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Abstract

In this work we derive a mathematical model that describes the working
of a glow-plug of the type used in Diesel engines to preheat the air-diesel
fuel mixture. The proposed model consists of a time dependent one dimen-
sional partial differential equation which incorporates the electro-thermal
interaction between the electric current flowing in the plug and the tem-
perature. It has been obtained by integrating the heat equation on each
section of the plug, assuming axial symmetry and using thermal equilibrium
relation in the radial direction. The problem is highly non-linear because of
the radiation boundary conditions and the dependence on temperature of
several parameters. In particular, heat is generated by an electric resistance
whose characteristic strongly depends on temperature. We have adopted a
quasi-Newton treatment of the non-linear term and a mixed finite element
formulation for the linearized problem. Time advancing has been carried
out using a semi-implicit Euler scheme. Several numerical simulations have
been carried in order to assess the validity of the model, whose predictions
have been compared with available experimental data.
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1 Introduction

A glow-plug is a device that heats up the air-fuel mixture in a Diesel engine com-
bustion chamber with a twofold objective. The first is to facilitate the start up
even at low external temperatures. The second is to reduce pollution emissions
by favoring combustion.

A typical glow-plug geometry is shown in Fig. 1. It consists of an external
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Figure 1: Geometry of a glow-plug (not in scale)

cover, typically made of steel, which contains an insulating material, normally
MgO compacted powder. Immersed in the powder we have the resistive element,
typically made by two electric resistances connected in series and denoted as the
heating and the controlling (or limiting) resistance, respectively. They are in-
dicated by Rj and R; in Fig. 1 and are usually made of a thin coiled filament
of electrical conducting material. At start-up, an electric voltage is supplied at
one end of the controlling resistance, which is connected to a metallic stand (not
shown in the figure), so that an electric current starts flowing through the coil
which is soldered at the other end to the tip of the glow-plug (which acts as
electrical ground). The resistances are chosen so that at ambient temperature
Ry, > R;. Thus, most of the heat is generated by Joule effect in the heating re-
sistance, producing a fast temperature rise at the tip of the glow-plug. However,
the material in the controlling element is chosen so that R; is strongly depen-
dent on the temperature and, in particular, satisfies % > (. Therefore, as the
temperature in the rear of the glow-plug rises because of thermal conduction,
the controlling resistance increases, eventually equaling (if not overtaking) Rj,.
This results in a more evenly distributed heat generation at steady-state, with
a temperature profile more homogeneous along the glow-plug. This situation is
appropriate after start up, when the plug operates as preheating element for the
air-diesel fuel mixture to reduce pollution emissions. Clearly, heat is dissipated
mainly via radiation at the cover surface.

The objective of this work was to derive a simplified, yet effective, one dimen-
sional model for the glow plug, by exploiting its (almost) axisymmetric geometry
(the spiralling form of the electric resistance deviates the domain from a perfect



axial symmetry). The motivation was to have a computationally efficient tool
able to aid the design of novel glow-plug models. This goal was rather chal-
lenging because of the presence of non-linear terms and the need to accurately
capture the transient. Furthermore, we had to account for the variation of tem-
perature in the radial direction r even if no differential equation along r was to
be solved.

Some experimental research has been carried out in the recent past to in-
vestigate the effectiveness of glow plug heating in ethanol based engines [4, 9],
or the use of glow-plugs for new concept natural gas engines [8]. However, the
numerical modelling and simulation of the heating process in a glow plug is a
rather novel application and, to our knowledge, this is the first attempt to this
direction.

Our starting point was the system of equations governing the temperature
T and the electric potential V. To describe them we first denote by Qo C R3,
Q¢ C R? and Qg C R3 the parts of the computational domain © occupied by the
MgO compacted powder, the covering steel and the heating resistive element (in
the form of a coil), respectively. We have assumed that the coil diameter is small
compared with the glow-plug diameter, so that {2g is in fact a one-dimensional
curve immersed into 2o, as shown in Figure 1. We then have

Ca—T —div(kVT) =¢q(V) in Q,
—_— _1_ — 1
5P ) =0 in Qg,

where t indicates the time and [ the arc length coordinate along the coil, C is
the thermal capacity, x the thermal conductivity, p the electric resistivity of the
coil, and ¢ = ¢(V) the power density generated via the Joule effect. The first
equation in (1) is the classical heat equation with source term while the second
equation enforces the conservation of the electric current inside the conducting
coil. Some assumptions have been made, notably:

e all the magnetic phenomena are neglected;

e the coil is assumed to obey Ohm’s law and have a negligible inductance,
so to neglect the transient term in the second equation.

e the MgO compacted powder is a perfect insulator. Consequently, the steel
covering is insulated from the coil.

The quantities C and & differ in each medium and, in general, depend on tem-
perature. Eqns. (1) are supplemented by appropriate boundary and initial
conditions which will be detailed in the sequel of the work. We note that be-
cause of the assumptions on {2g, ¢(V) is not an ordinary function and the first
equation in (1) has to be interpreted in a distributional sense.

A difficulty of the problem lays in the non linear behavior of the coefficients
and of the boundary conditions for the thermal problem, which are dominated
by the radiation effect. It is not the aim of the present work to analyze in



depth the mathematical properties of the proposed reduced one dimensional
model, this aspect is left to a forthcoming article. Instead, we will describe
in detail the steps taken in its derivation and numerical discretisation, as well
as the validation of the numerical results against available experimental data.
To complete the bibliographical references we mention two recent works on the
analysis and numerical simulation of non-linear heat radiation problems, even if
set for different applications that the one to hand, namely [6] and [3].

The paper is organized as follows. By the aid of some reasonable hypothesis
we have been able to formulate an a-priori radial profile of the temperature,
as described in Sect 2. This information is necessary for the derivation of the
one-dimensional model carried out in Sect. 3. The specification of the the
source term ¢ requires to account for typical coil geometries, this is detailed
in Sect. 4. The resulting one dimensional model is governed by a strongly
non-linear differential equation. We propose in Sect. 5 a fixed-point scheme of
quasi-Newton type for its solution. Mixed finite elements have interesting local
conservation properties which are deemed important in this context. This is
why they have been selected for the discretisation of the linear kernel, as shown
in Sect. 6. Finally, in Sect. 7 we have assessed our numerical procedure both
on simple test cases and by comparisons with some experimental data kindly
provided by Federal Mogul Ignition S.r.l.

2 The radial temperature profile

We want to derive a one-dimensional model where the plug temperature 7' is
a function only of the time and of the axial coordinate x. Since we expect a
relevant radial variation of the temperature, we have to assume a reasonable
a-priori profile for T. To that aim, we will make the following assumptions:

1. the temperature in each cross-section (i.e. at constant z) depends only
on the radial coordinate r and satisfies at any time the thermal equilib-
rium condition in the radial direction. In other words, we neglect thermal
inertial effects along the radial direction;

2. the coil may be approximated on each cross-section by a circular linear
heat source of radius Rg, coinciding with the average radius of the coil in
that section;

3. the thermal conductivities are piecewise constant w.r.t. the radial coordi-
nate, i.e. the characteristics of the materials constituting each sub-domain
are homogeneous on each section.

In Fig. 2 we sketch the geometry of a generic cross-section, which is characterized
by three geometrical parameters: the average radius of the coil Rg; the radius
R of the internal surface of the steel covering and the external radius Rg, re-
spectively. Of course, these parameters may still depend on the axial coordinate
z. On each cross-section



Figure 2: Geometry of the cross-section of the glow plug

w(z) ={(r,0) : 0 <r < Rg(z),0 <6 < 2r}

we can identify the following subsets, see Fig. 2,

wg(z) = {(r,0):0<r < Rg(z),0 <6< 2n},
wa(z) = {(r,0):Rs(z) <r < Rg(r),0 <0< 2n},
wr(z) = {(r0): Rg(z) <r < Rg(z),0 <6< 2r}.

The hypothesis of thermal equilibrium in the radial direction implies that for
any fixed z € (0, L) the temperature T satisfies the steady-state equation

o (21) <o .

{ ko inwgUwg,
K =

in each subset of w, where

KGg 1nwg,

with ko and k¢ indicating the values of the thermal conductivities in the MgO

compacted powder and in the steel, respectively. Please note that they may be

functions of the temperature. The heat § = §(V') generated by the coil will be

implicitly accounted for in the interface conditions between wg and wg.
Furthermore, we need to consider the radiation condition

on the exterior boundary of wg, where T, is the ambient temperature, here as-
sumed constant. This boundary term implies that the dominant heat transfer



mechanism on the external surface of the glow plug is due to radiation, a rea-
sonable hypothesis due to the temperatures we are going to consider. However,
it is rather simple to add other contributions, for instance linked to convective
heat transfer.

By o we have indicated the Stefan constant and e is the emissivity of steel,
under the hypothesis that it behaves like a gray body radiating to infinity (no
geometrical factors are taken into account).

To get a manageable problem we use an argument akin to that used in a
domain decomposition context [7].

More precisely, to the equations

1o oT
HOTBT rar

1o oT
& T Or rar

with boundary conditions

orT

0, 0<r<Rg,

0, Rg<r<Rg,

=0, —KG . =eo(Ty —T,) (4)

0+
we add the following interface conditions,
T|R5:T|RJC§:TG’ T|R§:T|R‘S":T5

oT (5)

e —K;G—
- or
RG’

R
Here T's, Tg and Tg indicate the temperatures at 7 = Rg, r = Rg and r = Rp,
respectively, while T'| g+ = lim,_, g+ T'(7).

The first boundary condition is derived by symmetry considerations. Notice
that at r = Rg we expect a finite jump of the heat flux due to the heat power
generated by the coil. The value of this jump cannot be imposed at this stage,
since part of the heat generated by the coil is transferred along the z direction,
and the precise amount cannot be computed until an equation for the heat
transport in the z direction has been derived. Nevertheless, we will now show
how, by using the previous relations, the temperature profile in each cross-section
can be written as a function of a single parameter, which we have here taken
to be the external temperature Tr. The latter will then be the main dependent
variable of our one dimensional problem.

The general solution of each equation of system (3) is in the form T'(r) =
a+blogr, and the constants a,b may be determined thanks to the interface and
boundary conditions. In particular, by imposing the continuity conditions at the
interfaces r = Rg, 7 = Rg and r = Rg one obtains that Tz may expressed as
the following convex average of Ts and Tg,

KO TS + K%l TE

R
log R—g 1 Re
TG = KO kG - (6)
R R
log R—g log %
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The radiation condition enables us to express T as a function of only Tg.
Indeed,

oT T — T
—kg=—| =eo(Tp -T2 :—H—GE*RGzea(Té—Té).
or R Rg log ﬁ
Thus, we have
R R
T =T + 2L log “E(Th — T). (7)
e Rg

Finally, the combination of (6) and (7) yields

logg—g N logg—‘;

Ts =T +ecRg (
a7e KO

) (). ®

which provides us with the temperature of the coil Ts as a function of T%.

The temperature profile in the region 0 < r < Rg turns out to be constant
and equal to Ts, due to the first relation in (4) and the continuity of heat flux
at r = Rg.

Thus, the complete temperature profile is given on each section w(z) by

rTSa OST<R57

T

Ts + (T —T)logRS Rs<r<R
T(T)Z{ S G S log%f’ S > G (9)

log
T + (Ts — Toe) —4%, Ra << Rg,
{ logE

with T and Ts given by (7) and (8), respectively.

1200

1150

1100

1050

1000

950

900

0 0‘.5 1‘ 1‘.5 é 2‘.5 (‘3 3.‘5 4‘1 45 5
Figure 3: Temperature profile w.r.t. radial coordinate in a generic cross-section

Figure 3 shows the temperature profile corresponding to the following (re-
alistic) values Ty = 900°C, T, = 20°C, e = 0.75, ko = 1 W/(mK), kg = 10



W/(mK), Rs = 2mm, Rg = 4 mm, Rg = 5 mm, and 0 = 5.67-10"8 W/(m2K*).
Notice that the temperature at the coil is about Ts = 1187°C, and that the
largest temperature drop is located across the MgO compacted powder, as ex-
pected. We may also note the discontinuities in the derivatives, due to the
change of material conductivity at 7 = Rg and to the coil heat flux at r = Rg.

3 An equation for the axial temperature profile

We are now in the position to derive an equation for the axial distribution of the
temperature with T as our main variable. Again, we will assume that z € [0, L],
L being the length of the glow plug, with £ = 0 corresponding to the tip of the
plug. In fact, the point = 0 corresponds to the soldering between the coil and
the cover (see Figure 4).

\

Figure 4: The coordinate system chosen for the derivation of the one dimensional
model

Let us recall that the divergence operator in cylindrical coordinates for an
axisymmetric quantity 7" is given by

10 oT o ( or
iv(kVT) = —— (re 22 ) + L (k25 1
div(kVT) % (Tii) 87’) + g (Fa&v) ) (10)

and integrate the first differential equation in (1) on the generic cross-section
w(z) with z € (0,L). To account for the different material characteristics we
split the integration with respect to the radial coordinate r in the two intervals
[0, Rg] and [Rg, Ri]. By exploiting the hypothesis of axial symmetry and (for
the sake of conciseness) by dividing both members by 27, we obtain

b Rg(x) Rp(x)
— Co/ Trdr—i—C’G/ Trdr
ot 0 Ra(z)

Ra(z) g oT p Rp(z) g oT p
L) [ ()

0 or

Co, Cg being the (constant) values of the thermal capacities in the MgO powder
and in the steel, respectively, while () is the heat power per unit length generated
by the coil (divided by 27), which we will model in Section 4. We have indicated
explicitly the possible dependence of the geometry with z.



We now exploit the boundary and interface conditions (4) and (5) to write

9 Rg(z) Rg(z)
— Co/ Trdr—l—Cg/ Trdr
ot 0 R(a)

Ra(z) g oT p Rp(z) g oT p
[ ) [ )
+ Rpeo(Tg —TH=Q. (11)

To handle the problem in a more convenient way, we introduce the quantities
A A
T and T, defined as

A Rg A Rg
To = Trdr, Tq= Trdr. (12)
0 Rg

A direct computation using (9) yields

To(;Te) = Bo()Te + a(z)yo(z; Te)Th — a(z)yo (z; Te)T?,

A
Tq(z;Te) = Ba(x)Te + a(z)ye(z; Te) Ty — a(x)ye(z; Tr) Ty
where the coefficients «, 80, Bg, Yo and 7g are defined by

a(z) = Rg(z)eo, Bo(z) = %RG(w)Q, Be(z) = %(RE(QU)2 — Rg(2)?),

Hg(TE)

(13)

1
Yo(#;Tg) = 2 (Th) [RG(iU)QlOg

Rg(x)

Ra(@) | 2n0(Ts)
1

(
Y6 (7 T) = 266(Tk) [%(RE(‘U)Q ~ Rg(2)’) — Ra()* log gigg] '

(Re(z)” - Rs<x)2)] ,

(14)

In the previous relations with the notation (x; Tr) we wanted to put into evidence

the parametric dependence on z, through the (known) geometrical dimensions

Rs, Rg and Rp (we have assumed that the thermal properties of the MgO

powder and the steel cover are constant w.r.t z). Clearly, being Tx itself a
function of z and t we will have in general

of of of

%(x;TE(%t)) = oz TE(ﬂT?;TE(J?,t)) + R

(@ T (2, 1) 5.2 (@)

where %‘TE = 0 whenever R, Rg and Rg are constant. This notation will be
useful since in the following derivation we want to discern the terms linked to
the geometry.

Since Vz € [0, L] it holds that ® > Rg > Rg > Rg > 0, being Phi the max-
imum plug radius, and moreover K¢ > 0, we may state the following properties

lim a= lim fBy= lim fBg= lim ,yo= lim =0
Rp—0t+ Rp—0t+ Rp—0+ Rp—0+ Rp—0+

. . . R?

lim a= Rgeo, lim By =0, lim fBg=—£,
Rg—0+ Rg—0+ Rg—0+ 2

R2

lim v =0, lim yg=-—Z.

Rg—0+ Rg—0+ 4o

9



Furthermore, we may reasonably assume that Rg, Rg and Rg are (at least)
CY functions of z and that kg and kg are bounded C*® functions of T. Con-
sequently, Té and Té depend continuously on geometry variations and are C*
bounded functions with respect to Tg.

Let us note that Tg and Té are linked to the mean temperatures To and
T in ws U wg and wg, respectively, by the relation

o R2 o o R2 R2
To=-tTo, Tg=—L5—5Tq,

yet it is more convenient for the derivation of our model to use the former
variables.

We recall the following relation, valid for any sufficiently smooth functions
T =T(r,z) and k = k(z),

/R R((;c)a%[ () 9 v, w)]] dr — di [ﬁ(x)% /R R(()) v T(r, z) dr]

k(z) - aTr k(x ar
D i) T (R, 2) 2 B ) L (o), )
1d .
+5d—[ @) (T(Ra(a), DB o) - T(Rale), ) ()| (15)
where R = 4% and R? = % =2Ry; dR . We exploit this relation in (11) and recall
the deﬁnltlons in (12) to derive the followmg differential equation
2O( Tg)— a[K( s Tp)]+oTh — Go( -T)—EG( ;Tp) = Q+aT, , (16)
{“)t o ) 8.’17 T 1LE alp 0\Z;LE a.’L‘lx’E_ al,,

where the dependence on the time variable is understood and the parametric
dependence on z is only due to geometry deviations from a circular cylinder.
We have introduced the quantities

A A
C(z;Te) = CoTo(z;Tp) + CaTg(x; Tr), (17)
and a 4
oT oT
K(z;Tr) = f‘éo(TE)a—;(w;TE) + f‘&G(TE)a—f(w;TE)a (18)
which represent the stored heat and heat flux per unit length, respectively, while
R% 0T, R% 0T
Golw;Tr) = (k0 (@) — R (#)) 2 (2) 5 (3 T) — () L(2)ZE  (19)

and

R? R?
Gi(z;Tp) = —(rko(z) — /‘ﬂG(ﬂ?))TG(ﬂ?)TG(w;TE) - HG(CU)TE(HI)TE(QI;TE)- (20)

In the case of a cylindrical glow plug (16) simplifies into

2K(m;TE) +oTp =Q +aT?, (21)

0

ot

10



for z € (0,L) and ¢ > 0.
In the following we will indicate the additional terms in (16) by f,, i.e.

Jg = Go+ %Gl-

We point out that the expression for K contains first derivatives of Tz., thus
(16) and (21) are in fact second-order differential equations w.r.t z. Note also
that the term Gy acts like a 'transport operator’ whose advection field is linked
to geometry variations. Indeed, it vanishes for cylindrical geometries.

We need to complement the differential equation with proper boundary con-
ditions. Typically, the temperature at x = L may be taken constant, since the
heat transfer towards the engine head, kept at constant temperature, is very
high. At the tip £ = 0 the heat is transferred by radiation through the tip head.
Here we make the simplifying assumption of considering the head at a constant
temperature, equal to Tg at x = 0. If we indicate with S; the measure of the
tip radiating surface, by e its emissivity, and by 77, the temperature imposed at
the stub, we have

Tg(L,t) = Tr(t), and Sie(T(0,t) —TH) = K(0,Tg). (22)

4 Determination of the power generated via joule ef-
fect

We need now to make precise the expression for @ in equation (11). Formally
we have that @) = fORG gr dr, where ¢ is the source term in the first equation
of system (1) and has the dimension of power per unit volume (W/m?). Con-
sequently, @) has the dimension W/m, i.e. of power per unit length. Yet, since
the coil has been modeled as a one dimensional manifold, the integral is only
formal and @ will be computed here by writing explicitly the equation of ther-
mal balance. In doing that, we will assume that the electric potential V in the
second equation of system (1) depends only on z. We will also assume that the
coil may be parametrized with respect to z, that is it does not fold over itself.
We will indicate with [ = I(z) the arc length coordinate, while S = S(z) is the
measure of the coil section and I = I(¢) the total current flowing along the coil
at a given time. The latter does not depend on z since we are neglecting the
displacement current and we consider the coil as immersed in a perfectly insu-
lating medium. By Joule’s law the heat generated in a portion of coil of length
Al is given by gI 2Al. Let then apply the following argument. If we integrate

the source term g in the (small) interval V, centered in z* € (0, L) and of length
Aw,withx*—%ZOandm*—}—%gL,

A A
V:{(.’L‘,T,H),.’E*—TmS.’L‘S:E*—FT:E,OS’I‘SRE(.’B),OS9<27T},

11



and apply the mean value theorem neglecting high order terms with respect to
Az, we obtain that

/quv = g((z)) A2 = g((”;)) P Aw = Ry (a2,

ISH
8

p(z)

where Ra; = m Al is the total resistance of the coil. Now, by definition
x

Q(z*) = limaz—0 ﬁ fv qdV , therefore, dropping the affix *, we finally obtain

that

o) - @) )

2wS(z) dx
Here, dl/dx is the coil length per unit axial length whose derivation for the
most common coil geometries will be illustrated in the Appendix. Since I is not
directly available, we need to express it as a function of the total drop of the
electric potential across the glow-plug and the electric properties of the coil. By
applying Ohm’s law on the same volume as above, again neglecting high order
terms in Az, we have

I?, z¢€(0,L).

Az Az Az p(z*) di
Vier+ —)=V(@&*——)+IRpn=V(z* ——)+1

which yields, after dividing by Az and letting Az — 0, to

v (z) p(z) dl
w1 s@) a®

By integrating the above relation along the whole length of the glow-plug we
obtain

y=1 = — =T
V(L) / ded:v Re,

where R¢ = OL g (;ll dz is the total resistance of the coil. Finally,

AVN? p(z) d

Q)= (%) s 1@ (23
The voltage drop AV = V(L) — V(0) is usually given as the electric potential
applied to the glow plug electrodes, and is in general a function of time. We recall
that the dependence of p with z is related to the different electrical characteristics
of the elements that make up the coil and on the fact that the resistivity depends
on the temperature. This implies that the law governing the heat generation by
the coil is strongly coupled with the equation for heat transfer (16). Indeed
the correct behavior of a glow-plug is driven mainly by the different functional
dependence of p with respect to the temperature in the different parts.

12



5 Approximation of the axial equation

To make equation (16) amenable to numerical solution we need first to design
a procedure to solve the non-linear problem by a succession of linear problems.
With this aim, we first perform a time discretisation by an implicit Euler scheme
and then we devise a fixed point iteration for the resulting non-linear problem.

5.1 The semi-discrete axial equation

Let us introduce a uniform time partition, ¢, = kAt,k =0,1,--- ,n, where At
is the time step and t, = t., being 0 < ¢t < t. the time interval of interest. A
semi-implicit Euler time advancing scheme applied to (16) and (22) reads

Given T](EO) = Tg(0), for any k = 0,1,--- ,n — 1, seek Tgcﬂ) ~ Tp(tks1) :
[0, L] — R, such that

iC(;v;Tj(EkJrl)) — diK(x;Tj(EkH)) + a(Ték+1))4

T 1) + (ate (24)
= EC(ZE, Té )) + (Q(.’L', TE) + oﬂ";l + fg)(k) (.’L‘; TE) :

with A
K(0;75) = Sy e0((Tp)®" —T4) at z=0 -
25
Tgc+l) = TL(tk:—l—l) at ¢ = L.

Notice that () and f, are treated explicitly to ease the complexity of the
non-linear problem. Indeed, the non-linear dependence of () on the temperature
Tg would be difficult to treat in an implicit fashion. On the other hand, the f,
term is usually of smaller importance with respect to the other terms (at least
for the usual glow-plug geometries), thus its explicit treatment is not critical
for the stability of the scheme. This is particularly true for the simulation of
the transient, where the computation would require very small At anyway. As
before we have indicated the dependence of the various terms on 7z and (thanks
to the variable coefficients) on z.

We will treat all the implicit terms in a self-consistent fashion through fixed-
point iterations.

5.2 Linearisation of the semi-discrete equation

The semi-discrete equation (24) can be cast in the general setting of a second

order conservation law for the unknown u := T}(EkH), as follows:

_%K(w;U) +s(z;u) = f(z), =z€(0,L), (26)
with

K(0;u) — Sioeu = SioeT at =0
(27)

u(L) = Tr(tk+1) at z = L.

13



Here,

s(zyu) = éC(x;u) + a(z)ut, (28)
7(@) = 30w TE @) + Q@ T @) + a@)T + y (5T (@) (29)

Notice that Tgc) is here a known quantity. From (18) that we may write

K () = hy(as) + hafar ) o (30)
where
—A A
M) = rolw) 52 (e u) + ral) g & ), (31)
_A A
h2(zu) = (no(u)ag—uo(x;u)+nG(u)Bg—UG(z;u)). (32)

We remind that the expressions for T and T are found in (13).

We shall solve (26) in an iterative fashion. Let us introduce the iteration
index j. Starting from a given wug, we want to build a sequence of approximations
uj, 7 = 0,1,... with the property that u = lim u;. At each step of the iterative

j—oo
algorithm we compute u;41 by solving a linear system obtained from (26) by

approximating the terms h and s using a first-order Taylor expansion around
uj. The same technique is adopted to linearise the radiation boundary term.

If we computed the exact Jacobian at each iteration j, we would obtain
the well known Newton method. Its computational complexity led us to select
instead a quasi-Newton technique where the Jacobian is approximated by dis-
carding a few terms following some stability considerations. This method has
also the advantage that the existence and uniqueness of the intermediate solu-
tions is assured by classical results. Clearly we will ensure that, provided that
convergence occurs, the limiting solution still coincides with u, i.e., we do not
lose consistency.

Let us use the following notation w; = %1, Uj = ujy1 — u; and h(uj, w;) =
h1(uj) + ho(uj)w;, where, for the sake of simplicity, we have dropped the depen-
dence on z (which is however understood). A Newton iteration applied to (26)
would read:

given ug, for j > 0, compute u; 1 = u; + U; where U; satisfies

d d d
~ 4z |Pwhlug,w) = Uj | = = [Duh(uj, w)Uj] + Dus(uj)Uj = —F (uj, wj).
(33)
Here, D, is the Fréchet derivatives with respect to y, while
d
F(u,w) = —— h(u,w) + s(u) — f(u) (34)
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is the residual, which should be driven to zero by the procedure. Clearly, (33)
is supplemented by the boundary terms, whose discussion is postponed. Let us
first note that (33) is a linear transport-diffusion-reaction problem. In order to
simplify calculations we take the following steps

1. We discard the “transport term” - [D,h(u;, w;)U;] to avoid the need of
using stabilized finite elements to solve (33).

2. We neglect all contributions to Dy,h(uj,w;) and Dys(u;) that would pos-
sibly make these operator indefinite. More precisely, we will ensure that
the operator in the left-hand side of (33) is positive definite.

Let us analyze point 2. in more detail. From (32) we have

—A —A
. 0Ty T
Dy,h = hy = ko U + kg ou
while (13) gives

—A
oT 0
—Buo = fo +4ayoud + a—(;luo (ut — T,

—A
or 13}
S = fa +4aneu’ +a T (u' — 1), (35)

Since we are using absolute temperatures, any physical solution of our problem
Tgﬁ_l) > 0, for all k. Thus, the only terms whose sign is not
a-priori non-negative are the ones involving 6(;’—5 and 337—5, which are therefore
discarded. The analogous terms are discarded in

—A —A
1 T 5 (x; oT
Dus = 3;(Co7UEY 1 0% @) a0
U

would satisfy u =

:Kt ou

thus guaranteeing the positiveness of the operators.
In conclusion, the j-th iterate of the proposed quasi-Newton method is

-2 (6@ £0) + 500 = 5o, G7)

Ki(@) = ro(ul@)) [fo(@) +4alz) yo(z;u(@)) u(x)]
+ ralu(@)) [Bale) +alz) vo(ziu(@) v ()]
Si(z) = 4a(z) u?’(m) + i—(z [,30(:1:) + 4 a(z) yo(z;u(zx)) u® (w)]

v 92 [f0(0) + tae) a(ara(e) ()]

@) = 5 (M) - st + i) (39

For the sake of completeness, the dependence on z has been made here explicit

(we recall that u; and w; = % are known functions of z).
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5.3 Boundary terms

Finally, we need to discuss the implementation of the boundary conditions. First,
we assume that ug has been chosen so that it satisfies the Dirichlet boundary
condition. Then the boundary condition for U; at = L becomes the homo-
geneous condition U;(L) = 0, for all j > 0. As for the radiation condition at
z = 0, starting from the expression found in (27) and linearising around the
state v = u;, by making the same assumptions stated above, we have

d

A

U; — 4S;e au:;?Uj =— [h,(x,uj, %uj) — Stea(u?- — T;l)] at z=0. (39)

That is, condition (27) has been approximated by a linear Robin boundary
condition.
5.4 The quasi-Newton iteration

The problem to solve at every quasi-Newton iteration for the computation of
the temperature profile at ¢t = tx41 is then

d d
—%[K](w) %U] +8j(.’13)U=fj(.’13) z € (0,L),
dUu d
Kj(x)% — 4Sie oui(z)3U = —h(z,u;, Eu]) + Sie au? ~ T} atz=0,
U=0 at x =L,

(40)
which is a standard elliptic problem with mixed boundary conditions whose
analysis is standard, see for instance [7].

In the following we drop, for the sake of simplicity, the iteration index j for
Uj. The iterative procedure to compute T at time ¢ = #5411 thus reads:

Choose a suitable ug that satisfies the Dirichlet boundary condition uy(L) =
Tr(L,tx11), and a tolerance 7 > 0,

1. for j=0,...

2. solve (40)

3. set ujp1 =u; +U

4. If ||U|| < 7 set Tgcﬂ) = u;41, and exit.
Here ||U|| indicates a suitable norm, typically the H1 norm. If the iteration
converges it converges to the solution of the non-linear problem.
6 A finite element scheme for the linearized problem

We address in the following the variational formulation of problem (40) and its
associated finite element discretisation. For ease of notation, we drop henceforth
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the suffix j and the dependence on z of the coefficients as well as of the right-
hand side will be understood.
We have to solve the following boundary-value problem for the unknown u,

d du

_ 2 2= — L
dx()de)+Su F, ze€(0,L),

ICd—u—au:—b, z=0, (41)
dx

u =0, z=1L,

where
a = 4Steou§~‘$:0 and

b = [h(w,u]-, %u]) - Stea(u§ - T,f)] o

A standard finite element discretisation of (41) would provide a direct ap-
proximation u, € C°(0, L) of the primal variable v on a given partition 7 of
the computational domain 2. As a consequence, the approximate heat flux
q, = —K ddizh is a post-processed quantity, and its accuracy would not be optimal
because of the numerical differentiation process. Moreover, g, turns out to be in
general a discontinuous function, because of the jumps of ddiwh across elements.
Furthermore the discrete problem would not satisfy the conservation property
at elemental level, but only globally.

Because of the nature of this problem, we are instead looking for a finite
element formulation which is at the same time computationally efficient and
allows to enforce energy conservation at local level.

To that goal, a mixed formulation of problem (41) is preferable, since here

it is easier to ensure local energy conservation [2] as the heat flux
du

_K==
dz

is an additional unknown of the problem, which is reformulated (41) as the
following system of first-order equations in conservation form,

q= (42)

(1 du

il - L
dq .
< %"FS’U,:]:, an, (43)
qg+au=>, z=0,
u=0, z=1L.

\

Problem (43) is the so-called mized strong formulation of the boundary value
problem (41)[2], due to the simultaneous presence of the primal unknown u (the
temperature) and of the associated dual unknown ¢ (the heat flux). In contrast
to this definition, (41) is called primal formulation.
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6.1 The dual-mixed variational formulation

The weak (or variational) formulation of (43) is obtained by standard means [2],
and reads as follows:

Find ¢ € Q and u € V such that

L L
/ %QT dz —/ u;i—T dz + 7(0)q(0) = 7(0)b , VT €Q,
0

0 i a a
L dq L L
—/ v—dx—/ Suvdavz—/ Fudz, YveV.
0o dz 0 0

where Q and V are the appropriate functional spaces for the problem to hand,
namely the Hilbert spaces

(44)

V=L*Q), and Q=H'(Q) = {f € L*(Q)|df/dz € L*(Q)} .

Here L?(f2) denotes the space of square integrable functions over Q and df /dz
has to be taken in a distributional sense [7].

It can be verified by standard arguments [7] that (44) admits a unique solu-
tion (u,q) € (V x Q) and that, under appropriate regularity assumptions, this
pair is also the solution of (41) and ¢ = —K du/dz. System (44) is more usu-
ally called dual-mized (DM) weak formulation of problem (41), since the two
equations in (44) are the Euler-Lagrange equations emanating from the dual
problem. If we define the complementary energy

B (r,v) = /OL%# - (Z—;Jr % —F)vdaz+ 27(0) (@ —b), (45)

we have that

E*(q,u) = inf sup E*(1,v).
TEQ yeV

6.2 Finite element approximation of the DM formulation

Let us introduce a nonuniform partition 7; of the computational domain Q =
(0, L) into intervals (elements) K; = (x;, €;+1), with ¢ = 1,..., Np, such that
1 =0< 1z < ... <zn, <2zn,41 = L. We also define 2t = (z; + zi41)/2,
i = 1,..., Ny, and denote by h; the width of K;. Finally, h = maxi<;<n, hi.
Given an integer k£ > 0 and an interval K, we denote by P;(K) the space of
polynomials of degree less than or equal to k£ defined on K. Then we introduce
the following finite dimensional spaces:

Vh:{’l)hEV|’Uh€P0(K) VKE%},
Qh:{Th€Q|’l}hEP1(K) VKEE}

Clearly, V, C V and Qp C Q. The pair (V}, Q) is known as the Raviart-Thomas
finite element space RT(, which is the one of lowest degree among the Raviart-
Thomas finite element family and is probably the most widely used finite element
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space for dual-mixed formulations. Notice that functions belonging to V}, are
piecewise constant, while functions in (); are piecewise linear and continuous.
The finite element approximation of problem (44) reads:

Find g5, € Qp, and uy, € V}, such that, for any (7p,vp) € Qp X Vj

L 1 L
/ = aim d _/ uh@dx n Th(0)gn(0) _ Th(O)b’
0 0

dx a a

L dgn L L (46)
—/ vp—— dx — Supvp dr = — Fop dzx .

0 dz 0 0
It is possible to verify that the above problem admits a unique solution, and it
can be proved that ¢; and u; converge optimally to the corresponding quantities
g and u [2]. Moreover, the computed heat flux gy, is continuous and satisfies the
thermal equilibrium equation locally, i.e. over each finite element (provided that

S and F are integrated exactly), unlike the case of a primal-based formulation.
The matrix form of (46) is

<2§T><:>:<Z> (47)

where A € RN H)X(Natl) B e RNeX(Mat1) 3nd ¢ € RV *Ne | while q € RVAH!
ue RV g e R+ and gy € RVA,

The algebraic structure in (47) requires a relatively intensive computational
effort for the solution of the linear system. With respect to more standard
finite elements employing the primal formulation, we have here the vector q
additional unknowns. Yet, by some special techniques it is possible to reduce
the computational cost to a level comparable to that of primal type formulations,
as we will detail in the following section.

6.3 Efficient implementation of the DM formulation through
elimination of the flux variable

Looking system (47) in more detail we may note that the matrix A is symmetric,
tridiagonal and positive definite, while C is diagonal and negative. Clearly, the
fact that A is not diagonal makes it impossible to eliminate q in a simple way.
Yet this problem may be overcome by performing a suitable diagonalisation of
A.

First, let us write out the entries of A explicitly,

. 1 .
/KIETjTldQI, ’L=1,
/ 1 d. -I—/ ! d , = 2 N,
o= — T;T; AT =TT, QL, 1= 4y..., ’
Az] < Ko K 7' K, K gl h (48)
— TjTN,+1 d, 1=Np+1,
\ JKn, K

where 1 < 5 < N + 1.
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The exact computation of the integrals in (48) is in general unpractical (if
not impossible) since K is a rather involved function of z. It is then convenient to
approximate the thermal conductivity X on each element K; € Tp, 2 =1,..., Np,
with a constant value K;, here defined as the midpoint value of K. By doing so,
the matrix A is replaced by the approximation A whose entries can be computed
explicitly,

= / d =1
— 7,711 dx, 1 =1,
KiJw, '
A L dz + ! dz, i=2 N,
= T, dT + — TiTdr, 1=2,...,Np,
Az] < K:i—l Kios 7' ’Cz K VX h (49)
1 .
IC— TjTNh+1d~77, 1= Np+1
\ Np, Kn,

withj=1,..., N, + 1.

Matrix A is symmetric and tridiagonal; in addition it immediately turns
out that is also positive definite. To reduce it to a diagonal form we evaluate
the integrals in (49) by using a trapezoidal quadrature rule (a technique widely
known as lumping), obtaining the following entries for the diagonal matrix 21\,

( hl
It 2 -1
2’C1’ ? 7
~ hi—1 hi
e =2 N,
A” < 2’CZ’71 + 2}Cz’ ? ) s 4Vh, (50)
hn, .
1= Nh + 1.
\ 2Kn,

It can be shown that the above approximation does not alter the optimal
convergence properties of the DM finite element scheme [5], while it allows to
eliminate easily the heat flux degrees of freedom q from (47). First, we write

a=A4,"(g - B™), (51)

then we substitute this expression into (47)2, yielding the following linear system
for u, R R
(BA;IBT —Chu= BA,:lgl — g2. (52)

The matrix BA\;IBT — C is tridiagonal, symmetric and positive definite. The
heat fluxes are then recovered back using (51), once u has been computed from
(52).

The reduced system (52) can be interpreted as a finite volume scheme for
the temperature field u operating on the staggered grid defined by the mid-
points of the partition 7. It is also interesting to notice that the use of the
trapezoidal quadrature rule, combined with the piecewise constant approxima-
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tion of K, yields the following expression for the nodal fluxes

b
Uy — .
TR D =1
2K a
gi=1{ —Hi(Kic1,Ki)(ui —ui—1), 1=2,...,Np, (53)
2upn, K
TN TN i=Ny+1,
\ h’Nh
where )
Hi(ICZ'_l,ICZ') = ﬁ, 222, .,Nh,
2Ki—1 2K;

is the harmonic mean of the heat conductivity K. Harmonic averaging provides
a superior accuracy and stability to the scheme, particularly when K changes
rapidly [5, 1].

7 Numerical validation

Some preliminary numerical experiments have been carried out to validate the
accuracy of the procedure proposed here. In the first example, we have solved
the boundary-value problem (41) with the following choice of the coefficients and
data: L=1,K(z) =1,S(zx) =1, F(z) =2+z—2%,a=1,b=1and ur, =0,
having as exact solution the pair u(z) = z(1 — z) and ¢g(z) = 2z — 1. Since the
exact heat flux is linearly varying, we expect good accuracy of the finite element
formulation, where ¢y, is a piecewise linear continuous function over 7. This has
been fully confirmed by the results shown in Fig. 5. In the second example, we

Temperature Heat flux

0.25

0.5r

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 5: Finite element solution: uy, (left) and g (right)
have solved (41) with the following choice of the coefficients and data: L = 5,

K(z)=1,8() =1, F(z) =e %4z — 2),a =1, b = 0 and uy = 25¢°, having
as exact solution the pair u(z) = z%e~® and q(z) = —ze %(2 — z). We have
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conducted an error analysis by taking a uniform mesh of grid size h = 1/N},
with an increasing value of Nj, in the range 2%, k = 1,...,8. We show in Fig. 6
the curves of the discretisation errors u — up and g — g, measured in the discrete
maximum norm as

= unlloop = max (@) =ul,  llg = anlloon = _max_ laa:) —al,

Second-order convergence with respect to the mesh parameter h can be neatly
observed for both temperature and heat fluxes, which confirms the good con-
vergence properties of mixed finite elements. The results of these preliminary

Maximum element error: temperature Maximum nodal error: heat flux

-1

107" 107
107 107}
107 107
10° 107}
p=2 p=2
1 0;60‘3 107 Lo 0" o 0;60‘3 107 Lo 0" 10°

Figure 6: Logarithmic plots of ||u — up||eo,n,z and ||g — gn|oo,n,N

experiments have confirmed the validity of the numerical approach.

7.1 Comparison with experimental data

To validate the mathematical model we have carried numerical simulations on
glow-plugs kindly provided by Federal Mogul Ignition S.r.1., of which experimen-
tal data was available. We are in the position of showing a typical result of this
validation campaign. Figures 7-8 show two test cases for one type of glow-plug,
here referred to as GlowA, associated with two different working conditions. The
first test case corresponds to normal working conditions (Fig. 7) while the second
one simulates the presence of a short-circuit at 14 [mm] from the tip and after
6 [s] from start-up (Fig. 8). The total length of the glow-plug is L = 34 mm
and each figure displays, in left-right top-bottom order:

e the temperature T on the external steel covering as a function of the
axial coordinate z. The different curve correspond to snapshots taken at
successive time steps;

e the temperature T on the external steel covering at the coordinates x
equal to 2, 4, 10, 14, 18, 22, 26, 30 and 34 millimeters, as a function of
time;
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Figure 7: GlowA: simulation with no short-circuit
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Figure 8: GlowA: simulation with a short-circuit at 14 [mm]| after 6 [s]
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the temperature T's on the coil as a function of  with snapshots at suc-
cessive time steps;

the values of the heating R}, (0), of the controlling R; (++) and of the total
Rc = Rp + Ry (*) resistances as functions of time;

the current I in the coil as a function of time;

the Joule power ) generated in the coil, per unit axial length.

On comparing the two cases, we notice in Fig. 8 the rapid raise of the electric
current due to the decrease in the coil resistance as a consequence of the short-
circuit. Notice also how in the short-circuited plug the temperatures Tr and
Ts have a peak around z = 20 and decrease in the tip region because of the
absence of the source of heat power. Finally, in Fig. 9 we compare in more detail

--------------------------------

————————————————————————————

g s —— Measured [--
! ! —— Calculated
j

' ' ' '
i Tk [ttt Bt —---- T----q
' ' '

Electric Resistance

lectric Potential
T
23
= S

Time Time

Electric Current

Temperature at the tip

Time

Figure 9: Some comparisons with experimental measurements

some of the computed quantities against their measured values, for the case of
normal working conditions. More precisely, we show the total applied voltage
AV (top-left), the total electric resistance R¢ (top-right), the electric current I
(bottom-left), and the temperature at the tip Tr(0) (bottom-right), versus time.
The very good matching between numerical results and experimental data can
be appreciated.

As a final validation case we report in Fig. 10 the temperature at a point
near the tip obtained in two realistic operating conditions, compared with the
experimental measurements. In this simulation the heat transfer has been aug-
mented by a term accounting for heat convection into the cylinder head. Indeed
the velocity of the air-diesel fuel mixture flow around the plug is sufficiently high
to make convective terms relevant. Convection introduces only a slight modifi-
cation of the source term in the differential equation. Because of confidentiality
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reasons, we cannot give more details nor show the actual temperature reached by
the plug. Yet, the picture illustrates clearly the quality of the numerical result,
which is able to reproduce, even in this more complex situation, the transient
and the maximal temperature level.

numerical
-e—o— experimental

' numerical
-e—o— experimental

Temneratire
Temnberature

60 70 80 90 100 0 50 100 150 200 250

“ Timé (s) Time (s)
Figure 10: Comparisons with experimental measurements for two realistic oper-
ating conditions

8 Conclusions

This work demonstrate how it is possible to develop an effective and accurate
tool to simulate a rather complex non-linear problem like the heating up process
of a glow-plug. The software developed within this research activity is now
operative in an industrial environment. Similar techniques may be adopted for
other heating system with cylindrical geometries and where one dimension is
dominant.

The use of mixed finite elements has proved important to obtain accurate
results with a very good efficiency. Despite the fact that small time steps (of
the order of 102 seconds) are needed to follow the transient, the code, written
in MATLAB®, runs in a few seconds on a normal personal computer.

The authors wish to thank Federal Mogul Ignition S.r.l., and in particular
Ing. R. Rossi, for the support and the availability of the experimental data.
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Appendix

Aim of this appendix is the determination of dl/dz for common coil geometries.
More precisely we will consider helical coils with cylindrical and conic geometries.
We assume that the helix axis is perfectly aligned with # and the the helical pitch
Pg is constant.

A Cylindrical helix

The parametric representation of the helix with constant pitch Ps with respect
to the coordinate system of Fig. 11 (left), is

y =1y(0) = Rgcosf,
z =z(0) = Rgsiné, , 0<6<2rN,

mzx(@)zﬁﬂ,

where Rg is the radius of the helix, 8 is the angle which parametrizes the helix,
and N the number of spires (assumed to be an integer, for the sake of simplicity
and without loss of generality). We then have

R
P, :
? : §
R, (x)

Figure 11: Geometry for the cylindrical (left) and of a conical (right) helix

YUY

dl 9 P§
a0~ Vst e
Therefore,
dl dl do R?g 1
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B Conic helix

The parametric representation is now given by, referring to Fig. 11 (right),

y =y(0) = Rs(6) cosb,
z = z(0) = Rs(0)sind,
Ps

z=uz(0) = 2;0,

where Rg(6) = af+b is the radius of the helix, here given as an affine function of
0 depending on the constants a, b. Ps is again the helix pitch. In this case it is
more convenient to re-parametrize the curve as a function of the axial coordinate
x, as it follows

y = y(a) = Rs(c) cos (£a) |
z = z(z) = Rg(x) sin (123—7;:1:) ,

where now Rg(z) = Az + b, with A = 217;—5“. Since,

dl dy\? [dz\*
- —4/1 =J haiad
dz \/ + (da:) + (dx) ’

by carrying out the computations we obtain

dl R%(z) 1 dRs\? R%(z) 1

dw(x) 7T\/ P? + 47r2( + ( dx 4 P? + 47?2 +
Let us note that this expression generalizes (54) where A = 0. The expression
for A and B may be derived in terms of the global dimensions of the helix. We
denote by z; and z. the initial and final z coordinate of the entire conic helix

under consideration, by R; = Rg(z;) and R, = Rg(z) the corresponding values
of the radius, and by Pg = z. — z; the helix length. We have

R, — R;
Rs(z) = eP “(z — z) + Ri,
S
from which it follows that
dRS Re - Rz' Rz’.’Ee — Re:vz-
A= = B=—— .
dz Py Pg (55)
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