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AbstratMatrix-valued radial basis funtions (RBFs) are applied to obtain a-urate loal vetor �eld reonstrutions from normal omponents assignedat the edges of a omputational mesh. The theory of RBF reonstrutionfor vetor-valued funtions is �rst reviewed, before it is adapted to spei�requirements from relevant appliations in omputational uid dynamis.Important omputational aspets of the utilized RBF reonstrution, suhas stenil seletion, are explained in detail, whih makes the method moreaessible to similar problems in geophysial uid dynamis and relatedappliations. Extensive numerial omparisons onerning models from hy-drodynami problems show that the proposed RBF reonstrution methodsigni�antly improves the auray of standard disretizations, while re-taining disrete onservation properties of important physial quantities,suh as mass, vortiity or potential enstrophy.1 IntrodutionRadial basis funtions (RBFs) are powerful tools for interpolation and approxi-mation of salar-valued multivariate funtions from sattered data, see [1, 2, 3℄for a reent aount on theoretial and pratial aspets of RBFs and theirappliations. RBFs are well-known to provide highly aurate reonstrutions,without imposing too severe restritions on the spatial distribution of the samplepoints where the data are assumed to be known.In fat, spetral onvergene rates an be ahieved for RBF interpolationmethods, when appropriate types of radial basis funtions, suh as Gaussiansor (inverse) multiquadris, are hosen. Moreover, it an be shown that in thisase also any derivative of the interpolated funtion an be approximated justas aurately by the orresponding derivative of the RBF interpolator, see [3,Chapter 11℄.Quite reently, many di�erent meshfree methods were developed to numer-ially solve partial di�erential equations by using RBF tehniques, where theutilized approahes inlude olloation methods [4, 5℄, Galerkin methods [6℄,and semi-Langrangian disretizations [7, 8℄, to mention but a few.But the utility of RBF methods has also been shown for mesh-based methods,suh as for instane in [9, 10℄ where radial basis funtions were used to obtainhighly aurate �nite volume ENO shemes by loal RBF reonstrution fromsattered ell average values. Another example is the reent adaptive ADERsheme [11℄, where RBF interpolation is used to onstrut appropriate error es-timators for mesh adaption, i.e., oarsening and re�nement of triangular meshells. Moreover, RBFs were used in [12℄ to develop high order approximationshemes for disretizing di�erential operators of the shallow water equations.Similar interpolation approahes based on kriging have also been applied in [13℄.In [14, 15℄, RBF interpolation is essential to ahieve aurate semi-Lagrangianshemes on Cartesian grids with ut boundary ells. In all these appliations,2



salar-valued RBFs were used for loal interpolation, whih allows one to reon-strut a funtion at any point in spae, given its salar values in a neighbourhoodof that point.In this paper, we aim at pursuing further this development by using matrix-valued RBFs for the interpolation of vetor-valued funtions. The general settingof Hermite-Birkho� interpolation via matrix-valued RBFs is overed in the sem-inal paper [16℄ of Narowih and Ward, where in partiular the well-posednessof the reonstrution problem is explained. Although we believe that the 1994paper [16℄ has remarkably great potential for appliations in omputational uiddynamis and related �elds, it seems that the rather tehnial work [16℄ has notgained muh attention in appliations sine then.In the present paper, relevant theoretial details from [16℄ are �rst reviewed,before some of the theory is adapted to the partiular requirements from thoseappliations in omputational uid dynamis whih we wish to address here. Inthis way, we also wish to make the results of [16℄ more aessible. The primarygoal of this paper, however, is to provide aurate vetor �eld approximations byRBF reonstrution in order to improve standard �nite element disretizations,suh as low order Raviart-Thomas (RT) elements, see [17, 18℄.In suh RT �nite element methods, disrete vetor �elds are usually rep-resented by their omponents normal to the edges of the omputational mesh.Relevant appliations of RT elements inlude eletromagneti [19℄ and hydro-dynamial problems, the latter being the fous of the present paper. Althoughhigher order RT elements were developed, low order ones lead more easily to nu-merial methods that exhibit appealing mimeti properties, suh as onservationof mass, vortiity and potential enstrophy. But reent methods from applia-tions in hydrodynamis, suh as [20, 21, 22, 23℄, rely on the above mentionedonservation properties. The RBF reonstrution method whih we propose inthis paper allows us to enhane the auray of low order RT elements, whileretaining their important disrete onservation properties.The outline of this paper is as follows. In Setion 2, key features of vetor �eldreonstrution by RBF interpolation are �rst reviewed, before the spei� vetorreonstrution problem is explained in Setion 3. Important pratial aspetsonerning the implementation of the proposed RBF reonstrution method areaddressed, inluding the onstrution of ustomized stenils. In Setion 4, theauray of the resulting RBF reonstrution sheme is assessed in omparisonwith RT elements of order zero, RT0. This is done on the basis of spei� numer-ial tests, where auray rates are determined numerially for both methods,RBF reonstrution and the RT elements RT0. Finally, in Setion 5, the pra-tial relevane of the proposed RBF vetor �eld reonstrution is demonstratedby using two di�erent shallow water models, aiming at atmospheri and oastalmodelling, respetively.
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2 Vetor Field Reonstrution from Hermite-Birkho�DataThis setion addresses the reonstrution of vetor-valued funtions from sat-tered Hermite-Birkho� data. In order to explain this problem, let u : Rd ! Rndenote a vetor-valued funtion, u = (u1; : : : ; un). Moreover, assume that for a�nite set � = f�g�2� of linearly independent vetor-valued linear funtionals,samples �(u) 2 R are given, where the ation of any � = (�1; : : : ; �n) 2 � on uis de�ned as �(u) = nXk=1 �k(uk):Reonstrution of u from values f�(u) :� 2 �g requires �nding a reoveryfuntion s : Rd ! Rn satisfying�(s) = �(u); for all � 2 �; (1)or, s��� = u���, in short hand notation. The approah taken in this paper workswith matrix-valued radial basis funtions (RBFs), as suggested in the seminalpaper [16℄ by Narowih and Ward.In order to explain reonstrution by matrix-valued RBFs, let � : Rd !Rn�n be a matrix-valued funtion, with salar-valued omponents �jk : Rd ! R,i.e., �(x) = (�jk(x))1�j;k�n 2 Rn�n ; for x 2 Rd ; (2)and, moreover, we assume that� is even, i.e., �(x) = �(�x). For any funtional�, the onvolution produt � �� : Rd ! Rn is de�ned omponentwise as[� ��℄j(x) = nXk=1 �k�jk(x� �); for 1 � j � n:Suitable entries for the omponents of � in (2) are radial basis funtions,�(r) � �jk(r), r = kxk, where popular hoies inlude Gaussians, �(r) = e�r2 ,multiquadris, �(r) = p1 + r2, and inverse multiquadris, �(r) = 1=p1 + r2.Aording to the RBF reonstrution sheme, the interpolant s in (1) isrequired to have the form s = � ��+ p; (3)where the dual funtional � is a linear ombination of elements in �,� = X�2� ��;and where p : Rd ! Rn is a vetor-valued polynomial, p = (p1; : : : ; pn), in dvariables, eah of whose omponents pj : Rd ! R, 1 � j � n, is, for somespei� m depending on �, of order at most m. We ollet all suh polynomialsin the linear spae Pd;nm . 4



Note that the interpolant s in (3) ontains a vetor  = (�)�2� 2 RN ofN = j�j unknown oeÆients in its major part � � �, and Q = n � �m�1+dd �further unknowns in its polynomial part p. The given reonstrution problem(1), however, ontains only N onditions. In order to eliminate the Q degrees offreedom, we require that the dual funtional � in the major part of s in (3) liesin the linear spae L?m = n� : �(p) = 0; for all p 2 Pd;nm oof all dual funtionals whose ation on any polynomial from Pd;nm is zero.Now solving the reonstrution problem (1) under linear onstraints (5) withassuming (3) for the form of the interpolant s, amounts to solving the (N �Q)-by-(N �Q) linear equation systemA+ Pd = u��� (4)TP = 0 (5)where A = (�(� ��))�;�2� 2 RN�N and P = (�(p`)) �2�1�`�Q 2 RN�Q ; (6)with p1; : : : ; pQ being a basis of Pd;nm .By using a standard argument from radial basis funtion interpolation [24℄, itis straightforward to show that the linear system (4),(5) is well-posed, providedthat � is onditionally positive de�nite.De�nition 1 We say that � is onditionally positive definite of orderm, � 2 CPD(m), i� the quadrati formX�;�2� ���(� ��)is positive for any set � of linearly independent funtionals and any non-zerovetor  = (�) 2 RN n f0g satisfying TP = 0, i.e.,X�2� �(p) = 0; for all p 2 Pd;nm : (7)We say that � is positive definite, � 2 PD, i� � is onditionally positivede�nite of order 0.In order to keep this paper widely self-ontained, we repeat that quite in-strutive standard argument. 5



Theorem 1 Suppose � 2 CPD(m). Then the linear reonstrution problem(1) has under onstraints (7) a unique solution s of the form (3), provided thatfor p 2 Pd;nm , the impliation�(p) = 0; for all � 2 � =) p = 0; (8)holds.Proof: First note that the problem (1),(7) is equivalent to the problem(4),(5). In order to show that the linear system (4),(5) has a unique solutionfor � 2 CPD(m), we regard the homogeneous system belonging to (4),(5).Multiplying (4) from left with T with using (5) immediately yields TA = 0.But sine � 2 CPD(m), this implies  = 0, and so (4) beomes Pd = 0. Inorder to see that also d = 0, note that (8) is equivalent to requiring P is injetive.Hene, the solution of the homogeneous system belonging to (4),(5) is uniquelygiven by zero, whih ompletes our proof.Note that the ondition (8), often referred to as the unisolvene of � withrespet to the polynomials Pd;nm , is equivalent to requiring that eah polynomialp 2 Pd;nm an uniquely be reonstruted from its samples f�(p) : � 2 �g. Thisondition is rather weak. Indeed, for the speial ase, wherem = 0, the ondition(8) is empty, and so the interpolant s in (3) ontains no polynomial part. Inthis ase, aording to Theorem 1, it it suÆient to require � 2 PD in orderto guarantee the well-posedness of reonstrution problem (1). Let us formulatethis important observation in a seperate orollary.Corollary 1 For � 2 PD, the reonstrution problem (1) has a unique solutions of the form s(x) = X�2� �(� ��);where the unknown oeÆients  = (�)�2� of s an be omputed by solving thelinear equation system A = u���, whose oeÆient matrix A in (6) is positivede�nite.In the remainder of this setion, we show that a diagonal � is onditionallypositive de�nite of order m, if and only if all its diagonal omponents �jj, 1 �j � n, are onditionally positive de�nite of order m.To this end, �rst note that the De�nition 1 for CPD(m) overs the speialase where n = 1, so that it makes sense to require �jj 2 CPD(m) for theindividual salar-valued omponents in the diagonal of �. But for this speialase, the lass of onditionally positive de�nite funtions is well-understood [24℄,see also the haraterization of the funtion lass CPD(m) in [25, 26, 27℄.Now it is straightforward to show that the following observation is true.6



Lemma 1 Let � : Rd ! Rn�n be a diagonal matrix-valued funtion of the form� = 264 �11 . . . �nn 375 ;with salar-valued diagonal omponents �jj, 1 � j � n. Then, � is onditionallypositive de�nite of order m, i� every diagonal omponent �jj is onditionallypositive de�nite of order m, i.e.,�jj 2 CPD(m) for all 1 � j � n () � 2 CPD(m):Proof: Regard for any pair �; � 2 � the quadrati formX�;�2� ���(� ��) = X�;�2� �� nXj;k=1�xj (�yk�jk(x� y)) (9)= X�;�2� �� nXj=1 �xj (�yj �jj(x� y))= nXj=1 24 X�;�2� ���xj (�yj �jj(x� y)35 : (10)Now, aording to [25℄, for eah �jj 2 CPD(m) the quadrati formX�;�2� ���xj (�yj �jj(x� y)) = X�;�2� ���j(�j � �jj)is positive for any non-vanishing  = (�)�2� 2 RN n f0g, satisfyingX�2� ��j(p) = 0; for all p 2 Pd;1m :But this, in ombination with the representation (10) for the quadrati form(9), immediately implies that (9) is positive for all non-vanishing  2 RN n f0gsatisfying X�2� ��(p) = 0; for all p 2 Pd;nm ;and so � is onditionally positive de�nite of order m, � 2 CPD(m).As for the onverse, it is easy to see from (10) that � 2 CPD(m) implies�jj 2 CPD(m), for any 1 � j � n, whih ompletes our proof.
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3 Loal Vetor Field Reonstrution in Two Dimen-sionsWe now formulate the spei� vetor reonstrution problem that we wish toaddress in hydrodynamial appliations, some of whih are disussed in Setion 5.In this partiular ase we work with planar vetor �elds u : R2 ! R2 , u =[u1; u2℄, so that d = 2 and n = 2. Moreover, we assume we are given a (possiblysattered) set X = fx1; : : : ;xNg � R2 of N pairwise distint planar points,where eah point xi 2 X orresponds to a unit vetor ni = [n1i ; n2i ℄T 2 R2 ,1 � i � N .Now we wish to reonstrut a smooth vetor �eld u : R2 ! R2 , from givensalar samples ui = u(xi) �ni 2 R, for 1 � i � N . Aording to the more generalreonstrution problem, formulated in the previous setion, we are onernedwith solving the reonstrution problem�i(u) = �i(s); for 1 � i � N;where �i = Æxi �ni, and where Æxi denotes the Dira point evaluation funtional,de�ned as Æxi(u) = u(xi), for 1 � i � N .Now the reovery funtion s : R2 ! R2 is required to have the form (3).Hene, eah term in the major part of s has the form(� ��)(x) = �(x� xi) � n = "�11(x� xi)n1i�22(x� xi)n2i# : (11)In the implementation of RBF reonstrution in Setions 4 and 5, we preferto work with positive de�nite radial basis funtions, i.e., � 2 PD. Reall fromLemma 1 that in this ase we require �11; �22 2 PD. Possible hoies for thediagonal entries in � are, for instane, the Gaussians �(r) = e��r2 2 PD forany � > 0, or the inverse multiquadris, �(r) = (2 + r2)�1=2 2 PD for  6= 0.In this ase, no polynomial part is inluded in the sheme, in whih ase theinterpolant s has the forms(x) = NXi=1 i "�11(x� xi)n1i�22(x� xi)n2i# ;whose unknown oeÆients  = (1; : : : ; N )T 2 RN are omputed by solving thelinear system A = u��� in (4).4 Comparison between RBF and RT Vetor FieldReonstrutionIn this setion, we report on seleted numerial experiments in order to disussthe e�etive auray order of RBF reonstrution by using the positive de�nite8



Gaussians, i.e., where we let �11(r) � �22(r) � �(r) = e�r2=4 2 PD. Due tothe theory of RBF interpolation [3, Chapter 11℄, spetral onvergene rates areexpeted in this ase. One should note, however, that the spetral onditionnumber �(A) of the arising interpolation matrix A is, as a funtion of the min-imal distane between di�erent sample points, of exponential growth. This isdue to the unertainty priniple of RBF reonstrution, whih says that none ofthe ommonly used radial basis funtions manages to ombine good approxima-tion behaviour with a numerially stable reonstrution proess. This dilemma,disovered by Shabak [28℄, requires arefully seleting available method pa-rameters in order to obtain a reasonable trade-o� between the two onitingrequirements, i.e., high approximation order and good numerial stability.Our numerial results onerning RBF interpolation, as reeted by Tables 1and 2, are involving four di�erent stenils of sizes N = 3; 9; 15; 21. The fourstenils are shown in Figure 1. Note that for either stenil, the interpolationpoints are lying on a hexagonal grid. This is in order to reasonably balane themethods' resulting auray, on the one hand, and their numerial stability, onthe other hand. For further motivation onerning this partiular point samplingwe refer to our previous �ndings in [2, Subsetion 3.9℄.
(a) N = 3 (b) N = 9 () N = 15 (d) N = 21Figure 1: Stenils of di�erent sizes N for auray tests.To evaluate the methods' approximation behaviour, we onsider the resultingmaximal error � = ks�uk1 among the baryenters of the triangles in the stenils'orresponding Delaunay triangulation, see Figure 1. Similar to the assessmentin our previous paper [14℄ for RBF reonstrution for the salar ase, we onsiderusing the vetor �eld� uv � = � os(k � (x� 14)) sin(k � (y � 14))sin(k � (x� 14)) os(k � (y � 14)) � ;where inreasingly denser data sets are used. The data sets were generated bysaling the interpolation points X, so that qX � h = 2�i, i = 0; 1; 2; 3; 4, for theseparation distane qX = minx;y2Xx6=y kx� ykof the interpolation points in stenil X.9



The numerial results in Table 1 show the approximation error �(RT0) ob-tained when using Raviart-Thomas elements of order zero, RT0, in omparisionwith the approximation error �(RBF) from RBF reonstrution by Gaussians.Table 1 also shows the orresponding spetral ondition number �(A) of the RBFinterpolation matrix A. Moreover, estimates for onvergene rates, obtainedby the two di�erent methods, RBF and RT0, are displayed in Table 1. Thetest were performed for a dereasing sequene of separation distanes h = 2�i,i = 0; 1; 2; 3; 4, just before the linear system of RBF interpolation beomes nu-merially unstable, due to too large spetral ondition numbers, f. the lastolumn of Table 1.Table 1: Comparison between RT0 and RBF reonstrution by Gaussians for the15-point stenil in Figure 1 (). The relative approximation error �, approximateonvergene rate, and spetral ondition number �(A) of the orresponding RBFinterpolation matrix A are shown, respetively.h �(RT0) rate �(RBF) rate �(A)2�0 7:177 � 10�1 - 7:248 � 10�1 - 3:625 � 1042�1 3:070 � 10�1 1.225 1:151 � 10�1 2.654 2:511 � 1062�2 1:349 � 10�1 1.187 1:451 � 10�2 2.988 1:650 � 1082�3 6:238 � 10�2 1.112 1:773 � 10�3 3.033 1:064 � 10102�4 2:991 � 10�2 1.060 2:178 � 10�4 3.025 6:833 � 1011All linear systems were solved by Gauss elimination, and for the results in Ta-ble 1, the 15-point stenil of Figure 1 () was utilized. As expeted, we obtainlinear onvergene for Raviart-Thomas reonstrution of order zero, whereasRBF reonstrution yields third order auray, see Table 1. Moreover, de-spite the small separation distane of up to h = 2�4, RBF interpolation is stillvery robust. But for smaller values of h, the orresponding linear system isill-onditioned, so that it does not make sense to further evaluate the method'sauray.In a seond test ase, we ompare the approximation quality of GaussianRBF reonstrution for four di�erent stenils of sizes N = 3; 9; 15; 21, displayedin Figure 1. Our numerial results are reeted by Table 2 (for N = 3; 9; 21)and Table 1 (for N = 15).Not too surprisingly, the auray order is inreasing with the size N of theutilized stenils, see Table 1 and 2. Indeed, the stenil with N = 21 interpola-tion points yields the best auray rate among the four stenils, namely slightly10



Table 2: RBF reonstrution by Gaussians for stenils of di�erent sizes N , seeFigure 1.h � (N = 3) rate � (N = 9) rate � (N = 21) rate2�0 7:177 � 10�1 - 7:156 � 10�1 - 7:180 � 10�1 -2�1 3:070 � 10�1 1.225 1:251 � 10�1 2.516 8:767 � 10�2 3.0342�2 1:349 � 10�1 1.187 1:769 � 10�2 2.823 1:181 � 10�2 2.8922�3 6:238 � 10�2 1.112 2:594 � 10�3 2.770 1:819 � 10�3 2.6982�4 2:991 � 10�2 1.060 4:270 � 10�4 2.603 9:958 � 10�5 4.192above order four, whereas the stenil with N = 3 points yields �rst order a-uray only, whih is about omparable to the onvergene rate obtained fromRaviart-Thomas reonstrution of order zero, RT0. In other words, for any sten-il with more than three interpolation points, RBF reonstrution by Gaussiansis superior to RT0 reonstrution. Further supporting numerial results werereently reorded in [29℄.5 Appliation to Fluid Dynamis ProblemsIn this setion, we disuss appliations of the proposed RBF reonstrutionmethod to omputational uid dynamis models. More spei�ally, we will re-fer to models for the shallow water equations using disretization approahes inwhih the veloity �eld is represented by its normal omponents with respet tothe mesh edges. The shallow water equations model the two dimensional owof a thin uid layer in domains whose harateristi wave length in the hori-zontal is muh larger than the uid depth. The shallow water equations resultfrom the Navier-Stokes equations when the hydrostati assumption holds andonly barotropi and adiabati motions are onsidered. Furthermore, a vertialaverage is performed, so that only mean values for the veloities in the horizon-tal diretions are onsidered, see e.g. [30℄. The shallow water equations an bewritten as �h�t +r � �Hv� = 0; (12)�v�t + (v � r)v = �fk� v � grh: (13)Here, v denotes the two-dimensional veloity vetor, k is the radial unitvetor perpendiular to the plane on whih v is de�ned (or to the loal tangentplane, in ase of appliations in spherial geometry), h is the height of the uidlayer above a referene level, H = h � hs is the thikness of the uid layer, hsis the orographi or bathymetri pro�le, g is the gravitational onstant, and f11



is the Coriolis parameter. This formulation is the starting point for Eulerian-Lagrangian disretizations. Another widely used formulation for appliationsto large sale atmospheri dynamis is the so alled vetor invariant form, seee.g. [31℄, whih an be written as�v�t = �(� + f)k� v �r�gh+K�: (14)Here, � is the omponent of relative vortiity in the diretion of k and K de-notes the kineti energy. This formulation is usually the starting point for thederivation of energy, potential enstrophy and potential vortiity preserving dis-retizations, see e.g. [32℄.Spatial disretizations with staggered arrangements of the disrete variablesare popular for the shallow water equations, sine they allow for better represen-tation of the gravity wave propagation, see e.g. [33℄. On unstrutured grid, ananalog of a staggered disretization is given by the zero order Raviart-Thomaselements RT0, see e.g. [17℄. Although high order RT elements are also available,the low order ones, RT0 elements, lead more easily to numerial methods thatexhibit important disrete onservation properties, suh as disrete mass or vor-tiity preservation. These properties are important for a number of appliationsand various methods whih take advantage of them is disussed in the two fol-lowing subsetions. The main point here is that the auray of these modelshas been limited so far by the �rst order onvergene of the RT0 elements. Asit will be shown in the following, matrix-valued RBF reonstrution an e�e-tively improve these methods, by ahieving a more aurate disretization of thenonlinear momentum advetion terms, either in Eulerian or in semi-Lagrangianformulations. Although in general this is not suÆient to raise the onvergeneorder of the overall methods, models employing RBF reonstrutions display sig-ni�antly smaller errors and have in general less numerial dissipation, makingtheir use attrative for a number of appliations.5.1 Eulerian Shallow Water ModelsEulerian disretizations of equations (12),(14) have been proposed in [20, 21℄,whih preserve disrete approximations of mass, vortiity and potential enstro-phy. These properties are important for numerial models of general atmospheriirulation, espeially for appliations to limate modelling. The two time level,semi-impliit sheme in these papers used RT reonstrution to ompute thenonlinear terms in the disretization of (14). Here, we will ompare resultsobtained with a three-time level, semi-impliit time disretization, oupled tothe potential enstrophy preserving spatial disretization of [21℄, using either theRaviart-Thomas algorithm or a vetor RBF reonstrution of the veloity �eldneessary for the solution of equation (14). For these tests, we employed RBF re-onstrution using the positive de�nite Gaussians, where �(r) = e�r2 . Moreover,a 9-point stenil was employed, see Figure 1 (b), using the normal omponents12



to the edges of the triangle on whih the interpolation is being arried out andto the edges of its nearest neighbours (i.e., of the triangles whih have ommonedges with it).We onsider one stationary and two non-stationary test ases for the shallowwater equations belonging to the set of standard benhmark problems intro-dued in [31℄. First, we study how the algorithm performs when applied to testase 3 of the standard shallow water suite [31℄, whih onsists of a steady-state,zonal geostrophi ow with a narrow jet at midlatitudes. For this test ase, ananalyti solution is available, so that errors an be omputed by applying thenumerial method at di�erent resolutions. The values of the relative error invarious norms, as omputed at day 2 with di�erent spatial resolutions and withtime step �t = 1800 s, is displayed in Tables 3 and 4 for both Raviart Thomaselements and vetor RBF reonstrution, respetively. It an be observed that,although the onvergene rates remain approximately unhanged (due to the fatthat the approximately seond order disretization of the geopotential gradientwas the same in both tests), the errors both in the height and veloity �elds havedereased by an amount that ranges approximately between 30 % and 50 %.Table 3: Relative errors for nonlinear terms in shallow water test ase 3 obtainedby using RT0 reonstrution.Level `2-error, h `2-error, v `1-error, h `1-error, v3 7.42e-3 0.25 2.53e-2 0.334 1.94e-3 5.9e-2 8.1e-3 9.1e-25 6.05e-4 1.27e-2 2.9e-3 1.87e-26 2.54e-4 3.19e-3 1.24e-3 4.17e-3Table 4: Relative errors for nonlinear terms in shallow water test ase 3 obtainedby using Gaussian RBF reonstrution on a 9-point stenil, see Figure 1 (b).Level `2-error, h `2-error, v `1-error, h `1-error, v3 7.27e-3 0.16 2.08e-2 0.174 1.52e-3 3.38e-2 6.74e-3 5.77e-25 4.05e-4 7.7e-3 1.7e-3 1.22e-26 1.45e-4 2.11e-3 4.8e-4 2.89e-3We have then onsidered the non-stationary test ase 5 of [31℄, for whihthe initial datum onsists of a zonal ow impinging on an isolated mountain ofonial shape. The imbalane in the initial datum leads to the development of awave whih propagates all around the globe. This test is relevant to understandthe response of the numerial model to orographi foring and it has been aommon benhmark sine the development of the �rst spetral models. Plots of13



the meridional veloity omponent at simulation day 5 are shown in Figure 2,as omputed using the onstant timestep �t = 900 s on an iosahedral gridat spatial resolution of approximately 240 km. We observe that the meridionalveloity �eld obtained by using RT0 �nite elements is muh less regular than thatobtained by RBF reonstrution, whih omplies with previous results obtainedin similar referene simulations at higher resolution.Finally, we have onsidered the non-stationary test ase 6 of [31℄, for whihthe initial datum onsists of a Rossby-Haurwitz wave of wavenumber 4. Thistype of wave is an analyti solution for the barotropi vortiity equation, whihan also be used to test shallow water models on a time sale of up to 10-15days. The relative vortiity �eld is shown in Figure 3, as omputed at day 5with a timestep of �t = 900 s on an iosahedral grid with a spatial resolutionof approximately 240 km. It an be observed that, when using RT0 reon-strution, the struture of some vortiity extrema is disrupted, while spuriousmaxima and minima appear lose to the poles. This is in ontrast to the moreregular �eld obtained by RBF reonstrution, whih better omplies with highresolution referene simulations. Furthermore, the relative hange in total en-ergy for both model runs is displayed in Figure 3. It an be observed that totalenergy loss is redued by approximately 30 % when using RBF reonstrution,thus improving the energy onservation properties of the model, whih onservespotential enstrophy but not energy as disussed in [21℄. We remark that for Eu-lerian models, additional omputational osts required for RBF reonstrutionan signi�antly be redued. Indeed, it is possible to ompute for eah grid ella set of time independent oeÆients whih yield the veloity vetor at the ellenter as linear ombination of the veloity omponents at the points inludedin the RBF stenil. For the model runs desribed above, it was observed thatRBF reonstrution inreases, in omparison with the simpler sheme RT0, therequired CPU time by approximately 20 %.5.2 Eulerian-Lagrangian Shallow Water ModelsNumerial methods for the shallow water equations using formulation (12),(13)have been proposed in [22, 23℄, whih ouple a mass onservative, semi-impliitdisretization on unstrutured Delaunay meshes to an Eulerian-Lagrangian treat-ment of momentum advetion. The resulting methods are highly eÆient dueto their rather weak stability restritions, while mass onservation allows fortheir pratial (and suessful) appliation to a number of pollutant and sed-iment transport problems. A key step of the Eulerian-Lagrangian method isthe interpolation at the foot of harateristi lines, whih in the papers quotedabove is performed by RT0 elements or by low order interpolation proeduresbased on area weighted averaging. These interpolators have at most �rst orderonvergene rate and an introdue large amounts of numerial di�usion, whihlimits their appliability espeially in long term simulations.Firstly, the test proposed in [12℄ has been arried out, in whih a 800 m long14



(a) Reonstrution by RT0 (b) Reonstrution by Gaussian RBFFigure 2: Meridional veloity in shallow water test ase 5, obtained by (a)RT0 reonstrution (b) Gaussian RBF reonstrution on a 9-point stenil. Theontour line spaing is 6 ms�1.and 800 m wide basin was onsidered. The domain was disretized by an unstru-tured triangular mesh with 26,812 elements and 13,868 nodes, orresponding toa horizontal resolution of approximately 2 km. The basin depth was taken tobe 20 m. A periodi inow boundary ondition was imposed on the free surfae,with an amplitude of 1 m and a period of approximately 12 h. The result-ing wavefront, omputed after approximately 30 h by the Eulerian-Lagrangianmethod of [23℄, with using either RT0 elements or RBF reonstrution at thefoot of the harateristi, is displayed in Figure 5, It an be observed that forRBF reonstrution the wavefront is muh sharper and the omputed dishargerate at a given loation along the basin reahes onsiderably higher values. Themaximum in the free surfae elevation (whih would be equal to the maximumboundary value in the linear regime) is better aptured by approximately 10 %.We remark that for spei� quantities, suh as free surfae elevation, this leadsto signi�ant improvements in a number of relevant appliations, suh as ood-ing predition in the Venie Lagoon, whih is at end of a losed sea basin ofapproximately the same magnitude.Furthermore, another shallow water test involving a losed retangular basin,150 m long and 15 m wide, was performed, whose disretization is given byan unstrutured triangular mesh with 3,646 elements and 1,984 nodes. Forthe free surfae, an unbalaned initial datum was assumed, given by �(x) =h0 os(x�=150). The amplitude of the disturbane was taken to be equal toh0 = 0:1 and the initial veloity �elds were assumed to be zero. The resultingfree osillations have been simulated by the same method desribed above, usingagain either RT0 elements or matrix-valued RBFs for reonstrution at the footof the harateristi. The free osillations of the uid were simulated for a total15
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(a) Reonstrution by RT0
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(b) Reonstrution by Gaussian RBFFigure 3: Relative vortiity in shallow water test ase 6, obtained by (a) RT0 re-onstrution (b) Gaussian RBF reonstrution on a 9-point stenil. The ontourline spaing is 10�5 ms�1. 16
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Figure 6: Kineti energy for free osillations test with Eulerian-Lagrangianmodel, obtained by RT0 reonstrution (solid line) and Gaussian RBF reon-strution on a 9-point stenil (dotted line).of 100 s at time step �t = 0:1 s. The time evolution of kineti energy is shownin Figure 6, while the height �eld values omputed throughout the simulationin an element lose to one of the boundaries are shown in Figure 7. It an beobserved that the energy dissipation aused by the interpolation of the Eulerian-Lagrangian method is redued by 20 % when using RBF reonstrution, whereasthe maxima and minima in the height �eld are improved by approximately 10 %.In other tests, even larger improvements were observed. For example, asquare domain of width 20 m was onsidered, whih was disretized by an un-strutured triangular mesh with 3,984 elements and 2,073 nodes. A onstantbasin depth of 2 m was assumed. At initial time, still water was assumed andthe free surfae pro�le was taken to be a Gaussian hill entered at the enterof the domain, with amplitude 0:1 m and standard deviation 2 m. In abseneof any expliit dissipative term, the total energy of the system should be on-served. The free osillations of the uid were simulated for a total of 6 s at aonstant time step �t = 0:01 s. The time evolution of total energy is shown inFigure 8. It an be observed that the energy dissipation aused by the interpo-lation of the Eulerian-Lagrangian method is redued by 40 % when using RBFreonstrution. 19
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We remark that in the ase of Eulerian-Lagrangian models the extra ompu-tational ost due to the use of RBF reonstrution is higher than in the Eulerianase. This is beause the oeÆients whih yield the veloity vetor at the ellenter as linear ombination of the veloity omponents have to be reomputedat eah time step for eah of the trajetory departure points.6 ConlusionThe utility of matrix-valued radial basis funtions for aurate reonstrutionof vetor �elds in uid dynamis problems has been demonstrated. The the-ory of RBF reonstrution has been reviewed and adapted to appliations inomputational uid dynamis. Important omputational aspets onerning theimplementation of the RBF reonstrution method were disussed. A numberof supporting numerial tests have shown that RBF reonstrution improvesthe auray of low order Raviart-Thomas (RT) elements, RT0, while retainingimportant disrete onservation properties, unlike high order RT elements.AknowledgementsThe authors were partly supported by the Max-Plank Institute for Meteorol-ogy, Hamburg, through the ICON projet. Many useful onversations withW. Sawyer on the appliation of RBFs in omputational uid dynamis aregratefully aknowledged, as well as ontributions by T. Heinze and L. Korn-blueh to the development of the ICON shallow water model.Referenes[1℄ M. D. Buhmann, Radial Basis Funtions, Cambridge University Press,Cambridge, UK, 2003.[2℄ A. Iske, Multiresolution Methods in Sattered Data Modelling, Springer,Berlin, 2004.[3℄ H. Wendland, Sattered Data Approximation, Cambridge University Press,Cambridge, UK, 2005.[4℄ C. Franke, R. Shabak, Convergene order estimates of meshless olloa-tion methods using radial basis funtions, Adv. Comput. Math. 8 (1998)381{399.[5℄ C. Franke, R. Shabak, Solving partial di�erential equations by olloationusing radial basis funtions, Appl. Math. Comput. 93 (1998) 73{82.[6℄ H. Wendland, Meshless Galerkin methods using radial basis funtions,Math. Comp. 68 (1999) 1521{1531.22
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