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Abstract

A mimetic finite difference discretization of the three-dimensional, in-
compressible Navier-Stokes equations is introduced, based on ideas that
have been applied successfully to geophysical flows over the last four decades.
The proposed method is mass conservative and vorticity preserving, in the
sense that a discrete form of the vorticity equation is derived naturally
from the discrete momentum equation by application of a mimetic rota-
tion operator. A vorticity preserving discretization of the viscous terms
and an appropriate treatment for rigid wall boundary conditions are also
proposed. The relationship of this approach to other similar techniques is
discussed. Several test cases are considered, in which the proposed method
is compared to a widely used finite difference discretization. The results ob-
tained in these tests demonstrate the advantages of the proposed method,
especially when strong vorticity production takes place at the boundaries.

1 Introduction

The development of numerical methods for fluid flow preserving dis-
crete analogs of some invariants of the equations of motion (such as e.g.
mass, momentum, energy, enstrophy) attracted great attention in the early
phases of computational fluid dynamics. In particular, finite differencing
techniques possessing such properties were developed in context of numeri-
cal models for large scale atmospheric flows, see e.g. [3], [4], [15], [19], [20],
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[29], [30] and the references quoted therein. Many of these attempts have
focused on simplified two dimensional systems such as the shallow water
equations. The difficulties in satisfying both conservation of potential en-
strophy and total energy on staggered MAC type grids (also known as C
grids in the meteorological literature) have been clearly explained in [29],
where arguments are given to justify the preference for potential enstrophy
conservation over energy conservation, at least for large scale atmospheric
modelling.

Also more recent work has devoted attention to these discrete properties,
see e.g. [6], [7], [13], [18], [21], [22], [26], [28]. The development of numer-
ical methods with discrete conservation properties can take advantage of
so called mimetic finite difference schemes, for which discrete analogs of
continuous identies hold, such as ∇ × ∇φ = 0, integration by parts for-
mulae and the Helmholtz decomposition theorem. Examples of mimetic
finite differences are given e.g. by [14], [23], in two and three dimensional
frameworks, respectively. These properties have been used e.g. in [24] to
prove stability and convergence of the MAC discretization approach.

The motivation for preserving discrete invariants in atmospheric flow
modelling is mainly related to the necessity of avoiding spurious trends in
climate models used for very long range simulations. For these applications,
great care has to be taken to avoid contamination of the resulting climate
statistics by the accumulation of numerical errors. On a rotating planet,
a constant source of vorticity is present and avoiding spurious sources of
relative vorticity is assumed to lead to a more faithful reproduction of the
large scale dynamics, even if relatively coarse grids are used, as it is often the
case in climate models. Similar considerations apply to the case of discrete
energy conservation, which in early numerical models was also sought as
a guarantee of numerical stability Some evidence of the benefits of these
conservative approaches is given by the consistent reproduction of energy
and enstrophy spectra in long term decaying turbulence simulations, as
proposed e.g. in [7], [8], [28].

In more conventional CFD applications, the arguments supporting the
use of mimetic schemes are also related to the desire of reproducing cor-
rect turbulence spectra, see e.g. the discussion in [26]. In particular, in
Large Eddy Simulation (LES) approaches, spurious sources of energy and
vorticity can produce undesired unphysical long term trends. Furthermore,
it was suggested in [22] that apparently pathological solutions of the Euler
equations may indeed be the result of spurious vorticity production, which
could be avoided if vorticity preserving discretizations were employed.

In this paper, we will take the viewpoint of [22] as a working hypoth-
esis and we will investigate numerically vorticity preserving discretizations
for incompressible flow problems at the laboratory scale, with the aim of
starting an assessment of their potential advantages with respect to more
common discretization approaches. In particular, a MAC-type, mass and
vorticity preserving finite difference discretization of the three dimensional
Navier-Stokes equations is introduced, based on the concepts first proposed
in [29] for the shallow water equations and extended more recently in [7]
to triangular meshes. A similar three-dimensional extension was first in-
troduced in [30] for models of nonhydrostatic atmospheric flows. Vortic-
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ity preservation means that a consistent discrete vorticity equation can be
achieved by application of a mimetic curl operator to the discrete momen-
tum equation. As a consequence, the spatial semi-discretization preserves
irrotational discrete initial data in absence of viscosity. Furthermore, both
the viscous term and the rigid wall boundary conditions are discretized
consistently in a vorticity preserving manner. These particular features
of the discretization are achieved at the same computational cost of more
standard approaches and ensure that no spurious vorticity is produced by
the numerical solution procedure. A number of numerical experiments will
show that the proposed discretization concept produces remarkable im-
provements with respect to conventional approaches, especially in regimes
where highly localized vorticity production is taking place close to bound-
aries. This motivates further research and investigation, in order to achieve
a more systematic assessment of the relative merits of the present approach
with respect to energy preserving methods such as those proposed in [13],
[26] and with respect to other finite volume and finite element discretiza-
tions. Estensions of the present approach to unstructured three dimensional
meshes could also be developed along similar lines.

In section 2, several formulations of the incompressible Navier-Stokes
equation are briefly reviewed. The basic operators of the proposed finite
difference discretization are introduced in section 3, while the new spatial
discretization and its properties are described in section 4. The discretiza-
tion of the boundary conditions is discussed in section 5. In section 6, the
results of various numerical tests are shown, demonstrating the substantial
advantages of the proposed technique with respect to another widely used
finite difference method. Some conclusions from the comparisons carried
out so far and on the perspectives for future developments are presented in
section 7.

2 The Navier-Stokes equations

The Navier-Stokes equations for a constant density, incompressible fluid
can be formulated as

∂u

∂t
= −u · ∇u −∇p + µ∆u (1)

∇ · u = 0 (2)

for x ∈ Ω, where Ω is a bounded region in R3. For the purpose of deriving
vorticity preserving discretizations, a reformulation of these equations is
considered, based on the identities (see e.g.[9])

u · ∇u = ω × u + ∇K, (3)

∆u = ∇(∇ · u) −∇× ω, (4)

where ω = ∇×u denotes vorticity and K = ‖u‖2/2 denotes kinetic energy.
The Navier-Stokes equations can be rewritten as
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∂u

∂t
= −ω × u −∇(p + K) − µ∇× ω (5)

∇ · u = 0 (6)

Taking the curl of the momentum equation, an evolution equation for vor-
ticity can also be obtained

∂ω

∂t
= −∇×

[

ω × u
]

+ µ∆ω. (7)

Enstrophy, which is defined as η = 1
2‖ω‖2, satisfies the equation

∂η

∂t
= −∇×

[

ω × u
]

+ µ∆ω. (8)

3 Finite difference discrete operators

A staggered discretization grid with at most Nx×Ny×Nz computational
cells is introduced, along the lines of popular discretization methods such as
the MAC (marker and cell) approach, introduced in [12], or the Arakawa
C grid (see e.g. [3]). Each cell is numbered at its center with indices i,
j and k, for the x, y and z directions, respectively. The length of the
cell sides in each directions are denoted by ∆xi, ∆yj and ∆zk and they
are assumed to vary in their respective direction only. The cell volume is
given by Vi,j,k = ∆xi∆yj∆zk and staggered spacings ∆xi+ 1
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are defined by
arithmetic average.

The discrete u velocity is defined at half integer i and integers j and k,
v is defined at integers i, k and half integer j, while w is defined at integers
i, j and half integers k. Finally, p and all other three-dimensional scalar
variables are defined at integers i, j, k. At points where they are not defined,
the discrete variables are generally computed by simple arithmetical mean
of the nearest defined values. Averaged quantities will usually be denoted
by an overbar, so that e.g.

ūi,j,k =
ui+ 1

2
,j,k + ui− 1

2
,j,k

2
,

ūi,j+ 1

2
,k =

ui+ 1

2
,j,k + ui− 1

2
,j,k + ui+ 1

2
,j+1,k + ui− 1

2
,j+1,k

4
.

Difference operators are then introduced as

δxφi+ 1

2
,j,k =

φi+1,j,k − φi,j,k

∆xi+ 1

2

δxφi,j,k =
φi+ 1

2
,j,k − φi− 1

2
,j,k

∆xi

δyφi,j+ 1

2
,k =

φi,j+1,k − φi,j,k

∆yj+ 1

2

δyφi,j,k =
φi,j+ 1

2
,k − φi,j− 1

2
,k

∆yj

δzφi,j,k+ 1

2

=
φi,j,k+1 − φi,j,k

∆zk+ 1

2

δzφi,j,k =
φi,j,k+ 1

2

− φi,j,k− 1

2

∆zk
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Figure 1: Location of velocity and vorticity point on the staggered Cartesian
mesh.

for staggered and unstaggered locations, respectively.
A discrete divergence operator is also defined at unstaggered locations as

div(u, v, w)i,j,k =
ui+ 1

2
,j,k − ui− 1

2
,j,k

∆xi

+
vi,j+ 1

2
,k − vi,j− 1

2
,k

∆yj

+
wi,j,k+ 1

2

− wi,j,k− 1

2

∆zk

. (9)

With a similar definition, the divergence operator can be also defined at any
staggered location, if the components of a discrete vector field normal to
the faces of the corresponding control volume are available. The vorticity
fluxes are naturally defined via the Stokes theorem at the faces of staggered
control volumes, so that

ωx
i,j+ 1

2
,k+ 1

2

=
wi,j+1,k+ 1

2

− wi,j,k+ 1

2

∆yj+ 1

2

−
vi,j+ 1

2
,k+1 − vi,j+ 1

2
,k

∆zk+ 1

2

ωy

i+ 1

2
,j,k+ 1

2

=
ui+ 1

2
,j,k+1 − ui+ 1

2
,j,k

∆zk+ 1

2

−
wi+1,j,k+ 1

2

− wi,j,k+ 1

2

∆xi+ 1

2

(10)

ωz
i+ 1

2
,j+ 1

2
,k

=
vi+1,j+ 1

2
,k − vi,j+ 1

2
,k

∆xi+ 1

2

−
ui+ 1

2
,j+1,k − ui+ 1

2
,j,k

∆yj+ 1

2

.

A discrete curl operator can be defined for each cell as

curl(u, v, w)i,j,k = (ωx
i,j+ 1

2
,k+ 1

2

, ωy

i+ 1

2
,j,k+ 1

2

, ωz
i+ 1

2
,j+ 1

2
,k

). (11)

These definitions are similar to those given e.g. in [14] and have similar
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mimetic properties. A detailed derivation of thes properties is given later
in section 8.

4 A vorticity preserving spatial discretization

for the Navier-Stokes equations

A mass and vorticity preserving, second order accurate spatial dis-
cretization of equations (5)-(6) is obtained by application of the finite dif-
ference operators described in the previous section:

∂

∂t
ui+ 1

2
,j,k = −ω̄y

i+ 1

2
,j,k

w̄i+ 1

2
,j,k + ω̄z

i+ 1

2
,j,k

v̄i+ 1

2
,j,k

−δx(p + K̄)i+ 1

2
,j,k

+µ
[

δz(ω
y)i+ 1

2
,j,k − δy(ω

z)i+ 1

2
,j,k

]

(12)

∂

∂t
vi,j+ 1

2
,k = −ω̄z

i,j+ 1

2
,k

ūi,j+ 1

2
,k + ω̄x

i,j+ 1

2
,k

w̄i,j+ 1

2
,k

−δy(p + K̄)i,j+ 1

2
,k

+µ
[

δx(ωz)i,j+ 1

2
,k − δz(ω

x)i,j+ 1

2
,k

]

(13)

∂

∂t
wi,j,k+ 1

2

= −ω̄x
i,j,k+ 1

2

v̄i,j,k+ 1

2

+ ω̄y

i,j,k+ 1

2

ūi,j,k+ 1

2

−δz(p + K̄)i,j,k+ 1

2

+µ
[

δy(ωx)i,j,k+ 1

2

− δx(ωy)i,j,k+ 1

2

]

(14)

div(u, v, w)i,j,k = 0. (15)

This approach extends to the three-dimensional, viscous, incompressible
case the techniques proposed in [6], [7] for the discretization of the shallow
water equations on a triangular geodesic grid. These were in turn inspired
by the seminal paper [29] and by the methods presented in [18]. In the
two-dimensional inviscid case, the discretization (12)-(15) coincides exactly
with that of [29], if constant fluid thickness is assumed in the shallow water
equations considered therein. On the other hand, the choice of the formula-
tion (5)-(6) leads to a formulation that is similar to that of [26]. The main
difference between the present approach and the discretization proposed in
[26] lies in the location of the velocity and vorticity points. In the present
discretization, the tangential velocity components at the cell edge (for ex-
ample, the terms w̄i+ 1

2
,j,k, v̄i+ 1

2
,j,k in equation 12) are averaged separately

at the edge midpoint, while in [26] the whole momentum advection term is
computed at the cell vertex (i.e., at the discrete location where vorticity is
defined).

While mass conservation is achieved in the same way as in the standard
MAC approach, to prove vorticity preservation we will show that, taking
the discrete curl of equations (12)-(14), a discretization of equation (7)
results. Indeed, considering the vorticity fluxes defined in (10), taking their
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time derivatives, applying equations (12)-(14) and the mimetic properties
of the discrete operators one obtains

∂

∂t
ωx

i,j+ 1

2
,k+ 1

2

= −δy[ω̄
xv̄ − ω̄yū]i,j+ 1

2
,k+ 1

2

+ δz[ω̄
zū − ω̄xw̄]i,j+ 1

2
,k+ 1

2

+µ div(δxωx, δyωx, δzω
x)i,j+ 1

2
,k+ 1

2

(16)

∂

∂t
ωy

i+ 1

2
,j,k+ 1

2

= −δz[ω̄
yw̄ − ω̄zv̄]i+ 1

2
,j,k+ 1

2

+ δx[ω̄xv̄ − ω̄yū]i+ 1

2
,j,k+ 1

2

+µ div(δxωy, δyωy, δzω
y)i+ 1

2
,j,k+ 1

2

(17)

∂

∂t
ωz

i+ 1

2
,j+ 1

2
,k

= −δx[ω̄zū − ω̄xw̄]i+ 1

2
,j+ 1

2
,k + δy[ω̄yw̄ − ω̄zv̄]i+ 1

2
,j+ 1

2
,k

+µ div(δxωz, δyω
z, δzω

z)i+ 1

2
,j+ 1

2
,k (18)

A more detailed derivation of these equations is given in section 8. Equa-
tions (16)-(18) represent a consistent spatial discretization of equation (7).
It can be observed that, in absence of boundaries and assuming an initial
state such that curl(u, v, w)i,j,k = 0, equations (16)-(18) imply that the
discrete vorticity remains zero also at any later time. Thus, no spurious
vorticity is produced by the numerical method.

Regarding enstrophy conservation, no attempt is made here to prove
that the present scheme has this property. However, it can be observed
that in the two dimensional case, the present scheme reduces to the (po-
tential) enstrophy preserving scheme of [29], so that the same enstrophy
conservation proof would hold assuming the fluid thickness to be constant
in the shallow water equations considered by [29]. The numerical tests pre-
sented in section 6 will show that this vorticity preserving scheme has in
practice good enstrophy preservation properties.

5 Discretization of rigid wall boundary con-

dition

At the boundaries of the computational domain, boundary conditions
have to be imposed and a discretization procedure must be found that is
appropriate to provide discrete boundary values for equations (12)-(15). We
consider here rigid wall, no slip conditions, which are usually applied to the
Navier-Stokes equations (see e.g. [9]). The rigid wall condition is imposed
by assuming that the normal velocity components at the boundary faces
are zero. In the discretization approach described by equations (12)-(15),
the only other boundary conditions that need to be assigned are the values
of the vorticity fluxes ωx

i,j+ 1

2
,k+ 1

2

, ωy

i+ 1

2
,j,k+ 1

2

, ωz
i+ 1

2
,j+ 1

2
,k

for cell edges that

belong to boundary faces. These boundary vorticity values are computed
by applying Stokes theorem (see fig. 2) to control volumes adjacent to the
boundary and whose boundary faces are centered at the discrete locations
where vorticity fluxes are defined. In particular, along the boundary faces
the tangential velocity component is assumed to be zero, in agreement with
the no slip boundary condition.
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Figure 2: Computation of vorticity values at the boundaries.

6 Numerical experiments

A full space-time discretization can be obtained from the spatial dis-
cretization introduced in section 4, by application of an appropriate timestep-
ping scheme. For the purpose of the tests discussed in this paper, a simple
second order Runge-Kutta time discretization was considered. The time
discretization was performed along the lines of projection methods (see e.g.
[2], [11], [16], [27]), with an explicit predictor step and a following pres-
sure correction step, in which a Poisson equation is solved for pressure to
ensure that the discrete divergence free constraint is enforced. For all the
numerical tests considered, relatively small values of the timestep and of
the Courant number were used, since the focus here is on the investigation
of the properties of the spatial discretization.

Throughout this section, the results of the vorticity preserving scheme
are compared to those obtained in the same test cases with another finite
difference method for the discretization of the nonlinear momentum equa-
tion. More specifically, the centered finite difference method of [17] has
been employed, coupled to the same time discretization described above.
The spatial discretization of [17] is also mass conservative and uses the
same MAC type staggered grid and the same discretization of the diver-
gence operator. It only differs from our approach in the approximation
of the momentum equation, which does not preserve vorticity in the sense
described in section 4. The implementation of the finite difference method
of [17] used for these tests had been validated previously in a number of
laminar and turbulent flow simulations (see e.g. [1]).

6.1 Lamb dipole

In the first numerical experiment, the two-dimensional Lamb dipole is
studied numerically. The Lamb dipole consists of two symmetric patterns
with vorticity of opposite sign. Using polar coordinates r, θ, inside the
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circular region with radius r = a vorticity is given by

ω = −
2U0

J0(ka)
J1(kr) sin θ, (19)

where Jn is the n−th order Bessel function of the first kind and k is chosen
so that ka ≈ 3.8317 is the first zero of J1. Outside the circle r ≤ a, the
motion is irrotational with uniform velocity u = (U0, 0, 0). In the inviscid
case, the dipole moves along the axis with a constant velocity U0 and with-
out changing shape. Moreover, vorticity, kinetic energy and enstrophy are
conserved. This problem has been solved on a domain of size Lx = Lz = 6
with 256× 256 grid points. Periodic boundary conditions in x and free slip
conditions in z have been applied. The values U0 = 2 and a = 1 are chosen
for the initial vorticity field. We observe that kinetic energy (graph not
shown) is well conserved by both numerical schemes. On the other hand,
the reference finite difference scheme of [17] (labelled as scheme 1 in the
following) does display spurious production of vorticity (see fig.3,4) and en-
strophy (see fig.5.), while the vorticity preserving scheme (scheme 2) does
indeed preserve well the vorticity minima, maxima and mean values.

0 2 4 6 8
t

-300

-200

-100

0

100

200

300

V
or

tic
ity

scheme 1
scheme 2

Figure 3: Time evolution of minimum and maximum vorticity for the inviscid
Lamb dipole.

The vorticity plots in figures 6,7 also show that a great amount of spu-
rious vorticity is produced close to the symmetry axis by scheme 1, while
scheme 2 appears to conserve much better the vorticity structure of the
dipole.

As a consequence, the velocity field obtained with the scheme 1 is much
noisier than that of the scheme 2, see figures 8, 9.
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Figure 4: Time evolution of mean vorticity for the inviscid Lamb dipole.
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Figure 5: Time evolution of mean enstrophy for the inviscid Lamb dipole.
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Figure 6: Vorticity field obtained with standard finite difference scheme for the
inviscid Lamb dipole.

 

 

0 1 2 3 4 5
0

1

2

3

4

5

−20

−15

−10

−5

0

5

10

15

20

Figure 7: Vorticity field obtained with vorticity preserving mimetic scheme for
the inviscid Lamb dipole.
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Figure 8: Vertical velocity field obtained with standard finite difference scheme
for the inviscid Lamb dipole.
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6.2 ABC flow

The Arnold - Beltrami - Childress (ABC) flow (see e.g. [5], [10]) was
then considered, which provides a nonlinear test for the Navier-Stokes equa-
tions in which an analytic solution is known, at least in the inviscid case.
The velocity field of the ABC flow is given by

u = A sin z + C cos y

v = B sin x + A cos z (20)

w = C sin y + B cosx.

It is a three dimensional, periodic velocity field associated to a vorticity
satisfying the relation ω = u. Field (20) is an analytic solution of the Euler
equations. Thus, we can use the numerical simulation of the ABC flow to
evaluate the accuracy of the spatial discretization scheme for the convective
term in a strongly three dimensional field. Periodic boundary conditions
are applied in all space directions, so that the results are not affected by
the approximation of the boundary conditions. The computational domain
is a cubic box of 2π size with 50 × 50 × 50 grid cells. The flow constants
were taken to be A = B = C = 1. For such a flow, the mean kinetic energy
and the mean enstrophy are given by

K̄ =
1

8π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

1

2

(

u2 + v2 + w2
)

dxdydz =
3

2

η̄ =
1

8π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

1

2

(

ω2
x + ω2

y + ω2
z

)

dxdydz =
3

2
,

respectively. ABC flows may very rapidly become unstable, but, if no
disturbances or dissipation are introduced, the predicted values for mean
kinetic energy and enstrophy should be conserved during the simulation.
Thus, any deviation of the computed values from the predicted ones is a
measure of the error of the numerical scheme. In figures 10, 11, the results
for the inviscid Euler case are shown. The graph for the kinetic energy
in figure 10 shows that scheme 1 is indeed dissipative, while the solution
obtained with scheme 2 shows an increasing kinetic energy. The enstrophy
is initially dumped by scheme 1, (fig.11), with a rapid increment at a later
time. On the other hand, scheme 2 appears to stay much closer to the
correct value on the same time range.

If an external driving force f = u/Re is imposed, field (20) is again a
solution of the Navier-Stokes equations. Otherwise (see e.g. [10]), the flow
decays as e(− t

Re
)u. At very low Reynolds number (Re < 13.044) the solution

is stable. In order to test the accuracy of the diffusive term approximation,
the simulation of the ABC flow has been performed also in the viscous
case. For subcritical Reynolds number (in particular, Re = 1 was chosen
for the computation reported here) there is no difference between the two
schemes in the case in which the external driving force is applied, as shown
in figures 12,13. In figures 14,15, instead, the mean kinetic energy and
enstrophy obtained with the two schemes, are compared to the theoretical
values in the case in which no external forcing was applied. As in the
inviscid case, the two methods have opposite behaviour concerning energy
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Figure 10: Time evolution of mean kinetic energy for the solution of inviscid
ABC flow.
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Figure 11: Time evolution of mean enstrophy for the solution of inviscid ABC
flow.
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dissipation, while the vorticity preserving scheme is clearly more accurate
in reproducing the total enstrophy decay.
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Figure 12: Time evolution of mean kinetic energy for the solution of viscous
ABC flow with driving force f = u/Re at Reynolds number Re = 1.

6.3 Flow on a square cylinder

We have then considered the benchmark test case proposed in [11],
concerning the simulation of the flow around a square cylinder. We will
focus on relatively low Reynolds numbers, for which a laminar flow regime is
guaranteed. Strong vorticity production takes place at the obstacle corners,
along with vortex shedding in the lee. Reference experimental results for
this configuration are presented e.g. in [25].

The computational domain is a box of size Lx = 25, Ly = 3, Lz = 8 with
120× 6× 55 mesh points. A stretched mesh is applied, with minimum grid
size ∆x = 0.014 and ∆z = 0.016 on the square. The cylinder is placed at
4 ≤ x ≤ 5 and 3.5 ≤ z ≤ 4.5. The boundary conditions u = 1, v = w = 0 at
the inlet and w = ∂u

∂x
= ∂v

∂x
= 0 at the outlet are imposed. On the upper and

lower boundaries, free slip conditions are imposed, while periodic boundary
conditions are assumed in the y direction. The flow has been simulated
at Reynolds numbers Re = 250 and Re = 500 up to approximately 200
nondimensional time units. For these values of the Reynolds number the
flow is still two dimensional, so that it is reasonable to employ a quite coarse
resolution in the transversal y direction.

The first striking difference between the standard centered finite differ-
ences (scheme 1) and the vorticity preserving method (scheme 2) is that
application of the former produces spurious transversal velocities of the
same order of magnitude of the inflow velocity. The spurious transversal
v velocity components are shown in figures 16, 17 for the cases Re = 250
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Figure 13: Time evolution of mean enstrophy for the solution of viscous ABC
flow with driving force f = u/Re at Reynolds number Re = 1.
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Figure 14: Time evolution of mean kinetic energy for the solution of viscous
ABC flow without driving force at Reynolds number Re = 1.
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Figure 15: Time evolution of mean enstrophy for the solution of viscous ABC
flow without driving force at Reynolds number Re = 1.

and Re = 500, respectively. On the other hand, for the vorticity preserving
discretization, the transversal velocity component remains zero at machine
accuracy in both cases. This seems to support the view that spurious vor-
ticity production can be quite damaging for local accuracy when localized
vorticity production occurs. In order to show that this spurious effects
can arise also in other discretization approaches, the corresponding result
is shown in figure 18 as computed by a second order finite volume scheme
implemented in the FLUENT package. In this case, the transversal velocity
field is shown at approximately one quarter of the simulation time reached
in the finite difference simulation. For this computation, the FLUENT code
was configured so as to choose for the momentum equation a flux form dis-
cretization using the QUICK advection scheme. A second order accurate
discretization of the Poisson equation for pressure was chosen, along with
a second order semi-implicit timestepping scheme and a SIMPLE iterative
correction approach. At these earlier stage of the simulation, smaller spu-
rious velocity are obtained, which are comparable in magnitude to those
produced by scheme 1 at the corresponding time.

Other relevant differences between schemes 1 and 2 can be observed in
the y component of the vorticity field, which is plotted in figures 20 - 26 for
the cases Re = 250 and Re = 500, respectively. Especially for the higher
value of the Reynolds number, the vorticity pattern at the cylinder corner
is more localized and concentrated. In both cases, the vortex shedding in
the lee of the cylinder has remarkable differences, which are most likely
to be attributed to the spurious transversal velocity discussed before. In
particular, at Re = 250 the recirculation zones are well represented by both
schemes, although, when using standard centered finite differences, vorticity
oscillations appear on the lower left corner of the obstacle. At Re = 500,
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disturbances created around the cylinder corner are present in the velocity
and vorticity fields when using standard centered finite differences, while
these phenomena are absent if the vorticity preserving method is used.
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Figure 16: Transversal velocity field around the square cylinder at Re = 250,
centered finite differences.

At Re = 250, the frequency of the vortex shedding in the lee of the
obstacle was also investigated for scheme 2. This analysis could not be
carried out for scheme 1 since a statistical steady state solution had not
been reached yet at the end of the chosen simulation time. In fig. 27,
the time evolution of the horizontal velocity component u is shown, as
computed at various different points in the lee of the cylinder. All the time
series display the same frequency, albeit with different phase shifts. The
Strouhal number St = ω/UL has also been computed, see figure 28, yielding
a value of approximately St = 0.1297 that is in good agreement with most
of the values computed in [11] and reasonably close to the experimental
values reported in [25].

7 Conclusions and open issues

A vorticity preserving discretization of the three-dimensional, incom-
pressible Navier-Stokes equations has been introduced. The numerical
method employs ideas that have been applied successfully to modelling
of geophysical flows. An appropriate treatment for viscous terms and rigid
wall boundary conditions has also been proposed. Numerical results ob-
tained in a number of test cases show that the method has considerable
advantages with respect to more conventional approaches, especially in
regimes where highly localized vorticity production is taking place close
to boundaries. These results seem to support the heuristic consideration
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Figure 17: Transversal velocity field around the square cylinder at Re = 500,
centered finite differences.

 

 

−9 −8 −7 −6 −5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Figure 18: Transversal velocity field around the square cylinder at Re = 500,
second order finite volume method implemented in FLUENT. Coordinate axes
in the (x, z) plane are shifted with respect to the previous plots.
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Figure 19: Vorticity field around the square cylinder at Re = 250, centered finite
differences.
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Figure 20: Vorticity field around the square cylinder at Re = 250, vorticity
preserving method.
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Figure 21: Vorticity field around the square cylinder at Re = 250, centered finite
differences: detail of cylinder corner.
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Figure 22: Vorticity field around the square cylinder at Re = 250, vorticity
preserving method: detail of cylinder corner.
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Figure 23: Vorticity field around the square cylinder at Re = 500, centered finite
differences.
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Figure 24: Vorticity field around the square cylinder at Re = 500, vorticity
preserving method.
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Figure 25: Vorticity field around the square cylinder at Re = 500, centered finite
differences: detail of cylinder corner.
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Figure 26: Vorticity field around the square cylinder at Re = 500, vorticity
preserving method: detail of cylinder corner.
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Figure 27: Longitudinal velocity component versus time for different positions
around the square cylinder at Re = 250 for the mimetic scheme.
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Figure 28: Strouhal number in the flow around the square cylinder at Re = 250
for the mimetic scheme.
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put forward in [22]. As a consequence, it seems that there is strong mo-
tivation for further research and analysis. In particular, we would like to
carry out a more systematic assessment of the relative merits of the present
approach with respect to energy preserving methods such as those proposed
in [13], [26] and with respect to other finite volume and finite element dis-
cretizations. Extension to unstructured three dimensional meshes along the
lines of the two dimensional methods proposed in [7], [26] are also feasible
in principle and will be investigated.

8 Appendix: proof of the mimetic and con-

servation properties.

For completeness, a more detailed proof of the mimetic and conservation
properties of the proposed approach will be reported here. Firstly, we prove
that

curl(δxφ, δyφ, δzφ)i,j,k = 0. (21)

Indeed, applying equations (10) to the discrete vector field components
given by δxφi+ 1

2
,j,k, δyφi,j+ 1

2
,k, δzφi,j,k+ 1

2

one obtains e.g. for the vorticity
flux in the x direction

ωx
i,j+ 1

2
,k+ 1

2

=
δzφi,j+1,k+ 1

2

− δzφi,j,k+ 1

2

∆yj+ 1

2

−
δyφi,j+ 1

2
,k+1 − δyφi,j+ 1

2
,k

∆zk+ 1

2

=
1

∆yj+ 1

2

∆zk+ 1

2

[φi,j+1,k+1 − φi,j+1,k − φi,j,k+1 + φi,j,k

−φi,j+1,k+1 + φi,j,k+1 + φi,j+1,k − φi,j,k] = 0.

Analogous calculations for the other vorticity components yield equation
(21). The second key mimetic property is

div(ωx, ωy, ωz)i+ 1

2
,j+ 1

2
,k+ 1

2

= 0. (22)

This can be proven showing that the expression on the left hand side of
equation (22) can be expanded as

ωx
i+1,j+ 1

2
,k+ 1

2

− ωx
i,j+ 1

2
,k+ 1

2

∆xi+ 1

2

+
ωy

i+ 1

2
,j+1,k+ 1

2

− ωy

i+ 1

2
,j,k+ 1

2

∆yj+ 1

2

+
ωz

i+ 1

2
,j+ 1

2
,k+1

− ωz
i+ 1

2
,j+ 1

2
,k

∆zk+ 1

2

,
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which in turn can be rewritten as

wi+1,j+1,k+ 1

2

− wi+1,j,k+ 1

2

∆yj+ 1

2

∆xi+ 1

2

−
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2
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2
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2
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2
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2
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2
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2
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2
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2
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Equation (22) can also be rewritten as e.g.

δxωx
i+ 1

2
,j+ 1

2
,k+ 1

2

= −δyω
y

i+ 1

2
,j+ 1

2
,k+ 1

2

− δzω
z
i+ 1

2
,j+ 1

2
,k+ 1

2

.

These equalities are used in the derivation of equations (16)-(18), which can
be achieved by direct application of the discrete curl to equations (12)-(14).
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