓD

w · Φ dΓ +

∫

ΓSY M

w · n̂ Φ · n̂ dΓ = 0,

b(ϕ,v) = 0,
∫

ΓD

(v − vD) · Λ dΓ +

∫

ΓSY M

v · n̂ Λ · n̂ dΓ = 0,

∀Φ ∈ [H1(Ω)]2, ∀ϕ ∈ L2(Ω), ∀Λ ∈ [H− 1

2 (ΓDS)]2,

(16)

where ΓD := ΓIN ∪ΓNS ∪ΓCTRL, ΓDS := ΓD ∪ΓSY M , [H1(Ω)]2 and [H− 1

2 (ΓDS)]2 are

the usual Sobolev spaces, while vD, which we consider in the Sobolev space [H
1

2 (ΓD)]2,
reads (Eq.(9)):

vD :=







v∞, on ΓIN ,
0, on ΓNS ,
u, on ΓCTRL.

(17)

In particular, the control variable u ∈ [H
1

2 (ΓCTRL)]2. The Lagrange multiplier w ∈

[H− 1

2 (ΓDS)]2 is introduced to allow the variable v ∈ [H1(Ω)]2 to fit the Dirichlet bound-
ary conditions, which includes the control variable u. Let us observe that we assume
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n̂ (i.e. ΓSY M ) to be “sufficiently regular” so that in Eq.(16) w ∈ [H− 1

2 (ΓSY M )]2 im-

plies w · n̂ ∈ H− 1

2 (ΓSY M ), v ∈ [H
1

2 (ΓSY M )]2 implies v · n̂ ∈ H
1

2 (ΓSY M ), and so
on. This is the case of the problem under investigation (see Fig.1), for which ΓSY M is
composed by two distinct segments. Moreover the boundary integrals of Eq.(16) can
be seen as duality pairs:

H
−

1

2 (Γi)
〈·, ·〉

H
1

2 (Γi)
or

H
1

2 (Γi)
〈·, ·〉

H
−

1

2 (Γi)
. Finally, in view of

the finite element approximation, problem (16) will be reformulated in weak form [26];
the solution ṽ is sought for in [H1

|ΓDS
(Ω)]2, the test function Φ ∈ [H1

|ΓDS
(Ω)]2, where

[H1
|ΓDS

(Ω)]2 := {s ∈ [H1(Ω)]2 : s|ΓD
= 0 and (s · n̂)|ΓSY M

= 0}, by modifying the source
term in order to account for the non–homogeneous Dirichlet data. Thereby the direct
evaluation of the variable w ∈ [H− 1

2 (ΓDS)]2 is not necessary.

Drag evaluation

The drag coefficient cD, defined in Eq.(11), can be evaluated once the Navier–Stokes
equations are resolved and the velocity field v and the pressure p are known. However,
the computation of cD by means of the definition (11) can lead to inaccurate results
even if the computational grid is quite fine, as we better specify later. Better results can
be achieved by adopting an alternative expression for cD, which we indicate with c̃D,
dependent on the variational forms used for the Navier–Stokes equations, as reported
in [6, 11, 16].

In order to provide the expression of c̃D, we express cD (11) in the following form:

cD(v, p) =
1

q∞d

∮

∂Ω

(T(v, p)n̂) · Φ∞ dΓ, (18)

where:

Φ∞ ∈ [H1(Ω)]2 with Φ∞|ΓBODY
= −v̂∞, Φ∞|∂Ω\ΓBODY

= 0. (19)

By adopting the Gauss theorem and the Green’s identity ([11, 14]), Eq.(18) becomes:

cD(v, p) =
1

q∞d

∫

Ω

∇ · (T(v, p)T Φ∞) dΩ

=
1

q∞d

∫

Ω

(∇ · T(v, p) · Φ∞ + T(v, p) · ∇Φ∞) dΩ.

(20)

Owing to Eq.s (9), (13), (14) and (15), we have the following representations:

∫

Ω

∇ · T(v, p) · Φ∞ dΩ = c(v,v,Φ∞), (21)

∫

Ω

T(v, p) · ∇Φ∞ dΩ = a(v,Φ∞) + b(p,Φ∞), (22)

for which, being b(ϕ,v) = 0, ∀ϕ ∈ L2(Ω), c̃D reads:

c̃D(v, p) =
1

q∞d
A(v, p,Φ∞, ϕ), ∀ϕ ∈ L2(Ω), (23)

where:
A(v, p,Φ, ϕ) := a(v,Φ) + b(p,Φ) + b(ϕ,v) + c(v,v,Φ). (24)
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The form for the drag coefficient provided in Eq.(23) allows accurate computations and
will be adopted in this work. Let us notice that cD and c̃D are equivalent at the continu-
ous level, however the representations (20) and (23) lead to different approximations at
the discrete level. For instance, by adopting the FE method with continuous, piecewise
polynomials of degree k for v and k − 1 for p (Taylor–Hood elements, see [7, 26, 27]),
the order of convergence of c̃Dh to the exact value cD is 2k, while for cDh is only k
[11], being cDh and c̃Dh the computed quatities corresponding to cD and c̃D. This
fact assumes great importance in the optimization contest, where the adjoint variables
depend on the sensitivity of the cost functional (in this case cD) with respect to the
state variables. The choice of the representation, as verified by numerical tests, not only
influences the computation of the adjoint variables, but it also affects the accuracy of
the result obtained by the optimization procedure.
Let us observe that, according to Eq.(16), the variational form A(v, p,Φ, ϕ) can be
expressed as:

A(v, p,Φ, ϕ) = −

∫

ΓD

w · Φ dΓ −

∫

ΓSY M

w · n̂ Φ · n̂ dΓ, (25)

for which, upon the definition of Φ∞ given in Eq.(19), the drag coefficient c̃D assumes
the alternative expression:

ĉD(w) =
1

q∞d

∫

ΓBODY

w · v̂∞ dΓ. (26)

Let us notice that Eq.(26) allows us to identify the Lagrange multiplier w ∈ [H− 1

2 (ΓDS)]2

as the inward normal stress, more precisely:

w = −T(v, p)n̂, on ΓDS . (27)

This last result allows us to derive in a straightforward manner the adjoint equations
associated to the control problem, as we will show in the following Section.

1.3 The optimal control system for the Navier–Stokes equations

We apply the optimal control analysis based on the Lagrangian functional given in
Sec.1.1 to the drag minimization problem defined in Eq.(11).

According to Eq.s (16), (24) and (26), the associated Lagrangian functional is defined
as:

L(v, p,w, z, q, r,u) := ĉD(w) −A(v, p, z, q)

−

∫

ΓD

w · z dΓ −

∫

ΓSY M

w · n̂ z · n̂ dΓ

−

∫

ΓD\ΓCT RL

(v − vD) · r dΓ −

∫

ΓCT RL

(v − u) · r dΓ

−

∫

ΓSY M

v · n̂ r · n̂ dΓ.

(28)

By differentiating L(·) with respect to (z, q, r) we obtain the state equation in weak form
reported in Eq.(16). Similarly, by differentiating L(·) with respect to the state variables
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(v, p,w), we obtain the adjoint equations. Their weak form reads:

find z ∈ [H1(Ω)]2, q ∈ L2(Ω) , r ∈ [H− 1

2 (ΓDS)]2 :

a(Θ, z) + b(q,Θ) + c′(v,Θ, z) +

∫

ΓD

Θ · r dΓ +

∫

ΓSY M

Θ · n̂ r · n̂ dΓ = 0,

b(ϑ, z) = 0,
∫

ΓD

Υ · z dΓ +

∫

ΓSY M

Υ · n̂ z · n̂ dΓ = ĉD(Υ),

∀Θ ∈ [H1(Ω)]2, ∀ϑ ∈ L2(Ω), ∀Υ ∈ [H− 1

2 (ΓDS)]2,

(29)

where, according to Eq.(15):

c′(v,Θ, z) := c(Θ,v, z) + c(v,Θ, z). (30)

This adjoint problem corresponds to the linearized Navier–Stokes equations around v

with the following boundary conditions:














z = 0, on ΓIN ,
z = v̂∞/(q∞d), on ΓBODY ,
z · n̂ = 0, (T(z, q)n̂) · t̂ = 0, on ΓSY M ,
T(z, q)n̂ = 0, on ΓOUT .

(31)

Finally, by differentiating L(·) with respect to the control variable u, we have:
∫

ΓCT RL

Ψ · r dΓ = 0, ∀Ψ ∈ [H
1

2 (ΓCTRL)]2. (32)

After considering the form (12) for u, the previous equation reads:
∫

ΓCT RL

ψg(x) · r dΓ = 0, ∀ψ ∈ R. (33)

The sensitivity δU assumes the following form:

δU =

∫

ΓCT RL

g(x) · r dΓ, (34)

which is identically equal to zero at the optimum. Let us notice that the sensitivity
δU depends on the adjoint stress r; by similar arguments to those considered for the
computation of the drag coefficient and by manipulating Eq.(29), Eq.(34) equivalently
reads:

δU = −A′(G, ϑ, z, q), ∀ϑ ∈ L2(Ω), (35)

where:
A′(Θ, ϑ, z, q,v) := a(Θ, z) + b(q,Θ) + b(ϑ, z) + c′(Θ,v, z), (36)

being:
G ∈ [H1(Ω)]2, with G|ΓCT RL

= g(x), G|∂Ω\ΓCT RL
= 0. (37)

2 Numerical Discretization

To solve the optimal control problem, we consider the Galerkin–Finite Element method
for the numerical solution of the state and adjoint Navier–Stokes equations and an
iterative approach for functional minimization.
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2.1 The optimization iterative method

We consider, in an abstract framework, the steepest–descent method [1, 28]. Referring
to Sec.1.1, the approach reads:

1. assume an initial control variable u0;

2. solve the state equation/s;

3. solve the adjoint equation/s, given the control variable and once the state variables
are computed;

4. extract the sensitivity δuj from the third equation of the Euler–Lagrange system
(Eq.(8));

5. compute the norm of the sensitivity ‖δuj‖U ;

6. compare the norm of the sensitivity with a stopping criterium tolerance TolIT :

• if ‖δuj‖U ≥ TolIT , perform an iterative step on the control variable:

uj+1 = uj − τ jδuj , (38)

and return to point 2;

• if ‖δuj‖U < TolIT , stop.

The relaxation parameter τ j can be chosen on the basis of the optimal control properties
([1, 28]).
Let us notice that for the optimal control problem under investigation, according to
Eq.(35), the norm of sensitivity reads:

‖δu‖U = |δU | = |A′(G, ϑ, z, q)|, ∀ϑ ∈ L2(Ω), (39)

where G is chosen according with Eq.(37).

2.2 Numerical solution of state and adjoint equations

Both the state and adjoint equations enforce the Dirichlet boundary conditions in weak
form, by means of Lagrangian multipliers, through the state and adjoint stresses w and
r. However, for the numerical solution we can re–write these equations in a conventional
manner introducing appropriate functional spaces and lifting terms. In this way, we omit
to compute explicitly the state and adjoint stresses w and r.
The state equations consist of the steady Navier–Stokes equations, while the adjoint
ones correspond to a generalized steady Stokes problem. In fact the adjoint equations
are linear in both the adjoint variables (velocity and pressure), being the term c′(v,Θ, z)
(30) linear w.r.t. the adjoint velocity z. Let us notice that the adjoint equations depend
on the state variables uniquely through the term c′(v,Θ, z); for this reason the FE ma-
trix corresponding to this term needs to be recomputed at each step of the optimization
iterative procedure.
First, we recall briefly a method for the solution of the Stokes equations, which is em-
ployed to solve the adjoint equations and to initialize the state Navier–Stokes equations.
Then we consider the Newton method, with Uzawa preconditioning for the solution of
the Navier–Stokes equations. For the numerical solution of Stokes and Navier–Stokes
equations, both steady and time dependent, see e.g. [14, 24, 26].
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Solution of steady Stokes equations

In order to satisfy the inf–sup (LBB) condition [26] we consider the P
2–P

1 continuous
FE pair for the velocity and the pressure respectively (for both state and adjoint ones).
By considering a generic Stokes problem (see e.g. Eq.(9) without the non linear term)
the corresponding discretized problem reads:

{

AV +BT P = F,
BV = 0,

(40)

where the matrices A and B corresponds to the variational forms a(·, ·) and b(·, ·) re-
spectively (Eq.s (13) and (14)), F is the source term vector (including the lifting terms),
while V and P are respectively the vectors of the unknown FE coefficients for the ve-
locity and pressure. The problem is resolved by computing firstly the pressure vector P

and then the velocity V vector:

BA−1BT P = BA−1F, (41)

AV = F −BT P. (42)

Both systems admit unique solution, being the matrix A symmetric and positive definite
and the rank of B maximum (due to the FE pair considered), that can be obtained
by means of the Conjugate Gradient method (CG) [25], being the matrix BA−1BT

symmetric and positive definite.

Remark 2.1 In the case of the generalized Stokes problem for the adjoint equation, the
matrix A arises from the variational forms a(·, ·) and c′(·, ·, ·) (Eq.s (13) and (30)), for
which A is no longer symmetric; in this case for the solution of the linear systems (41)
and (42) the GMRES method [25] has been adopted.

Solution of steady Navier–Stokes equations

The Navier–Stokes equations for an incompressible fluid with constant properties can
be seen as a compact perturbation of the Stokes equations, with the addition of a non
linear term in the velocity variable. The system can be solved by adopting the Newton
method, solving at each step of the iterative procedure a generalized Stokes problem,
which arises by linearizing the Navier–Stokes equations. These linearized equations at
the generic step k + 1, obtained from Eq.(9), read:







−∇ · T(v(k+1), p(k+1)) + c′(v(k),v(k+1)) + c′(v(k+1),v(k)) = c′(v(k),v(k)), in Ω,
∇ · v(k+1) = 0, in Ω,
B.C.s, on ∂Ω,

(43)
where v(k) is the velocity computed at the previous iterative step and c′(·, ·) is defined
as:

c′(r,q) := ρ(r · ∇)q. (44)

The Newton algorithm reads:

1. solve the Stokes problem, computing the initial pressure and velocity field;

2. by considering the velocity computed at the previous step v(k), solve the generalized
Stokes problem, corresponding to Eq.(43), obtaining v(k+1) and p(k+1).
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Figure 3: Zoom of velocity field (left) and pressure (right) for the initial state flow
(Re = 10).

3. compute the appropriate norms of the incremental differences v(k+1) − v(k) and
p(k+1) − p(k) and compare them with a prescribed tolerance;

4. if the stopping criterium is fulfilled assume v(k+1) and p(k+1) as solutions of the
Navier–Stokes equations; otherwise, set v(k) = v(k+1), p(k) = p(k+1) and return to
point 2.

A preconditioning matrix can be used for the solution of the linear system (41) corre-
sponding to the Stokes (or generalized Stokes) equations, which are recursively solved
in the Newton method. In particular, we consider the Uzawa preconditioning matrix
D, which corresponds to the bilinear form d(p, q) :=

∫

Ω
pq dΩ.

No stabilization terms are used in the discrete Navier–Stokes equations, as we are in-
terested in flows at low Reynolds numbers (inferior to 100).

Remark 2.2 At each step of the optimization iterative procedure we solve the Navier–
Stokes state equations, for which an initialization by means of a Stokes problem occurs.
In order to save computational costs, we can assume as initial guess the state velocity
computed at the previous step of the optimization procedure, instead of computing it
by means of a Stokes problem solver. The validity of this procedure is confirmed by
numerical tests (see Sec.3).

3 Numerical Results

We present some numerical results concerning the drag minimization control problem
outlined in Sec.1, carried out by means of the FE library FreeFEM++ [29]. In particular,
referring to Eq.s (9) and (11) we chose ρ = 1, V∞ = 1 and d = 0.1, for which, defining
the Reynolds number:

Re :=
ρV∞d

µ
, (45)

the dynamic viscosity coefficient can be expressed as:

µ =
ρV∞d

Re
. (46)
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Figure 4: Streamlines for the initial state flow (zoom) (Re = 10).
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Figure 5: Zoom of adjoint velocity field (left) and adjoint pressure (right) for the initial
adjoint flow (Re = 10).

At the initial step of the optimization procedure, we assume u = 0, for which, according
to Eq.(12) U = 0 and Uav = 2

3U = 0, being Uav the average value of u on ΓCTRL.
Firstly we consider the case for which Re = 10. In Fig.3 we report the velocity field
and pressure, solution of the state Navier–Stokes equations, obtained for Uav = 0; in
Fig.4, the streamlines for the state velocity field are reported. In Fig.5, we show the
adjoint velocity and pressure, computed at the initial step of the optimization iterative
procedure (corresponding to Uav = 0). We assume the relaxation parameter τ j = τ =
0.5 (Eq.(38)) and we consider as tolerance for the stopping criterium of the optimization
method outlined in Sec.2.1 TolIT = 1

1000 |δU
0|, where the apex 0 means at the initial

step, while δU is reported in Eq.(39). At the end of the optimization procedure, we
obtain the velocity field and the pressure reported in Fig.6; in Fig.7 the streamlines of
the optimal velocity field show the effects of the optimization. In particular, the initial
drag coefficient cD = 3.83, corresponding to Uav = 0, is reduced, by means of this
procedure, to the optimal one, which is cD = 3.31, obtained for Uav = −0.967. In Fig.8
we report the behavior of the drag coefficient cD and the sensitivity |δU | (normalized
w.r.t. |δU0|) versus the number of iterations of the optimization procedure, for which
the convergence occurs in 24 iterations. In Fig.9 we show the values assumed from
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Figure 6: Zoom of velocity field (left) and pressure (right) for the optimal state flow
(Re = 10).

Figure 7: Streamlines for the optimal state flow (Re = 10).
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Figure 8: Drag coefficient (left) and sensitivity (right), normalized with δU 0, vs. number
of iterations of the optimization procedure (Re = 10).
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Re cD (u = 0) cD (opt.) Uav (opt.)

5 5.80 4.74 −1.77
10 3.83 3.31 −0.967
20 2.67 2.33 −0.580
50 1.77 1.52 −0.325

Table 1: Drag coefficients, minimum drag coefficients and average value (optimal) of
control function for different Re values.

cD for different values of Uav, for which we show that the local minimum value of cD

corresponds to the optimal one, assumed for Uav = −0.967.
In Table 1, we report the values of cD (with Uav = 0) for different Reynolds numbers
Re, the corresponding optimal drag coefficients and optimal control functions Uav. In
particular we find that, when Re increases, the modulus of the optimal Uav decreases.

In Remark 2.2 we have discussed a strategy for the reduction of the computational
cost of the optimization procedure, for which we initialize the linearized Navier–Stokes
state equations with the velocity field computed at previous step of the iterative pro-
cedure, instead of adopting a Stokes solver at each optimization step. Numerical tests,
referring to the problem under investigation, outline that cost savings can be reached
of about 37% and 25%, for Re = 5 and Re = 10, respectively.

The Stokes case

If we define the drag minimization control problem for the Stokes equations, the drag
coefficient does not admit a positive minimum, but tends to −∞; this is due to the
linearity in the velocity of the Stokes equations and the drag coefficient. In Fig.10, we
report the drag coefficient (for a prescribed µ) computed for different values of Uav, for
which the linear dependence of cD on Uav is outlined.
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Figure 10: Drag coefficient vs. average value of control variable (the Stokes case).

Conclusions

In this work we have studied an optimization control problem for the drag reduction
of a 2D body in relative motion with an incompressible fluid with constant properties.
In particular, we have considered as control function the Dirichlet boundary conditions
defined on a part of the boundary of the body itself. We have adopted the Lagrangian
functional approach for the resolution of the optimal control problem, together with the
Lagrangian multiplier method for the treatment of the Dirichlet boundary conditions.
This has allowed a straightforward determination of the Euler–Lagrange system, without
introducing lifting terms. We have proved the effectiveness of the procedure on numerical
tests by computing the optimal flow for which the drag coefficient is minimum and
comparing the results for different Re numbers.
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