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Abstract

The reduced basis (RB) method is proposed for the approximation of multi-
parametrized equations governing an optimal control problem. The idea
behind the RB method is to project the solution onto a space of small
dimension, specifically designed on the problem at hand, and to decouple
the generation and projection stages (off-line/on-line computational proce-
dures) of the approximation process in order to solve parametrized equa-
tions in a rapid and not expensive way.
The application that we investigate is an air pollution control problem: we
aim at regulating the emissions of industrial chimneys in order to keep the
pollutant concentration below a certain threshold over an observation area,
like a town. Adopting the RB method for both state and adjoint equations
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tific computing and advanced applications”, EPFL and Swiss National Science Foundation.
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of the optimal control problem leads to important computational savings
with respect to the use of the Galerkin-finite element method. We consider
different parametrization (control, physical and geometrical input parame-
ters) so that we are able to solve the control problem from a global and
decisional point of view.

1 Introduction

The control and optimization of an engineering component or system requires
the prediction of certain “quantities of interest”, which we shall generically call
outputs. They are typically expressed as functionals of the field variables (either
state or adjoint variable) associated with a partial differential equation which
describes the physical behavior of the component or the system. The parame-
ters, which we shall denote inputs, identify a particular “configuration” of the
components: they may represent variables related to the control function u, but
also physical or geometrical parameters. We thus get an implicit input-output

relationship whose evaluation requires the solution of the underlying partial dif-
ferential equations.
Generically speaking, the solution of control problems requires rapid, reliable,
and repeated evaluations of the input-output relationship. This calls for meth-
ods that can reduce complexity while preserving all relevant information and
without loosing accuracy on the results.
The RB method is a powerful tool to solve parametrized equations. The idea is
to project the solution on a small dimensional space, specific for our problem,
instead of adopting a generic high-dimension approximating space, like the finite
element space. The use of a model which is able to represent the problem with
a small number of degrees of freedom, without loosing accuracy, reduces heavily
computational costs.
In this paper we adopt the RB method to approximate the solution of the para-
metrized equations governing the control problem. Control problems solved with
the RB method were already faced by Ito and Ravindran [8], [6] and [7], however
without considering multi-parametrized problems and adopting different solu-
tion procedures. Parameters can be sorted as control parameters (i.e depending,
on control function), physical (like velocity field or diffusivity) and geometrical
(i.e. related to different domain configurations). Geometrical parameters are
particularly important in the optimal control framework, since they allow the
solution of shape optimization problems. In our formulation we will foresee all
three classes of parameters. Recently, Grepl [5] has proposed the solution of
parabolic problems with reduced basis (also in the optimal control framework).
Other applications of reduced basis methods are provided in the field of inverse
problems with non-affine parametric dependence by Nguyen [10].
As a study case, we consider an air pollution control problem: our goal is to
regulate the pollutant emission by industrial plants in order to keep pollution
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below an acceptable level over an observation area, e.g. a town. We refer to air
pollution phenomena in a stationary frame on urban scales.
In Section 2 we formulate a generic control problem, for a linear time-independent
advection-diffusion equation. In Section 3 we describe the reduced basis approx-
imation for the solution of the parametrized equations governing the control
problem. In Section 4 we report some features of the air pollution control prob-
lem, then we apply the formulation presented in Section 2 to derive our model.
In Sections 5, 6 and 7 we present the parametrized state and adjoint equations,
some numerical results and an example for the case of control, physical and
geometrical input, respectively. Some preliminary results were reported in [12].
In Section 8 we report some concluding remarks and indicate a perspective on
further developments.

2 Optimal control problem for advection-diffusion equa-
tions

Let us consider an advection-diffusion problem defined on the domain Ω ⊂ R
2:







Aw ≡ −∇ · (ν∇w) + V · ∇w = u in Ω,
w = 0 on ΓD,
∂w
∂n

= 0 on ΓN ,

(1)

where w is the state variable, u the control function defined on the domain,
V the velocity field and ν is the diffusivity that may depend on the domain
coordinates (x, y). A homogeneous Dirichlet condition is imposed on the inflow
boundary ΓD := {x ∈ ∂Ω : V(x) · n(x) < 0}, where n(x) is the unit vector
directed outward, and a homogeneous Neumann condition on ΓN := ∂Ω\ΓD.
Defining H1

ΓD
:= {v ∈ H1(Ω) : v|ΓD

= 0}, the weak form of the state equation

(1) is: find w ∈ H1
ΓD

: a(w,ϕ) = F (ϕ;u), ∀ϕ ∈ H1
ΓD
, where

a(w,ϕ) :=

∫

Ω
ν∇w · ∇ϕ dΩ +

∫

Ω
V · ∇w ϕ dΩ, (2)

F (ϕ;u) :=

∫

Ω
uϕ dΩ. (3)

We then define the observation of the system on a part D ⊂ Ω of the domain
through the cost functional: J(u,w) = 1

2

∫

D
(w(u) − zd)

2dD, where zd is the
desired observation.
The Lagrangian functional reads: L(w, p, u) = J(u) + F (p;u) − a(w, p), where
w, p ∈ H1

ΓD
(Ω) and u ∈ L2(Ω). By differentiating L with respect to the state

variable, we obtain the weak form for the adjoint equation: find p ∈ H1
ΓD

:

aad(p, φ) = F ad(φ;w), ∀ϕ ∈ H1
ΓD
, where

aad(p, φ) :=

∫

Ω
ν∇p · ∇φ dΩ +

∫

Ω
V · ∇φ p dΩ, (4)
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F ad(φ,w) :=

∫

Ω
(w − zd) φ dD, (5)

whose differential form is:






A∗p ≡ −∇ · (ν∇p+ V · p) = χD(w − zd) in Ω,
p = 0 on ΓD,

ν ∂p
∂n

+ V · np = 0 on ΓN ,

(6)

where χD is the characteristic function of the subdomain D.
By differentiating the Lagrangian functional with respect to the control function
u, we obtain the weak form of the optimal control constraint: 〈J ′(u), ψ〉 =
∫

Ω pψ dΩ = 0, ∀ψ ∈ L2(Ω).
We solve our problem using an iterative method where the variation of control
function is led by a gradient method. From the optimal control constraint, we
can derive a stopping criterium for the iterative method. At the kth step of the
iterative method:

• we solve the state equation:
find wk ∈ H1

ΓD
: a(wk, ϕ) = F (ϕ;uk), ∀ϕ ∈ H1

ΓD
;

• we solve the adjoint equation:
find pk ∈ H1

ΓD
: aad(pk, φ) = F ad(φ;wk), ∀ϕ ∈ H1

ΓD
;

• if the stopping criterium is not satisfied, we update the control function

uk+1 = uk + δuk δuk = −τkJ ′(uk) = −τkpk. (7)

The stopping criterium adopted is [3]:

‖pk‖L2 < tol, (8)

to check if our adjoint variable pk is too small to produce a significative variation
δuk on the new control function uk+1.

2.1 Numerical discretization and stabilization

Both state and adjoint equations are advection-diffusion equations; since the
transport term dominates the diffusion one [4], a suitable numerical stabiliza-
tion is needed. We adopt the stabilized Lagrangian [3],[2], instead of stabilizing
separately state and adjoint equations in a conventional manner [13]. In this
way, stabilization is not only based on a strongly consistent method, but also
there is coherence between state and adjoint stabilized equations.
In this work we have adopted the approach “optimize-then-discretize” to solve
optimal control problems, we have formulated an optimality condition, from this
condition we have built an adjoint problem and then we discretize both state and
adjoint equations. An alternative approach would be “discretize then optimize”
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which has been considered for the same kind of problem in [12].
Indicating with the index h the discretized quantities, the stabilized state equa-
tion reads:

find wh ∈ Xh : ah(wh, ϕh) = Fh(ϕh;uh), ∀ϕh ∈ Xh, (9)

with:

ah(wh, ϕh) := a(wh, ϕh) −
∑

K∈Th

δK

∫

K

Awh A
∗ϕh dK,

Fh(ϕh;uh) := F (ϕh;uh) −
∑

K∈Th

δK

∫

K

uh A
∗ϕh dK,

where A is the state operator and A∗ is the adjoint operator. The terms a(wh, ϕh)
and F (ϕh;uh) are defined in (2), (3), wh and uh are discrete approximations of
the functions w, u, and Xh ⊂ H1

ΓD
is the finite element space built up on a grid

Th, so that the computational domain is Ω =
⋃

K∈Th
K (see [13]).

The adjoint equation is:

find ph ∈ Xh : aad
h (ph, φh) = F ad

h (φh;wh;uh), ∀φh ∈ Xh, (10)

where:

aad
h (ph, φh) := aad(ph, φh) −

∑

K∈Th

δK

∫

K

A∗ph Aφh dK,

F ad
h (φh;wh;uh) := F ad(φh;wh) −

∑

K∈Th

δK

∫

K

(

χD

(

wh − zd

)

·

Aφh +
(

Awh − uh

)

χDφh

)

dK.

Note that the terms aad(ph, φh) and F ad(φh;wh) are defined in (4) and (5) and
ph is the discrete approximation of the function p.

3 Reduced basis method for optimal control

As anticipated in the Introduction, we consider three different types of input pa-
rameters: control input µu, which parametrizes the control function u = u(µu);
physical input µp, like, for ex., velocity field V and viscosity ν; geometrical input
µg, which characterizes the domain geometry. These parameter classes allow us
to solve different types of control problems. Of course, inputs can be combined
together to form, for example, a control-physical input (i.e. control and physical
quantities as parameters). In this section, for convenience, we refer to a generic
input µ = {µu, µp, µg}, without specifying its own nature.
We introduce a set of parameter samples SN = {µ1, ...,µN}, where µ

n ∈ D,
n = 1, ..., N . For each input vector in SN , we calculate a finite element method
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solution of the state equation wh(µn) in the space Xh; we choose a discretiza-
tion refined enough to ensure that the solution in the high-dimensional space
Xh is accurate enough to approximate the exact solution in H1

ΓD
. We do the

same for the adjoint problem: we select a set of N samples Sad
N = {µ1

ad, ...,µ
N
ad},

where µ
n
ad ∈ D, n = 1, ..., N , and correspondingly we compute the finite element

approximation of the adjoint variable ph(µn
ad) ∈ Xh. The two sets SN and Sad

N

are chosen independently. Also the reduced basis formulation and the basis con-
struction procedure have been influenced by the choice of using the approach
“optimize-then-discretize” for the optimal control problem. We then introduce
the reduced basis spaces:

WN = span{ζn ≡ wh(µn), n = 1, ..., N} (11)

for the state problem and

ZN = span{ξn ≡ ph(µn
ad), n = 1, ..., N} (12)

for the adjoint problem. According to (11) and (12), WN and ZN consist of all
functions in Xh that can be expressed as a linear combination of, respectively,
ζn and ξn. We assume linear independence of the basis functions.
Starting from the state variable, in the RB approach we look for an approxima-
tion wN (µ) in WN , that can be regarded as a surrogate of the finite element
approximation wh(µ); we can express the RB solution wN (µ) as:

wN (µ) =
N

∑

j=1

wNj
(µ)ζj = (wN (µ))T ζ, (13)

where wN (µ) ∈ R
N is the column vector of the linear combination coefficient

wNj
, j = 1, ..., N .

Let pN be the RB approximation of the adjoint variable:

pN (µ) =
N

∑

j=1

pNj
(µ)ξj = (p

N
(µ))T ξ. (14)

The underlying idea of the RB method is a projection onto a lower-order ap-
proximation space, specific for the problem of interest, instead of a general high-
order one. The conjecture is that we should be able to accurately represent
the solution corresponding to some new points in parameter space, µ

new, as an
appropriate combination of solutions previously computed at a small number
of sample points in parameter space (µn and µ

n
ad, n = 1, ..., N). In this case

we are interested in solving the optimal control problem and finding the control
function by evaluating the cost functional in a rapid, reliable and repeated way.
At each iterative step of the method adopted to solve the control problem, for
any given µ ∈ D and the corresponding control function u (7), we compute the
reduced basis approximation of the state variable wN (µ) ∈WN , by solving

a(wN (µ), v; µ) = F (v;u), ∀v ∈WN .
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Once wN is available, we determine the solution pN ∈ ZN of the adjoint equation:

aad(pN (µ), φ; µ) = F ad(φ,wN (µ)), ∀φ ∈ ZN .

Finally we evaluate the reduced basis approximation of our output, i.e. the cost
function J(u,wN ) and the adjoint variable pN , then we check whether the stop-
ping criterium is satisfied.
To apply the reduced basis method, we shall suppose that for some finite (prefer-
ably small) integers Q and Qad, the bilinear forms a(·, ·; µ) and aad(·, ·; µ) can
be expressed as follows:

a(w, v; µ) =

Q
∑

q=1

σq(µ)aq(w, v), ∀w, v ∈ H1
ΓD
, ∀µ ∈ D,

aad(p, φ; µ) =

Qad
∑

q=1

σq
ad(µ)aq

ad(p, φ), ∀p, φ ∈ H1
ΓD
, ∀µ ∈ D,

for some suitable σq(µ) : D → R, aq : H1
ΓD

× H1
ΓD

→ R, q = 1, ..., Q, and

for some σq
ad(µ) : D → R, aq

ad : H1
ΓD

× H1
ΓD

→ R, q = 1, ..., Qad. This is
an assumption of affine parameter dependence and is crucial to computational
efficiency because it allows to split the computing procedure. We assume also
affine parameter dependence for the functionals F and F ad.
Coming to the matrix form, we define the matrices AN (µ) = a(ζi, ζj ; µ) and
Aad

N (µ) = aad(ξi, ξj ; µ), 1 ≤ i, j ≤ N , and the vectors FN = F (ζj , u) and
F ad

N = F ad(ξj , wN ), 1 ≤ j ≤ N . It is a simple matter to observe that:

AN (µ) =

Q
∑

q=1

σq(µ)Aq, Aad
N (µ) =

Qad
∑

q=1

σq
ad(µ)Aq

ad, (15)

where Aq
i,j = aq(ζi, ζj), 1 ≤ i, j ≤ N , 1 ≤ q ≤ Q, and Aq

adi,j
= aq

ad(ξ
i, ξj),

1 ≤ i, j ≤ N , 1 ≤ q ≤ Qad. Note that Aq ∈ R
N×N , 1 ≤ q ≤ Q, and Aq

ad,
1 ≤ q ≤ Qad, are independent of the input parameter µ.
We can then reformulate the state equation as: given µ ∈ D, find the unique
solution wN (µ) to

AN (µ)wN (µ) = FN , (16)

and the adjoint equation as: given µ ∈ D and wN (µ), find the unique solution
p

N
(µ) to

Aad
N (µ)p

N
(µ) = F ad

N . (17)

3.1 Computational procedure: off-line/on-line decomposition

Since the matrices Aq and Aq
ad are parameter-independent, they can be computed

only once and for all.
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Indeed, in an off-line stage, we find ζi, ξi, i = 1, ..., N , and form Aq, for 1 ≤
q ≤ Q, Aq

ad, for 1 ≤ q ≤ Qad, and FN , F ad
N . Then in an on-line stage, for any

given new µ, we only need to form AN (µ) from the Aq, Aad
N (µ) from the Aq

ad,
through (15), then solve (16) for wN (µ) and (17) for p

N
(µ) and finally evaluate

J(u,wN ; µ). For an analysis of the computational costs of the two stages, see
[11].
Note that the two processes are completely decoupled. The expensive off-line
computation can be processed at an early stage and needs to be done only once.
The efficient on-line computation can then be used for very fast evaluations of
outputs at different points in the parameter space. The incremental cost to
evaluate the output for any given new µ is very small: first because N is very
small (typically of the order of 10, owing to the good convergence properties
of WN and ZN [11]); and second because (16) and (17) can be inverted very
rapidly.

3.2 Error on control and error on cost functional

When solving a simple equation, for example the state equation, by the reduced
basis approach we look for an approximation wN (µ) (to wh(µ)) in WN . In fact
wN is expressed by a linear combination of FE functions computed on a grid Th.
Thus we should indicate it as wN

h , however the subindex h will be omitted for
simplicity of notation. As a preliminary test we are interested to check that the
control problem solved with the finite element method and the one solved with
the reduced basis method (when the basis functions are calculated on the same
mesh) converge to the same control solution, although they evolve separately.
To this aim, we define

εu =

∫

Ω
(uf

h − uf
N )2dΩ; εJ = |Jf (uN , wN ) − Jf (uh, wh)|,

i.e. the square of the L2-norm of the difference on the control and the error on
the cost functional evaluation, respectively, at convergence of the optimization
process. Here f stands for final and refers to values taken at convergence, while
uf

h and uf
N are given by:

uf
h = uf−1

h −τJ ′(uf−1
h ) = u0−τ

f−1
∑

i=1

J ′(ui
h), uf

N = uf−1
N −τJ ′(uf−1

N ) = u0−τ

f−1
∑

i=1

J ′(ui
N ),

where u0 is the initial control function for both iterative processes.
We note that:

εu =

∫

Ω

(

τ

f−1
∑

i=1

(

J ′(ui
N ) − J ′(ui

h)
))2

dΩ = τ2
f−1
∑

i=1

∫

Ω

(

pi
N − pi

h

)2
dΩ,

since J ′ = p by Riesz theorem: thus εu at convergence depends on the sum, ex-
tended to all previous iterations, of the errors on the adjoint variable, multiplied
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by the relaxation parameter τ > 0. So the larger number of iterations to con-
verge, the larger εu. We want that even in the worst case, where many iterations
are necessary before converging εu, be still small. Further we use an adaptive
procedure for the construction of the basis (see [14]), so that the dimension of
the reduced basis space N is large enough to ensure that the errors εu and εJ
are “small” in any case.

4 Application: control of air pollution

Now we consider a particular case of control problem governed by an advection
diffusion equation: our goal is to regulate the pollutant emission (in large part
Sulfur Dioxide) by industrial plants in order to keep the pollutant level below a
fixed threshold over an observation area, for instance a town. This application
can be regarded as an extension of the one presented in [3] and [12], in which
we account for parametric dependence of our equations. We refer to the do-

−5 −4 −3 −2 −1 0 1 2 3 4 5−4
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−3−3−3−3
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y 
 [K

m
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ΓN

ΓN

ΓD

D

Ω

Q1

Q2

Q3

Figure 1: Reference domain for pollution control problem

main in Fig.1: the scale is urban (the dimension of the domain is in the range
10−50 Km), Q1, Q2, Q3 are the three chimneys emitting pollutant and D is the
observation area. Admitted pollutants concentrations are ruled by normative,
changing from Country to Country. Typically there are two limits: attention

level and alarm level.
Our purpose is to develop a systematical method to control, for example, SO2

emission so that pollution concentration over a certain area D is acceptable (i.e.,
below attention level), taking into account wind and meteorological conditions
in a stationary frame.
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We consider three different atmospherical stability classes [4]: stable atmosphere

- air vertical motions are slowed down so that vertical diffusion is poor; neutral

atmosphere - indifferent equilibrium to air vertical motion so that vertical dif-
fusion is mostly due to mechanical turbulence; unstable atmosphere - pollutant
diffusion is enhanced.
We adopt a 2D transport-diffusion equation to govern pollutant concentration
at effective height (chimney’s geometrical height + smokes raising height) and
we project this concentration down to the ground by analogy with the Gauss
model [4].
For our simulations, we take 110 µg/m3 as target concentration level zd and
H = 100 m as the effective height.

4.1 The mathematical model for the air pollution problem

Pollutant concentration distribution at effective height satisfies the state equa-
tion (1), where ν represents the turbulent diffusivity term, instead of the usual
molecular diffusivity, thus V describes the mean motion of the air, rather than
the wind velocity field [3]. Diffusivity ν depends on problem type, domain geom-
etry and atmospheric conditions. In Fig.2 ν is reported as function of the x
coordinate for each stability class. We assume u =

∑3
i=1 uiχQi

, being χQi
the

characteristic function of the region occupied by the chimney Qi and ui the
rate of pollutant issuing from the i-th source. Then Eq.(3) can be written as:
F (ϕ;u) =

∑3
i=1

∫

Qi
uiϕ dQi. When solving the control problem with the iter-

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Viscosity field for the three different air conditions (|V| = 1)
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Figure 2: Viscosity as function of the x coordinate for the three stability classes.

ative method, at each step we update the control function with the following
increment: δuk =

∑3
i=1 δu

k
i = −τ

∑3
i=1 pχQi

.
In analogy with the Gauss model [4], which is a simple tool to predict con-
centration at a given height of a pollutant emitted by a chimney, we introduce
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a projection term of pollutant concentration at ground: g(x, y) = 2e−
1

2
( H

σz
)2 ,

where σz is a model dispersion coefficient which accounts for meteorological sta-
bility class and soil orography. Values typically considered for urban soil are [3]:

σz = 0.012x(1 + 0.0002x)−
1

2 [m] for stable air; σz = 0.040x(1 + 0.0002x)−
1

2 [m]

for neutral air; σz = 0.220x(1 + 0.0001x)−
1

2 [m] for unstable air.

5 Control input: variable emission rates

We consider a two components control input parameter µu = {u1, u2}. We
fix a total emission value utot = 2700 g/s corresponding to the industrial plant
working at its maximum productivity and write u3 = 2700−u1−u2 and µu ∈ D,
where D = [0, 2700] × [0, 2700] with u1 + u2 ≤ 2700.

5.1 Parametrized state equation

The residuals of equations (1) and (6) are:

R(wh, uh) := Awh − uh, Rad(ph, wh) := A∗ph − L(wh)

where L(wh) := χDg (g wh − zd). To compute the reduced basis approximation
of the state variable (13), we need to find the N unknown components wNj

(µu)
by solving the system:

ah(wN (µu), ζi) = Fh(ζi) i = 1, ..., N, (18)

where

ah(wN (µu), ζi) =
N

∑

j=1

wNj
(µu)

[

∑

K∈Th

∫

K

ν∇ζj ·∇ζi +
∑

K∈Th

∫

K

(V ·∇ζj)ζi− (19)

∑

K∈Th

δK

∫

K

Aζj A
∗ζi

]

and

Fh(ζi) =
∑

K∈Th

∫

K

uh(µu)ζi −
∑

K∈Th

δK

∫

K

uh(µu)A∗ζi. (20)

We define now the following matrices, related to the diffusive, convective and
stabilization terms, respectively:

Ci,j =
∑

K∈Th

∫

K

ν∇ζj · ∇ζi, (21)

Bi,j =
∑

K∈Th

∫

K

(V · ∇ζj)ζi, (22)
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Si,j = −
∑

K∈Th

δK

∫

K

Aζj A
∗ζi. (23)

The matrix AN (15) can thus be written as: AN = C +B + S.
In this particular case, AN is independent of the input parameter µu.
Let us define also the following column vectors depending on µu:

Gi(µu) =
∑

K∈Th

∫

K

uh(µu)ζi, (24)

Hi(µu) = −
∑

K∈Th

δK

∫

K

uh(µu)A∗ζi, (25)

so that FN (µu) = G(µu) +H(µu). The unknown vector wN (µu) is the solution
of the system:

ANwN (µu) = FN (µu). (26)

5.2 Parametrized adjoint equation

The N unknown components pNj
(µu) for the reduced basis approximation of

adjoint variable (14) are the solution of the problem:

aad
h (pN (µu), ξi) = F ad

h (ξi;wN , uh) i = 1, ..., N, (27)

where

aad
h (pN (µu), ξi) =

N
∑

j=1

pNj
(µu)

[

∑

K∈Ti

∫

K

ν∇ξj · ∇ξi+ (28)

∑

K∈Th

∫

K

(

V · ∇ξi

)

ξj −
∑

K∈Th

δK

∫

K

A∗ξj Aξi

]

,

and

F ad
h (ξi;wN (µu), uh) =

∑

K∈Th

∫

K

χDg(gwN (µu) − zd)ξi− (29)

∑

K∈Th

δK

∫

K

L(wN (µu)) Aξi −
∑

K∈Th

δK

∫

K

R(wN (µu), uh) L′(ξi).

We now define Bad, Sad through their components:

Bad
i,j =

∑

K∈Th

∫

K

(

V · ∇ξi

)

ξj = Bj,i, (30)

Sad
i,j = −

∑

K∈Th

δK

∫

K

A∗ξj Aξi = Sj,i, (31)
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where Bj,i, Sj,i are defined by (22), (23). Then matrix Aad
N = C +Bad + Sad.

Let Gad, Had, Iad be the column vectors defined as:

Gad
i =

∑

K∈Th

∫

K

χDgξi, (32)

Had
i = −

∑

K∈Th

δK

∫

K

χDgξiAξi, (33)

Iad
i = −

∑

K∈Th

δK

∫

K

χDg
2ξi (Aξi − uh). (34)

All the matrices C, Bad, Sad and the vectors Gad, Had, Iad are computed off-
line (i.e only once and stored), while for every new µu we assemble on-line the
right-hand-side F ad

N . The unknown vector p
N

(µp) is the solution of the system:

Aad
N pN

(µu) = F ad
N (µu). (35)

5.3 Some results and one example

In Tab.1 we report the number of basis functions (for both state and adjoint
equations), the mean error on cost functional and on control function at conver-
gence (computed on a high number of random inputs) and the computational
saving for neutral and unstable air. The convergence tolerance is tol = 10−7. In
the case of stable air, there is no need of finding an optimal solution, since pol-
lutant concentration is always under attention level. The computational saving
compares the time needed to perform the on-line steps with the one necessary
to complete a finite element simulation using a mesh with about 104 elements.
The number of basis functions and the saving percentages are the same for the
two cases. The orders of magnitude of the errors are nearly the same.
In Tab.2 we report some details regarding only the state equation: the mean
H1-error with respect to the finite element solution (computed on a high num-
ber of random inputs) and the computational saving for the three different air
conditions. The number of basis functions for the reduced basis approximation
of state problem is N = 7 for the three cases. Dealing with a test case we calcu-
lated several errors on control function, on cost functional and its gradient. To
show an example, we start from the upper chimney emitting at 45% of utot and
the central switched off, that is µu = {1215, 0} [g/s], in neutral air. The control
problem solved with the two methods (finite element and reduced basis) leads
for both to the following optimal solution: the upper chimney emission rate is
reduced to 3.49%, central chimney remains switched off and the lower one work
at 55.02% of utot. Fig.3 shows the reduced basis approximations of both initial
and optimal solutions.
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Table 1: Control input: number of basis functions, mean errors on cost functional
and on control function at convergence and time saving for neutral and unstable
air.

Air condition N Mean error on J Mean H1-error on u Saving

neutral 7 1.4E − 11 2.5E − 5 90%
unstable 7 1.9E − 12 6.1E − 6 90%

Table 2: Control input for state equation: mean H1-error and time saving for
the three air conditions.

Air condition mean H1-error Saving

stable 1E − 8 96%
neutral 2.1E − 8 94%
unstable 3.7E − 8 90%

6 Physical input: variable emission rates and wind

direction

This case is more complex: we consider an input made of four components
µp = {u1, u2, Vx, Vy}. Once again u3 = 2700 − u1 − u2 g/s, having imposed
u1 + u2 ≤ utot, and we fix the velocity absolute value |V| = 1. We assume that
the wind velocity direction can vary in the interval [−40o, 90o].
Noting that diffusivity can be written as ν = ν̄ · n(x), where ν̄ is the diffusivity
coefficient (with ν̄ = 1/2 for the case of control input). As physical input
one could also choose the “diffusivity coefficient”. The coefficient ν̄ is an air
stability index: the smaller ν̄, the more stable the air. Since we already consider
three atmospherical stability classes, it is more significant to take wind velocity
direction as physical input.

6.1 Parametrized state equation

The N unknowns wNj
(µp) (13) are the solution of the problem (18), where ah

and Fh respectively defined in (19) and (20).
The matrix AN can be written as follows:

AN (µp) = C + VxBx + VyBy + S(µp), (36)

where C is the matrix (21), S is defined by (23) and Bx and By are given by:

Bxi,j
=

∑

K∈Th

∫

K

(Ux · ∇ζj)ζi, (37)
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Figure 3: Control input: initial reduced basis solution (right) and final reduced
basis solution (left) of state equation. Pollutant concentration is in [µg/m3].

Byi,j
=

∑

K∈Th

∫

K

(Uy · ∇ζj)ζi, (38)

with Ux = (1, 0) and Uy = (0, 1); B = VxBx +VyBy, where B (22) is the matrix
related to the convective term.
The source term FN is given by: FN (µp) = G+H(µp), where G and H are the
vectors defined by (24) and (25).
All the parameter-independent matrices (C, Bx, By) are formed in the off-line
stage, while matrices S, G, H, depending on the parameter in a non-affine way,
must be formed on-line for each new µp. Assembling of AN (µp) and FN (µp) is
carried out in the on-line stage.
The unknown vector wN (µp) is the solution of the system:

AN (µp)wN (µp) = FN (µp). (39)

The difference between (26) and (39) is that in the latter also AN depends
on input parameter µp. To improve efficiency of the assembling procedure we
may apply the decomposition of non-affine terms by the empirical interpolation
method introduced in [1].

6.2 Parameterized adjoint equation

We want to find the weights of the linear combination (14), in order to have the
reduced basis approximation of the adjoint variable, solution of (27). Bilinear
form aad

h and functional F ad
h are the same as in (28) and (29).

Let Aad
N be the matrix: Aad

N (µp) = C + VxB
ad
x + VyB

ad
y + Sad(µp), where C is

defined by (21), Sad is the stabilization matrix (31) (now parameter-dependent).
The elements of matrices Bad

x and Bad
y are given by:

Bad
xi,j

=
∑

K∈Th

∫

K

(

Ux · ∇ξi

)

ξj = Bxj,i
, Bad

yi,j
=

∑

K∈Th

∫

K

(

Uy · ∇ξi

)

ξj = Byj,i
,
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with Ux = (1, 0) and Uy = (0, 1), while Bxj,i
and Byj,i

are (37) and (38). More-

over Bad = VxB
ad
x + VyB

ad
y , where Bad is the matrix related to the convective

term (30).
The source term FN is given by: F ad

N (µp) = Gad +Had(µp) + Iad(µp). In this

case, Had (33) and Iad (34) are parameter-dependent, since they depend on
velocity vector, while Gad (32) is parameter-independent. Also in this case an
efficient computational procedure should be used.
The unknown vector p

N
(µp) is the solution of system:

Aad
N (µp)pN

(µp) = F ad
N (µp). (40)

Even in this case, the difference between (35) and (40) is that in the latter also
Aad

N depends on input parameter µp.

6.3 Some results and one example

The use of the reduced basis method to solve both state and adjoint equations,
at each step of our iterative method to solve control problem, implies several ad-
vantages from a computational point of view. In the case of control and physical
input we have time savings up to 65-70%, which means that in the same time
the finite element method solves just one iteration (state and adjoint equation
using a mesh with about 104 elements), the reduced basis method solves 3 itera-
tions. This is a good result dealing with optimal control problems, which are not
real-time problems, but time savings could be even improved if we can adopt a
stabilization method based on terms which can be built off-line. At present, sta-
bilization is needed also in the reduced basis formulation because without using
it, i.e. using the pure Galerkin method, we would find a “plateau” as N → ∞,
corresponding to the Galerkin residual evaluated for the stabilized “truth” solu-
tions.
In our case, we can fix the velocity field (the desired online value) before apply-
ing optimal control (at first iteration) and so we can build S and Sad offline or
at a step we can call “pre-online” for our optimal control problem. Note that
the basis has been assembled offline by considering different values for velocity
field.
We report in Tab.3 the number of basis functions, the mean error on cost func-

tional and on control function at convergence (computed on a high number of
random inputs) and the computational saving (having fixed the “online” velocity
field at first iteration) for neutral and unstable air, having imposed tol = 10−7.
Once again for stable air there is no need of searching an optimal solution, since
the pollution level in town is always under attention level, whatever u1, u2 and
u3 may be.
To understand the difference in the number of basis functions, we need to com-
pare the weight of the diffusive term and the one of the convective term in AN

(36). As diffusivity increases, diffusive term becomes dominant and so just “few”
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Table 3: Physical input: number of basis functions, mean errors on cost func-
tional and on control function at convergence and time saving for neutral and
unstable air. Without fixing the online velocity field at first iteration the com-
putational saving are ∼ 65 − 70%.

Air condition N Mean error on J Mean H1-error on u Saving

neutral 132 0.9E − 9 2.5E − 7 80%
unstable 81 0.5E − 9 1.1E − 7 80%

Table 4: Physical input for state equation: mean H1-error and time saving for
the three air conditions.

Air condition mean H1-error Saving

stable 1.1E − 6 95%
neutral 3.8E − 7 95%
unstable 5.4E − 5 90 − 95%

basis functions are needed to have a good approximation of the solution depend-
ing on convective velocity. Since for unstable air the diffusivity absolute value is
higher, the convective term is less influent and fewer basis functions are needed.
In Tab.4 we report some details on the state equation: the mean H1-error with
respect to the finite element solution (computed on a high number of random
inputs) and the computational saving for the three different air conditions. The
number of basis functions for the reduced basis approximation of state variable
is N = 81 for unstable air and N = 132 for both neutral and stable air.
To show an example, we choose the following input: u1 = 30% and u2 = 40%,
respectively, of utot and wind direction at 45o with respect to x-axis. Fig.4 shows
the initial reduced basis solution and the reduced basis solution at convergence,
with the upper chimney emitting at 30.02%, the central at 38.81% and the lower
at 7.27%.

7 Geometrical input: parametrized domains

In this section we combine optimal control problems with geometrical sensitivity
analysis. Our aim is twofold: to minimize pollutant concentration and maximize
industrial production.
As an illustrative example we consider the physical domain Ω̂ ⊂ R

2 at Fig.5,
divided in seven subdomains Ω̂r, r = 1, ..., 7. We have chosen the parameters
µg = {C1, C2, C3, C4}, with C1 +C2 = 3 Km and C3 +C4 = 3 Km. The central
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Figure 4: Physical input: initial reduced basis solution (right) and final reduced
basis solution (left) of state equation. Pollutant concentration is in [µg/m3].

chimney position is fixed, while the position C3 of the upper chimney and the
position C2 of the lower chimney can vary.
This kind of parametrized domain would allow, e.g., to answer the question on
where to place a new chimney. The method is based on the affine mapping
procedure from reference subdomains (the ones with C1 = 2 Km, C2 = 1 Km,
C3 = 1 Km e C4 = 2 Km) to the true ones (Ωr → Ω̂r). This methodology can
be extended to non-affine parametric dependence, see [1] and [15].

Figure 5: Scheme for the real computational domain: subdomains and parame-
ters.

7.1 Parametrized state equation

Let R be the number of subdomains in which the real domain is divided:
Ω̂ =

⋃R
r=1 Ω̂

r

. We are interested in writing a partial differential equation de-
pending on the set of geometrical parameters given as input. For this purpose,
we refer the problem to a reference domain by an affine mapping from the “true”
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subdomains Ω̂r into the corresponding Ωr. For any x̂ ∈ Ω̂r, r = 1, . . . , R, its
image x ∈ Ωr is given by:

x = Gr(µ; x̂) = Gr(µ)x̂+ gr, 1 ≤ r ≤ R.

For convenience, we use µ instead of µg. After setting Gr
ji(µ) =

∂xj

∂x̂i
on each

subdomain r from the weak form of the state equation (9), we define the following
bilinear and linear forms in the reference domain Ω:

A(w, v; µ) =
R

∑

r=1

∫

Ωr

∂w

∂xi

(

Gr
ii′(µ)ν̂r

i′j′G
r
jj′(µ)|(Gr(µ))−1|

) ∂v

∂xj
dΩ,

B(w, v; µ) =

R
∑

r=1

∫

Ωr

Vi
∂w

∂xi

(

Gr
ii′(µ)|(Gr(µ))−1|

)

vdΩ,

F(v; µ) =
R

∑

r=1

∫

Ωr

(

û|(Gr(µ))−1|
)

vdΩ,

S(w, v; µ) =
R

∑

r=1

∑

K∈T r
h

δK

∫

K

Vi
∂w

∂xi

(

Gr
ii′(µ)Gr

jj′(µ)|(Gr(µ))−1|
) ∂v

∂xj
Vj dK,

G(v; µ) =
R

∑

r=1

∑

K∈T r
h

δK

∫

K

ûVi
∂v

∂xi

(

Gr
ii′(µ)|(Gr(µ))−1|

)

dK,

for 1 ≤ i, j ≤ 2, r = 1, ..., R and ν̂r
i,j = νδi,j .

The transformation tensors for the bilinear forms are defined as follows:

νr
ij(µ) = Gr

ii′(µ)ν̂r
i′j′G

r
jj′(µ)|(Gr(µ))−1|, 1 ≤ i, j ≤ 2, r = 1, ..., R,

λr
ij(µ) = Gr

ii′(µ)Gr
jj′(µ)|(Gr(µ))−1| =

νr
ij

ν
, 1 ≤ i, j ≤ 2, r = 1, ..., R,

where ν is the constant diffusivity in the reference subdomains. For the linear
forms we define:

χr
i (µ) = Gr

ii′(µ)|(Gr(µ))−1|, 1 ≤ i ≤ 2, r = 1, ..., R. (41)

Furthermore, we may define:

σq(i,j,r)(µ) = νr
ij(µ), Aq(i,j,r)(w, v) =

∫

Ωr

∂w

∂xi

∂v

∂xj
dΩ,

Φs(i,r)(µ) = χr
i (µ), Bs(i,r)(w, v) =

∫

Ωr

Vi
∂w

∂xi
v, dΩ, (42)

Υq(i,j,r)(µ) = λr
ij(µ), Sq(i,j,r)(w, v) =

∑

K∈T r
h

δK

∫

K

Vi
∂w

∂xi

∂v

∂xj
Vj dK, (43)
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Gs(i,r)(v) =
∑

K∈T r
h

δK

∫

K

ûVi
∂v

∂xi
dK,

for 1 ≤ i, j ≤ 2, r = 1, ..., R, with q and s “condensed” indexes for combinations
of i, j, r and i, r. We can now apply the affine decomposition:

A(σ(µ), w, v) =

Qa
∑

q=1

σq(µ)Aq(w, v), B(Φ(µ), w, v) =

Qb
∑

s=1

Φs(µ)Bs(w, v),

S(Υ(µ), wN , v) =

Qa
∑

q=1

Υq(µ)Sq(wN , v), G(Φ(µ), v) =

Qb
∑

s=1

Φs(µ)Gs(v),

where max(Qa) = 2 × 2 ×R and max(Qb) = 2 ×R.
The reduced basis approximation of the stabilized state equation in the reference
domain Ω reads: find wN (µ) ∈WN such that

A(wN , v; µ) + B(wN , v; µ) + S(wN , v; µ) = F(v; µ) + G(v; µ), ∀v ∈WN .

7.2 Parametrized adjoint equation

From the weak formulation of the adjoint problem (10), in the reference domain,
we have:

Bad(p, v; µ) =
R

∑

r=1

∫

Ωr

Vi
∂v

∂xi

(

Gr
ii′(µ)|(Gr(µ))−1|

)

p dΩ,

Fad(v; µ) =
R

∑

r=1

∫

Ωr

(

χDĝ
(

ĝŵ − ẑd

)

|(Gr(µ))−1|
)

v dΩ,

Sad(p, v; µ) =
R

∑

r=1

∑

K∈T r
h

δK

∫

K

Vi
∂p

∂xi

(

Gr
ii′(µ)Gr

jj′(µ)|(Gr(µ))−1|
) ∂v

∂xj
Vj dK,

Gad(v; µ) = −
R

∑

r=1

∑

K∈T r
h

δK

∫

K

χDĝ
(

ĝŵN − ẑd

)(

Vi
∂v

∂xi

)(

Gr
ii′(µ)|(Gr(µ))−1|

)

dK,

Had(v; µ) = −
R

∑

r=1

∑

K∈T r
h

δK

∫

K

χDĝ
2
(

Vi
∂ŵN

∂xi

)(

Gr
ii′(µ)|(Gr(µ))−1|

)

v dK.

We introduce:

Φs(i,r)(µ) = χr
i (µ), B

s(i,r)
ad (p, v) =

∫

Ωr

Vi
∂v

∂xi
p dΩ,

S
q(i,j,r)
ad (pN , v) =

∑

K∈T r
h

δK

∫

K

Vi
∂pN

∂xi

∂v

∂xj
Vj dK, ∀v ∈ ZN ,
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G
s(i,r)
ad (v) = −

∑

K∈T r
h

δK

∫

K

χDĝ
(

ĝŵN − ẑd

)(

Vi
∂v

∂xi

)

dK,

H
s(i,r)
ad (v) = −

∑

K∈T r
h

δK

∫

K

χDĝ
2
(

Vi
∂wN

∂xi

)

v dK,

for 1 ≤ i, j ≤ 2, 1 ≤ r ≤ R, where χr
i (µ) is defined by (41).

By definitions, we have:

Bad(Φ(µ), p, v) =

Qb
∑

s=1

Φs(µ)Bs
ad(p, v), Sad(Υ(µ), p, v) =

Qa
∑

q=1

Υq(µ)Sq
ad(p, v),

Gad(Φ(µ), v) =

Qb
∑

s=1

Φs(µ)Gs
ad(v), Had(Φ(µ), v) =

Qb
∑

s=1

Φs(µ)Hs
ad(v),

where Υq(µ) e Φs(µ) are respectively defined in (43) and (42).
The reduced basis approximation of the stabilized adjoint equation in the refer-
ence domain Ω is: find pN (µ) ∈ ZN such that

A(pN , v) + Bad(pN , v) + Sad(pN , v) = Fad(v) + Gad(v) + Had(v) ∀v ∈ ZN .

At this point we solve a parametrized optimal control problem.

7.3 Geometrical sensitivity analysis results

We fix the chimneys emission rates (u1 = 20% of utot = 2700 g/s, u2 = 5%,
then u3 = 75%) and the wind velocity (V = (2.5, 0)), considering as variable
parameters the geometrical quantities only. With an adaptive procedure [14],
we find 35 basis functions.
We report in Fig.6 the result of the analysis for the parametrized domain illus-
trated in Fig.5. We note that, fixing C3 (i.e. the position of the upper chimney),
pollutant concentration over the city decreases when C2 goes from 0.1 to 1.3
Km, while for 1.3 ≤ C2 ≤ 2.9 there are no important variations. This is due
to the fact that for C2 ≥ 1.3 the city is outside of the lower chimney emission
cone. If we keep constant C2, and therefore the position of the lower chimney,
we note that pollutant concentration over the city increases rapidly till it reaches
its maximum around C3 = 1, then it decreases till C3 = 2.9. A possible expla-
nation of this behavior is that for C3 = 0.1 the city is only partially under the
pollutant wake, for C3 = 1 it is totally inside of it, while when C3 ≥ 1 the city
sets gradually outside of the emission cone.
Summing up the results, moving the lower chimney towards the lower domain
edge, beyond C2 = 1.3, does not imply any advantages, while moving the upper
chimney from C3 = 1 to C3 = 2.9 causes a pollution reduction of around 80%.
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Figure 6: Variations of pollutant concentration (in µg/m3) over the city when
the upper (C3) and lower (C2) chimney positions change.

7.4 Sensitivity analysis applied to control problem

The choice of geometrical inputs allows us to study the state variable sensitivity
to domain variations, to know how the pollutant concentration over the obser-
vation area varies according to the geometrical changes. We want now to exploit
this state variable sensitivity in solving the control problem, in order to maxi-
mize the factory productivity level while keeping the pollution level under the
fixed threshold. With our model we can find the best positions for the upper
and lower chimneys.
To that purpose we modify the iterative method adopted to solve the control
problem. Starting always from an initial value for control variable u0, we solve
both the state and adjoint equations. Once p is known, we check if the stopping
criterium (8) is satisfied. At every iterative step in which the adjoint variable
does not satisfy the stopping criterium, instead of starting directly an iterative
process on control variable u, we try first to fulfill the criterium by simply varying
the positions of upper and lower chimneys. If we cannot satisfy it just by modi-
fying the geometry, then we update control variable value adopting the steepest
descent method (7). In this way we minimize the number of iterations on u and
therefore we maximize the productivity, because chimneys emissions decrease at
every step (since uk+1 = uk − τδuk). Fig.7 illustrates the flow diagram of this
new method for solving the control problem.
Six input parameters are used for this test problem, comprising the emission
rates of the first two chimneys and the geometrical parameters, that is µ =
{u1, u2, C1, C2, C3, C4}, ranging in the set D = [0, 2700] × [0, 2700] × [0.1, 2.9] ×
[0.1, 2.9] × [0.1, 2.9] × [0.1, 2.9].
We notice that for N = 80 of basis functions, the reduced basis solution of the
control problem is a “good” approximation of the finite element solution, i.e.
the mean H1-error for random inputs is about 10−5. To verify that the control
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problem solved with the finite element method and the one solved with the re-
duced basis method converged to the same solution, we compute the two errors
εu and εJ for a certain number of random inputs. Imposing tol = 10−7, we find
that the order of magnitude for εu is 10−5, while for εJ is 10−10.
As an illustrative example, we consider the following initial configuration: up-

w(u)

u

J’J

z d

p

J’ < toltol

J’

J’ < tol

NO

NO

NO

YES

YES

YES

State Equation

Optimal Solution

Adjoint Equation

State Equation

Adjoint Equation

(RB)

(RB)

(RB)

(RB) µVariation of

Test onµ

k+1u      = u   −   J’( w  , u  )k kkτ

Figure 7: Flow diagram of the iterative process to solve control problem com-
bined with sensitivity analysis.

per chimney emitting at 30% of utot = 2700 g/s and central chimney emitting at
40%, in unstable air conditions. For tol = 10−7, the iterative method converges
after four iterations on u to the optimal solution: the upper chimney switched
off, the central one emitting at 18.3% of utot and the lower one at 29.83%, with
C2 = 0.4 Km and C3 = 2.9 Km. The control problem without sensitivity analy-
sis has another solution: u1 = 3.55%, u3 = 28.66% and central chimney switched
off, which means that the productivity is reduced by 15.92% on total utot. In
this case, εJ = 2 · 10−10 and εu = 4.4 · 10−5.

8 Concluding remarks

By adopting the reduced basis method for the solution of both state and adjoint
equations at every steps of the iterative method used to solve the optimal control
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Figure 8: Geometrical Input: initial reduced basis solution (right) and final
reduced basis solution (left) of state equation. Pollutant concentration is in
[µg/m3].

problem may yield significant advantages from a computational point of view.
The reduced basis method shows great versatility. In fact we analyzed different
input parameter classes: control input - in our application this kind of input is
related to the productivity level of the industrial plant, and so to regulations
and economical and commercial factors; physical input - this kind of input allows
us to take into account meteorologic conditions and characteristics of the area
where the factory and the city lie; geometrical input - in order to consider the
position of the city with respect to the industrial chimneys.
With all these different parametrizations we are able to solve the control prob-
lem from a global and decisional point of view, considering, at the same time,
several aspects of the same problem.
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