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Abstract

Matrix-valued radial basis functions (RBFs) are applied to obtain ac-
curate local vector field reconstructions from normal components assigned
at the edges of a computational mesh. The theory of RBF reconstruction
for vector-valued functions is first reviewed, before it is adapted to specific
requirements from relevant applications in computational fluid dynamics.
Important computational aspects of the utilized RBF reconstruction, such
as stencil selection, are explained in detail, which makes the method more
accessible to similar problems in geophysical fluid dynamics and related
applications. Extensive numerical comparisons concerning models from hy-
drodynamic problems show that the proposed RBF reconstruction method
significantly improves the accuracy of standard discretizations, while re-
taining discrete conservation properties of important physical quantities,
such as mass, vorticity or potential enstrophy.

1 Introduction

Radial basis functions (RBFs) are powerful tools for interpolation and approxi-
mation of scalar-valued multivariate functions from scattered data, see [1, 2, 3]
for a recent account on theorectical and practical aspects of RBFs and their
applications. RBFs are well-known to provide highly accurate reconstructions,
without imposing too severe restrictions on the spatial distribution of the sample
points where the data are assumed to be known.

In fact, spectral convergence rates can be achieved for RBF interpolation
methods, when appropriate types of radial basis functions, such as Gaussians
or (inverse) multiquadrics, are chosen. Moreover, it can be shown that in this
case also any derivative of the interpolated function can be approximated just
as accurately by the corresponding derivative of the RBF interpolator, see [3,
Chapter 11].

Quite recently, many different meshfree methods were developed to numer-
ically solve partial differential equations by using RBF techniques, where the
utilized approaches include collocation methods [4, 5], Galerkin methods [6],
and semi-Langrangian discretizations [7, 8], to mention but a few.

But the utility of RBF methods has also been shown for mesh-based methods,
such as for instance in [9, 10] where radial basis functions were used to obtain
highly accurate finite volume ENO schemes by local RBF reconstruction from
scattered cell average values. Another example is the recent adaptive ADER
scheme [11], where RBF interpolation is used to construct appropriate error es-
timators for mesh adaption, i.e., coarsening and refinement of triangular mesh
cells. Moreover, RBFs were used in [12] to develop high order approximation
schemes for discretizing differential operators of the shallow water equations.
Similar interpolation approaches based on kriging have also been applied in [13].
In [14, 15], RBF interpolation is essential to achieve accurate semi-Lagrangian
schemes on Cartesian grids with cut boundary cells. In all these applications,



scalar-valued RBFs were used for local interpolation, which allows one to recon-
struct a function at any point in space, given its scalar values in a neighbourhood
of that point.

In this paper, we aim at pursuing further this development by using matriz-
valued RBFs for the interpolation of vector-valued functions. The general setting
of Hermite-Birkhoff interpolation via matrix-valued RBFs is covered in the sem-
inal paper [16] of Narcowich and Ward, where in particular the well-posedness
of the reconstruction problem is explained. Although we believe that the 1994
paper [16] has remarkably great potential for applications in computational fluid
dynamics and related fields, it seems that the rather technical work [16] has not
gained much attention in applications since then.

In the present paper, relevant theoretical details from [16] are first reviewed,
before some of the theory is adapted to the particular requirements from those
applications in computational fluid dynamics which we wish to address here. In
this way, we also wish to make the results of [16] more accessible. The primary
goal of this paper, however, is to provide accurate vector field approximations by
RBF reconstruction in order to improve standard finite element discretizations,
such as low order Raviart-Thomas (RT) elements, see [17, 18].

In such RT finite element methods, discrete vector fields are usually rep-
resented by their components normal to the edges of the computational mesh.
Relevant applications of RT elements include electromagnetic [19] and hydro-
dynamical problems, the latter being the focus of the present paper. Although
higher order RT elements were developed, low order ones lead more easily to nu-
merical methods that exhibit appealing mimetic properties, such as conservation
of mass, vorticity and potential enstrophy. But recent methods from applica-
tions in hydrodynamics, such as [20, 21, 22, 23], rely on the above mentioned
conservation properties. The RBF reconstruction method which we propose in
this paper allows us to enhance the accuracy of low order RT elements, while
retaining their important discrete conservation properties.

The outline of this paper is as follows. In Section 2, key features of vector field
reconstruction by RBF interpolation are first reviewed, before the specific vector
reconstruction problem is explained in Section 3. Important practical aspects
concerning the implementation of the proposed RBF reconstruction method are
addressed, including the construction of customized stencils. In Section 4, the
accuracy of the resulting RBF reconstruction scheme is assessed in comparison
with RT elements of order zero, RTy. This is done on the basis of specific numer-
ical tests, where accuracy rates are determined numerically for both methods,
RBF reconstruction and the RT elements RTy. Finally, in Section 5, the prac-
tical relevance of the proposed RBF vector field reconstruction is demonstrated
by using two different shallow water models, aiming at atmospheric and coastal
modelling, respectively.



2 Vector Field Reconstruction from Hermite-Birkhoff
Data

This section addresses the reconstruction of vector-valued functions from scat-
tered Hermite-Birkhoff data. In order to explain this problem, let v : R? — R
denote a vector-valued function, u = (uy,...,u,). Moreover, assume that for a
finite set A = {A}aca of linearly independent vector-valued linear functionals,
samples A\(u) € R are given, where the action of any A = (A\,...,\,) € A on u
is defined as

Au) =) Ap(up).
k=1

Reconstruction of v from values {A(u) : A € A} requires finding a recovery
function s : R* — R” satisfying

A(s) = AMu), for all A € A, (1)

or, s‘A = u‘A, in short hand notation. The approach taken in this paper works
with matrix-valued radial basis functions (RBFs), as suggested in the seminal
paper [16] by Narcowich and Ward.

In order to explain reconstruction by matrix-valued RBFs, let & : R —
R™*™ be a matrix-valued function, with scalar-valued components ¢, : RY - R,
ie.,

®(x) = (djr(x))1<jh<n € R, for x € RY, (2)

and, moreover, we assume that @ is even, i.e., ®(x) = ®(—x). For any functional
), the convolution product A @ : R — R is defined componentwise as

[ * ®];(x) :Z)\kqﬁjk(x—-), for 1 <j <n.
k=1

Suitable entries for the components of ® in (2) are radial basis functions,
¢(r) = ¢ji(r), 7 = |x[|, where popular choices include Gaussians, ¢(r) = e,
multiquadrics, ¢(r) = v 1 + 72, and inverse multiquadrics, ¢(r) = 1/v/1 + r2.

According to the RBF reconstruction scheme, the interpolant s in (1) is
required to have the form

s=T17+® +p, (3)
where the dual functional 7 is a linear combination of elements in A,

=Y

HEA

and where p : R — R” is a vector-valued polynomial, p = (p1,...,p,), in d
variables, each of whose components p; : R - R 1< j < n, is, for some
specific m depending on ®, of order at most m. We collect all such polynomials
in the linear space pn,



Note that the interpolant s in (3) contains a vector ¢ = (c,)ucn € RY of
N = |A| unknown coefficients in its major part 7 * ®, and Q = n X (mft}”)
further unknowns in its polynomial part p. The given reconstruction problem
(1), however, contains only N conditions. In order to eliminate the @ degrees of
freedom, we require that the dual functional 7 in the major part of s in (3) lies

in the linear space
L= {T:T(p) =0, forallp e Pﬁ;"}

of all dual functionals whose action on any polynomial from PE™ is zero.

Now solving the reconstruction problem (1) under linear constraints (5) with
assuming (3) for the form of the interpolant s, amounts to solving the (N x Q)-
by-(N x @) linear equation system

Ac+ Pd = u‘A (4)
P = 0 (5)

where
A=Ap*®),,er ERVY and P =(Apr)) rea € RV*C - (6)

1<0<Q

with p1,...,pg being a basis of pm

By using a standard argument from radial basis function interpolation [24], it
is straightforward to show that the linear system (4),(5) is well-posed, provided
that ® is conditionally positive definite.

Definition 1 We say that ® is conditionally positive definite of order
m, ® € CPD(m), iff the quadratic form

Z cux A (p x @)
AEA
is positive for any set A of linearly independent functionals and any non-zero
vector ¢ = (c,) € RN \ {0} satisfying c'P =0, i.e.,
Z A(p) =0, for all p € P, (7)
AEA

We say that ® is positive definite, ® € PD, iff ® is conditionally positive
definite of order 0.

In order to keep this paper widely self-contained, we repeat that quite in-
structive standard argument.



Theorem 1 Suppose ® € CPD(m). Then the linear reconstruction problem
(1) has under constraints (7) a unique solution s of the form (3), provided that
forp e ’Pgi", the implication

Alp) =0, forallXeA = p=0, (8)
holds.

Proof: First note that the problem (1),(7) is equivalent to the problem
(4),(5). In order to show that the linear system (4),(5) has a unique solution
for ® € CPD(m), we regard the homogeneous system belonging to (4),(5).
Multiplying (4) from left with ¢! with using (5) immediately yields ¢! Ac = 0.
But since & € CPD(m), this implies ¢ = 0, and so (4) becomes Pd = 0. In
order to see that also d = 0, note that (8) is equivalent to requiring P is injective.
Hence, the solution of the homogeneous system belonging to (4),(5) is uniquely
given by zero, which completes our proof. |

Note that the condition (8), often referred to as the unisolvence of A with
respect to the polynomials Pff;”, is equivalent to requiring that each polynomial
pE PE" can uniquely be reconstructed from its samples {A(p): A € A}. This
condition is rather weak. Indeed, for the special case, where m = 0, the condition
(8) is empty, and so the interpolant s in (3) contains no polynomial part. In
this case, according to Theorem 1, it it sufficient to require ® € PD in order
to guarantee the well-posedness of reconstruction problem (1). Let us formulate
this important observation in a seperate corollary.

Corollary 1 For ® € PD, the reconstruction problem (1) has a unique solution
s of the form

s(2) = 3 culi + ®),

BEA

where the unknown coefficients ¢ = (cu)uen of s can be computed by solving the
linear equation system Ac = u‘A, whose coefficient matriz A in (6) is positive
definite. |

In the remainder of this section, we show that a diagonal ® is conditionally
positive definite of order m, if and only if all its diagonal components ¢;;, 1 <
j < mn, are conditionally positive definite of order m.

To this end, first note that the Definition 1 for CPD(m) covers the special
case where n = 1, so that it makes sense to require ¢;; € CPD(m) for the
individual scalar-valued components in the diagonal of ®. But for this special
case, the class of conditionally positive definite functions is well-understood [24],
see also the characterization of the function class CPD(m) in [25, 26, 27].

Now it is straightforward to show that the following observation is true.



Lemma 1 Let ® : RY — R™ " be a diagonal matriz-valued function of the form

11

Pnn

with scalar-valued diagonal components ¢j;, 1 < j < n. Then, ® is conditionally
positive definite of order m, iff every diagonal component ¢;; is conditionally
positive definite of order m, i.e.,

¢j; € CPD(m) foralll<j<n = ® € CPD(m).

Proof: Regard for any pair u, A € A the quadratic form

Yoo ®) = Y cuen Yy (N ir(x—y)) 9)

HAEA HAEA Jsk=1
n
= > ey mi(\gix—y)
HAEA Jj=1
n
= Z Z c#ck,u;-‘(kzlgbjj(x -yl - (10)
J=1 | wAeA

Now, according to [25], for each ¢;; € CPD(m) the quadratic form

> cuea; (A djj(x —y)) = > cueani(Aj * jj)

AEA wAEA

is positive for any non-vanishing ¢ = (cy)yea € RY \ {0}, satisfying

Z caj(p) =0, for all p € P41
AEA

But this, in combination with the representation (10) for the quadratic form
(9), immediately implies that (9) is positive for all non-vanishing ¢ € RV \ {0}
satisfying

Z exi(p) =0, for all p € P4m,

and so ® is conditionally positive definite of order m, ® € CPD(m).
As for the converse, it is easy to see from (10) that ® € CPD(m) implies
¢j; € CPD(m), for any 1 < j < n, which completes our proof. [ |



3 Local Vector Field Reconstruction in Two Dimen-
sions

We now formulate the specific vector reconstruction problem that we wish to
address in hydrodynamical applications, some of which are discussed in Section 5.
In this particular case we work with planar vector fields u : R? — R?, u =
[u1,us], so that d = 2 and n = 2. Moreover, we assume we are given a (possibly
scattered) set X = {xi,...,xy} C R? of N pairwise distinct planar points,
where each point x; € X corresponds to a unit vector n; = [nzl,nf]T € R?,
1<i<N.

Now we wish to reconstruct a smooth vector field u : R?> — R?, from given
scalar samples u; = u(x;) n; € R, for 1 <7 < N. According to the more general
reconstruction problem, formulated in the previous section, we are concerned
with solving the reconstruction problem

Ai(a) = \i(s), for 1 <i< N,

where \; = dx, - n;, and where dx, denotes the Dirac point evaluation functional,
defined as dx,(u) = u(x;), for 1 <i < N.

Now the recovery function s : R? — R? is required to have the form (3).
Hence, each term in the major part of s has the form

X —X; nl
P11 ( .) ;] | (1)

(1+ ®)(x) = B(x —x;) -0 = [
¢22(X — xz)n

In the implementation of RBF reconstruction in Sections 4 and 5, we prefer
to work with positive definite radial basis functions, i.e., ® € PD. Recall from
Lemma 1 that in this case we require ¢11, poo € PD. Possible choices for the
diagonal entries in @ are, for instance, the Gaussians ¢(r) = e’ ¢ PD for
any a > 0, or the inverse multiquadrics, ¢(r) = (2 +r2)~ /2 € PD for ¢ # 0.
In this case, no polynomial part is included in the scheme, in which case the
interpolant s has the form

s(x) = Zci

=1

1
Pz (x — x;)n?

[¢11(x - xz-)nll

whose unknown coefficients ¢ = (ci,...,cy)? € RY are computed by solving the
linear system Ac = u‘A in (4).

4 Comparison between RBF and RT Vector Field

Reconstruction

In this section, we report on selected numerical experiments in order to discuss
the effective accuracy order of RBF reconstruction by using the positive definite



Gaussians, i.e., where we let ¢1(r) = ¢o(r) = ¢(r) = e /4 € PD. Due to
the theory of RBF interpolation [3, Chapter 11], spectral convergence rates are
expected in this case. One should note, however, that the spectral condition
number x(A) of the arising interpolation matrix A is, as a function of the min-
imal distance between different sample points, of exponential growth. This is
due to the uncertainty principle of RBF reconstruction, which says that none of
the commonly used radial basis functions manages to combine good approxima-
tion behaviour with a numerically stable reconstruction process. This dilemma,
discovered by Schaback [28], requires carefully selecting available method pa-
rameters in order to obtain a reasonable trade-off between the two conflicting
requirements, i.e., high approximation order and good numerical stability.

Our numerical results concerning RBF interpolation, as reflected by Tables 1
and 2, are involving four different stencils of sizes N = 3,9,15,21. The four
stencils are shown in Figure 1. Note that for either stencil, the interpolation
points are lying on a hexagonal grid. This is in order to reasonably balance the
methods’ resulting accuracy, on the one hand, and their numerical stability, on
the other hand. For further motivation concerning this particular point sampling
we refer to our previous findings in [2, Subsection 3.9].

\VAVAVARVAVAVARVAVAV

(a) N =3 (b) N=9 (c) N =15 (d) N =21

Figure 1: Stencils of different sizes N for accuracy tests.

To evaluate the methods’ approximation behaviour, we consider the resulting
maximal error € = ||s—u|| o among the barycenters of the triangles in the stencils’
corresponding Delaunay triangulation, see Figure 1. Similar to the assessment
in our previous paper [14] for RBF reconstruction for the scalar case, we consider
using the vector field

u [ cos(km(z—3))sin(k w(y—1))
v ) \Usin(km(z— 1)) cos(k m(y—1) )’
where increasingly denser data sets are used. The data sets were generated by
scaling the interpolation points X, so that gx = h =27",1=0,1,2, 3,4, for the
separation distance
gx = min [x -y
xZy

of the interpolation points in stencil X.



The numerical results in Table 1 show the approximation error ¢(RT() ob-
tained when using Raviart-Thomas elements of order zero, RT, in comparision
with the approximation error ¢(RBF) from RBF reconstruction by Gaussians.
Table 1 also shows the corresponding spectral condition number x(A) of the RBF
interpolation matrix A. Moreover, estimates for convergence rates, obtained
by the two different methods, RBF and RTy, are displayed in Table 1. The
test were performed for a decreasing sequence of separation distances h = 27,
1 =20,1,2,3,4, just before the linear system of RBF interpolation becomes nu-
merically unstable, due to too large spectral condition numbers, cf. the last
column of Table 1.

Table 1: Comparison between RTy and RBF reconstruction by Gaussians for the
15-point stencil in Figure 1 (¢). The relative approximation error €, approximate
convergence rate, and spectral condition number x(A) of the corresponding RBF
interpolation matrix A are shown, respectively.

‘ h ‘ e(RTo) rate ‘ ¢(RBF) rate ‘ k(A) ‘
270 | 7.177-107! - 7.248 - 107! - 3.625 - 10*
2-113.070-10~" 1.225 | 1.151-10~"" 2.654 | 2.511-10°
272 11.349-10"" 1.187 | 1.451-10"%2 2.988 | 1.650 - 10°
D) 3
9 4

6.238-10°2 1.112 | 1.773-10"% 3.033 | 1.064 - 1019
2.991-1072 1.060 | 2.178-10~*% 3.025 | 6.833 - 10!

All linear systems were solved by Gauss elimination, and for the results in Ta-
ble 1, the 15-point stencil of Figure 1 (¢) was utilized. As expected, we obtain
linear convergence for Raviart-Thomas reconstruction of order zero, whereas
RBF reconstruction yields third order accuracy, see Table 1. Moreover, de-
spite the small separation distance of up to h = 274, RBF interpolation is still
very robust. But for smaller values of h, the corresponding linear system is
ill-conditioned, so that it does not make sense to further evaluate the method’s
accuracy.

In a second test case, we compare the approximation quality of Gaussian
RBF reconstruction for four different stencils of sizes N = 3,9, 15, 21, displayed
in Figure 1. Our numerical results are reflected by Table 2 (for N = 3,9,21)
and Table 1 (for N = 15).

Not too surprisingly, the accuracy order is increasing with the size N of the
utilized stencils, see Table 1 and 2. Indeed, the stencil with N = 21 interpola-
tion points yields the best accuracy rate among the four stencils, namely slightly

10



Table 2: RBF reconstruction by Gaussians for stencils of different sizes IV, see
Figure 1.

| h | e(N=3) rate | e(N=9) vrate [e(N=21) nrate |
270 [ 7177 . 107! - 7.156 - 107! - 7.180 - 10! -
2-113.070-10"" 1.225 | 1.251-10~! 2.516 | 8.767-10"% 3.034
272 11.349-10"" 1.187 | 1.769-10~2 2.823 | 1.181-10~% 2.892
2 3
9 4

6.238 - 102 1.112 ] 2.594-10~3 2.770 | 1.819-10~3 2.698
2.991-1072 1.060 | 4.270-10~* 2.603 | 9.958 - 10> 4.192

above order four, whereas the stencil with N = 3 points yields first order ac-
curacy only, which is about comparable to the convergence rate obtained from
Raviart-Thomas reconstruction of order zero, RTy. In other words, for any sten-
cil with more than three interpolation points, RBF reconstruction by Gaussians
is superior to RTq reconstruction. Further supporting numerical results were
recently recorded in [29].

5 Application to Fluid Dynamics Problems

In this section, we discuss applications of the proposed RBF reconstruction
method to computational fluid dynamics models. More specifically, we will re-
fer to models for the shallow water equations using discretization approaches in
which the velocity field is represented by its normal components with respect to
the mesh edges. The shallow water equations model the two dimensional flow
of a thin fluid layer in domains whose characteristic wave length in the hori-
zontal is much larger than the fluid depth. The shallow water equations result
from the Navier-Stokes equations when the hydrostatic assumption holds and
only barotropic and adiabatic motions are considered. Furthermore, a vertical
average is performed, so that only mean values for the velocities in the horizon-
tal directions are considered, see e.g. [30]. The shallow water equations can be
written as

Oh

SV (Hv) =0, (12)
ov
E + (V . V)V = —fk XV — th. (13)

Here, v denotes the two-dimensional velocity vector, k is the radial unit
vector perpendicular to the plane on which v is defined (or to the local tangent
plane, in case of applications in spherical geometry), & is the height of the fluid
layer above a reference level, H = h — h, is the thickness of the fluid layer, A
is the orographic or bathymetric profile, g is the gravitational constant, and f

11



is the Coriolis parameter. This formulation is the starting point for Eulerian-
Lagrangian discretizations. Another widely used formulation for applications
to large scale atmospheric dynamics is the so called vector invariant form, see
e.g. [31], which can be written as

88—:2—(C+f)k><v—V(gh+K>. (14)
Here, ¢ is the component of relative vorticity in the direction of k and K de-
notes the kinetic energy. This formulation is usually the starting point for the
derivation of energy, potential enstrophy and potential vorticity preserving dis-
cretizations, see e.g. [32].

Spatial discretizations with staggered arrangements of the discrete variables
are popular for the shallow water equations, since they allow for better represen-
tation of the gravity wave propagation, see e.g. [33]. On unstructured grid, an
analog of a staggered discretization is given by the zero order Raviart-Thomas
elements RTy, see e.g. [17]. Although high order RT elements are also available,
the low order ones, RT( elements, lead more easily to numerical methods that
exhibit important discrete conservation properties, such as discrete mass or vor-
ticity preservation. These properties are important for a number of applications
and various methods which take advantage of them is discussed in the two fol-
lowing subsections. The main point here is that the accuracy of these models
has been limited so far by the first order convergence of the RT( elements. As
it will be shown in the following, matrix-valued RBF reconstruction can effec-
tively improve these methods, by achieving a more accurate discretization of the
nonlinear momentum advection terms, either in Kulerian or in semi-Lagrangian
formulations. Although in general this is not sufficient to raise the convergence
order of the overall methods, models employing RBF reconstructions display sig-
nificantly smaller errors and have in general less numerical dissipation, making
their use attractive for a number of applications.

5.1 FEulerian Shallow Water Models

Eulerian discretizations of equations (12),(14) have been proposed in [20, 21],
which preserve discrete approximations of mass, vorticity and potential enstro-
phy. These properties are important for numerical models of general atmospheric
circulation, especially for applications to climate modelling. The two time level,
semi-implicit scheme in these papers used RT reconstruction to compute the
nonlinear terms in the discretization of (14). Here, we will compare results
obtained with a three-time level, semi-implicit time discretization, coupled to
the potential enstrophy preserving spatial discretization of [21], using either the
Raviart-Thomas algorithm or a vector RBF reconstruction of the velocity field
necessary for the solution of equation (14). For these tests, we employed RBF re-
construction using the positive definite Gaussians, where ¢(r) = e, Moreover,
a 9-point stencil was employed, see Figure 1 (b), using the normal components

12



to the edges of the triangle on which the interpolation is being carried out and
to the edges of its nearest neighbours (i.e., of the triangles which have common
edges with it).

We consider one stationary and two non-stationary test cases for the shallow
water equations belonging to the set of standard benchmark problems intro-
duced in [31]. First, we study how the algorithm performs when applied to test
case 3 of the standard shallow water suite [31], which consists of a steady-state,
zonal geostrophic flow with a narrow jet at midlatitudes. For this test case, an
analytic solution is available, so that errors can be computed by applying the
numerical method at different resolutions. The values of the relative error in
various norms, as computed at day 2 with different spatial resolutions and with
time step At = 1800 s, is displayed in Tables 3 and 4 for both Raviart Thomas
elements and vector RBF reconstruction, respectively. It can be observed that,
although the convergence rates remain approximately unchanged (due to the fact
that the approximately second order discretization of the geopotential gradient
was the same in both tests), the errors both in the height and velocity fields have
decreased by an amount that ranges approximately between 30 % and 50 %.

Table 3: Relative errors for nonlinear terms in shallow water test case 3 obtained
by using RT( reconstruction.

Level | #o-error, h | £9-error, v | £o-error, h | £oo-error, v
3 7.42e-3 0.25 2.53e-2 0.33
4 1.94e-3 5.9e-2 8.1e-3 9.1e-2
5 6.05e-4 1.27e-2 2.9¢e-3 1.87e-2
6 2.54e-4 3.19¢-3 1.24e-3 4.17e-3

Table 4: Relative errors for nonlinear terms in shallow water test case 3 obtained
by using Gaussian RBF reconstruction on a 9-point stencil, see Figure 1 (b).

Level | #o-error, h | £9-error, v | £oo-error, h | £oo-error, v
3 7.27e-3 0.16 2.08e-2 0.17
4 1.52e-3 3.38e-2 6.74e-3 5.77e-2
5 4.05e-4 7.7e-3 1.7e-3 1.22e-2
6 1.45e-4 2.11e-3 4.8e-4 2.89e-3

We have then considered the non-stationary test case 5 of [31], for which
the initial datum consists of a zonal flow impinging on an isolated mountain of
conical shape. The imbalance in the initial datum leads to the development of a
wave which propagates all around the globe. This test is relevant to understand
the response of the numerical model to orographic forcing and it has been a
common benchmark since the development of the first spectral models. Plots of

13



the meridional velocity component at simulation day 5 are shown in Figure 2,
as computed using the constant timestep At = 900 s on an icosahedral grid
at spatial resolution of approximately 240 km. We observe that the meridional
velocity field obtained by using RT finite elements is much less regular than that
obtained by RBF reconstruction, which complies with previous results obtained
in similar reference simulations at higher resolution.

Finally, we have considered the non-stationary test case 6 of [31], for which
the initial datum consists of a Rossby-Haurwitz wave of wavenumber 4. This
type of wave is an analytic solution for the barotropic vorticity equation, which
can also be used to test shallow water models on a time scale of up to 10-15
days. The relative vorticity field is shown in Figure 3, as computed at day 5
with a timestep of At = 900 s on an icosahedral grid with a spatial resolution
of approximately 240 km. It can be observed that, when using RT( recon-
struction, the structure of some vorticity extrema is disrupted, while spurious
maxima and minima appear close to the poles. This is in contrast to the more
regular field obtained by RBF reconstruction, which better complies with high
resolution reference simulations. Furthermore, the relative change in total en-
ergy for both model runs is displayed in Figure 3. It can be observed that total
energy loss is reduced by approximately 30 % when using RBF reconstruction,
thus improving the energy conservation properties of the model, which conserves
potential enstrophy but not energy as discussed in [21]. We remark that for Eu-
lerian models, additional computational costs required for RBF reconstruction
can significantly be reduced. Indeed, it is possible to compute for each grid cell
a set of time independent coefficients which yield the velocity vector at the cell
center as linear combination of the velocity components at the points included
in the RBF stencil. For the model runs described above, it was observed that
RBF reconstruction increases, in comparison with the simpler scheme RT, the
required CPU time by approximately 20 %.

5.2 Eulerian-Lagrangian Shallow Water Models

Numerical methods for the shallow water equations using formulation (12),(13)
have been proposed in [22, 23], which couple a mass conservative, semi-implicit
discretization on unstructured Delaunay meshes to an Eulerian-Lagrangian treat-
ment of momentum advection. The resulting methods are highly efficient due
to their rather weak stability restrictions, while mass conservation allows for
their practical (and successful) application to a number of pollutant and sed-
iment transport problems. A key step of the Eulerian-Lagrangian method is
the interpolation at the foot of characteristic lines, which in the papers quoted
above is performed by RTy elements or by low order interpolation procedures
based on area weighted averaging. These interpolators have at most first order
convergence rate and can introduce large amounts of numerical diffusion, which
limits their applicability especially in long term simulations.

Firstly, the test proposed in [12] has been carried out, in which a 800 m long
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(a) Reconstruction by RT (b) Reconstruction by Gaussian RBF

Figure 2: Meridional velocity in shallow water test case 5, obtained by (a)
RT reconstruction (b) Gaussian RBF reconstruction on a 9-point stencil. The

contour line spacing is 6 ms™ .

and 800 m wide basin was considered. The domain was discretized by an unstruc-
tured triangular mesh with 26,812 elements and 13,868 nodes, corresponding to
a horizontal resolution of approximately 2 km. The basin depth was taken to
be 20 m. A periodic inflow boundary condition was imposed on the free surface,
with an amplitude of 1 m and a period of approximately 12 h. The result-
ing wavefront, computed after approximately 30 h by the Eulerian-Lagrangian
method of [23], with using either RT( elements or RBF reconstruction at the
foot of the characteristic, is displayed in Figure 5, It can be observed that for
RBF reconstruction the wavefront is much sharper and the computed discharge
rate at a given location along the basin reaches considerably higher values. The
maximum in the free surface elevation (which would be equal to the maximum
boundary value in the linear regime) is better captured by approximately 10 %.
We remark that for specific quantities, such as free surface elevation, this leads
to significant improvements in a number of relevant applications, such as flood-
ing prediction in the Venice Lagoon, which is at end of a closed sea basin of
approximately the same magnitude.

Furthermore, another shallow water test involving a closed rectangular basin,
150 m long and 15 m wide, was performed, whose discretization is given by
an unstructured triangular mesh with 3,646 elements and 1,984 nodes. For
the free surface, an unbalanced initial datum was assumed, given by n(z) =
ho cos(zm/150). The amplitude of the disturbance was taken to be equal to
ho = 0.1 and the initial velocity fields were assumed to be zero. The resulting
free oscillations have been simulated by the same method described above, using
again either RT( elements or matrix-valued RBFs for reconstruction at the foot
of the characteristic. The free oscillations of the fluid were simulated for a total
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Figure 3: Relative vorticity in shallow water test case 6, obtained by (a) RT re-

construction (b) Gaussian RBF reconstruction on a 9-point stencil. The contour

line spacing is 107° ms™".
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Figure 5: Free surface elevation in long channel test, obtained from RT( recon-
struction (dotted line) and Gaussian RBF reconstruction on a 9-point stencil
(solid line).
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Figure 6: Kinetic energy for free oscillations test with Eulerian-Lagrangian
model, obtained by RTy reconstruction (solid line) and Gaussian RBF recon-
struction on a 9-point stencil (dotted line).

of 100 s at time step At = 0.1 s. The time evolution of kinetic energy is shown
in Figure 6, while the height field values computed throughout the simulation
in an element close to one of the boundaries are shown in Figure 7. It can be
observed that the energy dissipation caused by the interpolation of the Eulerian-
Lagrangian method is reduced by 20 % when using RBF reconstruction, whereas
the maxima and minima in the height field are improved by approximately 10 %.

In other tests, even larger improvements were observed. For example, a
square domain of width 20 m was considered, which was discretized by an un-
structured triangular mesh with 3,984 elements and 2,073 nodes. A constant
basin depth of 2 m was assumed. At initial time, still water was assumed and
the free surface profile was taken to be a Gaussian hill centered at the center
of the domain, with amplitude 0.1 m and standard deviation 2 m. In absence
of any explicit dissipative term, the total energy of the system should be con-
served. The free oscillations of the fluid were simulated for a total of 6 s at a
constant time step At = 0.01 s. The time evolution of total energy is shown in
Figure 8. It can be observed that the energy dissipation caused by the interpo-
lation of the Eulerian-Lagrangian method is reduced by 40 % when using RBF
reconstruction.
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Figure 7: Height field time series at boundary element for free oscillations test
with Eulerian-Lagrangian model, obtained by RT( reconstruction (solid line)
and Gaussian RBF reconstruction on a 9-point stencil (dotted line).
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Figure 8: Relative change in total energy for free oscillations test with Eulerian-
Lagrangian model, obtained by RTq reconstruction (solid line) and Gaussian
RBF reconstruction on a 9-point stencil (dotted line).
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We remark that in the case of Eulerian-Lagrangian models the extra compu-
tational cost due to the use of RBF reconstruction is higher than in the Eulerian
case. This is because the coefficients which yield the velocity vector at the cell
center as linear combination of the velocity components have to be recomputed
at each time step for each of the trajectory departure points.

6 Conclusion

The utility of matrix-valued radial basis functions for accurate reconstruction
of vector fields in fluid dynamics problems has been demonstrated. The the-
ory of RBF reconstruction has been reviewed and adapted to applications in
computational fluid dynamics. Important computational aspects concerning the
implementation of the RBF reconstruction method were discussed. A number
of supporting numerical tests have shown that RBF reconstruction improves
the accuracy of low order Raviart-Thomas (RT) elements, RT(, while retaining
important discrete conservation properties, unlike high order RT elements.
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