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Abstra
tMatrix-valued radial basis fun
tions (RBFs) are applied to obtain a
-
urate lo
al ve
tor �eld re
onstru
tions from normal 
omponents assignedat the edges of a 
omputational mesh. The theory of RBF re
onstru
tionfor ve
tor-valued fun
tions is �rst reviewed, before it is adapted to spe
i�
requirements from relevant appli
ations in 
omputational 
uid dynami
s.Important 
omputational aspe
ts of the utilized RBF re
onstru
tion, su
has sten
il sele
tion, are explained in detail, whi
h makes the method morea

essible to similar problems in geophysi
al 
uid dynami
s and relatedappli
ations. Extensive numeri
al 
omparisons 
on
erning models from hy-drodynami
 problems show that the proposed RBF re
onstru
tion methodsigni�
antly improves the a

ura
y of standard dis
retizations, while re-taining dis
rete 
onservation properties of important physi
al quantities,su
h as mass, vorti
ity or potential enstrophy.1 Introdu
tionRadial basis fun
tions (RBFs) are powerful tools for interpolation and approxi-mation of s
alar-valued multivariate fun
tions from s
attered data, see [1, 2, 3℄for a re
ent a

ount on theore
ti
al and pra
ti
al aspe
ts of RBFs and theirappli
ations. RBFs are well-known to provide highly a

urate re
onstru
tions,without imposing too severe restri
tions on the spatial distribution of the samplepoints where the data are assumed to be known.In fa
t, spe
tral 
onvergen
e rates 
an be a
hieved for RBF interpolationmethods, when appropriate types of radial basis fun
tions, su
h as Gaussiansor (inverse) multiquadri
s, are 
hosen. Moreover, it 
an be shown that in this
ase also any derivative of the interpolated fun
tion 
an be approximated justas a

urately by the 
orresponding derivative of the RBF interpolator, see [3,Chapter 11℄.Quite re
ently, many di�erent meshfree methods were developed to numer-i
ally solve partial di�erential equations by using RBF te
hniques, where theutilized approa
hes in
lude 
ollo
ation methods [4, 5℄, Galerkin methods [6℄,and semi-Langrangian dis
retizations [7, 8℄, to mention but a few.But the utility of RBF methods has also been shown for mesh-based methods,su
h as for instan
e in [9, 10℄ where radial basis fun
tions were used to obtainhighly a

urate �nite volume ENO s
hemes by lo
al RBF re
onstru
tion froms
attered 
ell average values. Another example is the re
ent adaptive ADERs
heme [11℄, where RBF interpolation is used to 
onstru
t appropriate error es-timators for mesh adaption, i.e., 
oarsening and re�nement of triangular mesh
ells. Moreover, RBFs were used in [12℄ to develop high order approximations
hemes for dis
retizing di�erential operators of the shallow water equations.Similar interpolation approa
hes based on kriging have also been applied in [13℄.In [14, 15℄, RBF interpolation is essential to a
hieve a

urate semi-Lagrangians
hemes on Cartesian grids with 
ut boundary 
ells. In all these appli
ations,2



s
alar-valued RBFs were used for lo
al interpolation, whi
h allows one to re
on-stru
t a fun
tion at any point in spa
e, given its s
alar values in a neighbourhoodof that point.In this paper, we aim at pursuing further this development by using matrix-valued RBFs for the interpolation of ve
tor-valued fun
tions. The general settingof Hermite-Birkho� interpolation via matrix-valued RBFs is 
overed in the sem-inal paper [16℄ of Nar
owi
h and Ward, where in parti
ular the well-posednessof the re
onstru
tion problem is explained. Although we believe that the 1994paper [16℄ has remarkably great potential for appli
ations in 
omputational 
uiddynami
s and related �elds, it seems that the rather te
hni
al work [16℄ has notgained mu
h attention in appli
ations sin
e then.In the present paper, relevant theoreti
al details from [16℄ are �rst reviewed,before some of the theory is adapted to the parti
ular requirements from thoseappli
ations in 
omputational 
uid dynami
s whi
h we wish to address here. Inthis way, we also wish to make the results of [16℄ more a

essible. The primarygoal of this paper, however, is to provide a

urate ve
tor �eld approximations byRBF re
onstru
tion in order to improve standard �nite element dis
retizations,su
h as low order Raviart-Thomas (RT) elements, see [17, 18℄.In su
h RT �nite element methods, dis
rete ve
tor �elds are usually rep-resented by their 
omponents normal to the edges of the 
omputational mesh.Relevant appli
ations of RT elements in
lude ele
tromagneti
 [19℄ and hydro-dynami
al problems, the latter being the fo
us of the present paper. Althoughhigher order RT elements were developed, low order ones lead more easily to nu-meri
al methods that exhibit appealing mimeti
 properties, su
h as 
onservationof mass, vorti
ity and potential enstrophy. But re
ent methods from appli
a-tions in hydrodynami
s, su
h as [20, 21, 22, 23℄, rely on the above mentioned
onservation properties. The RBF re
onstru
tion method whi
h we propose inthis paper allows us to enhan
e the a

ura
y of low order RT elements, whileretaining their important dis
rete 
onservation properties.The outline of this paper is as follows. In Se
tion 2, key features of ve
tor �eldre
onstru
tion by RBF interpolation are �rst reviewed, before the spe
i�
 ve
torre
onstru
tion problem is explained in Se
tion 3. Important pra
ti
al aspe
ts
on
erning the implementation of the proposed RBF re
onstru
tion method areaddressed, in
luding the 
onstru
tion of 
ustomized sten
ils. In Se
tion 4, thea

ura
y of the resulting RBF re
onstru
tion s
heme is assessed in 
omparisonwith RT elements of order zero, RT0. This is done on the basis of spe
i�
 numer-i
al tests, where a

ura
y rates are determined numeri
ally for both methods,RBF re
onstru
tion and the RT elements RT0. Finally, in Se
tion 5, the pra
-ti
al relevan
e of the proposed RBF ve
tor �eld re
onstru
tion is demonstratedby using two di�erent shallow water models, aiming at atmospheri
 and 
oastalmodelling, respe
tively.
3



2 Ve
tor Field Re
onstru
tion from Hermite-Birkho�DataThis se
tion addresses the re
onstru
tion of ve
tor-valued fun
tions from s
at-tered Hermite-Birkho� data. In order to explain this problem, let u : Rd ! Rndenote a ve
tor-valued fun
tion, u = (u1; : : : ; un). Moreover, assume that for a�nite set � = f�g�2� of linearly independent ve
tor-valued linear fun
tionals,samples �(u) 2 R are given, where the a
tion of any � = (�1; : : : ; �n) 2 � on uis de�ned as �(u) = nXk=1 �k(uk):Re
onstru
tion of u from values f�(u) :� 2 �g requires �nding a re
overyfun
tion s : Rd ! Rn satisfying�(s) = �(u); for all � 2 �; (1)or, s��� = u���, in short hand notation. The approa
h taken in this paper workswith matrix-valued radial basis fun
tions (RBFs), as suggested in the seminalpaper [16℄ by Nar
owi
h and Ward.In order to explain re
onstru
tion by matrix-valued RBFs, let � : Rd !Rn�n be a matrix-valued fun
tion, with s
alar-valued 
omponents �jk : Rd ! R,i.e., �(x) = (�jk(x))1�j;k�n 2 Rn�n ; for x 2 Rd ; (2)and, moreover, we assume that� is even, i.e., �(x) = �(�x). For any fun
tional�, the 
onvolution produ
t � �� : Rd ! Rn is de�ned 
omponentwise as[� ��℄j(x) = nXk=1 �k�jk(x� �); for 1 � j � n:Suitable entries for the 
omponents of � in (2) are radial basis fun
tions,�(r) � �jk(r), r = kxk, where popular 
hoi
es in
lude Gaussians, �(r) = e�r2 ,multiquadri
s, �(r) = p1 + r2, and inverse multiquadri
s, �(r) = 1=p1 + r2.A

ording to the RBF re
onstru
tion s
heme, the interpolant s in (1) isrequired to have the form s = � ��+ p; (3)where the dual fun
tional � is a linear 
ombination of elements in �,� = X�2� 
��;and where p : Rd ! Rn is a ve
tor-valued polynomial, p = (p1; : : : ; pn), in dvariables, ea
h of whose 
omponents pj : Rd ! R, 1 � j � n, is, for somespe
i�
 m depending on �, of order at most m. We 
olle
t all su
h polynomialsin the linear spa
e Pd;nm . 4



Note that the interpolant s in (3) 
ontains a ve
tor 
 = (
�)�2� 2 RN ofN = j�j unknown 
oeÆ
ients in its major part � � �, and Q = n � �m�1+dd �further unknowns in its polynomial part p. The given re
onstru
tion problem(1), however, 
ontains only N 
onditions. In order to eliminate the Q degrees offreedom, we require that the dual fun
tional � in the major part of s in (3) liesin the linear spa
e L?m = n� : �(p) = 0; for all p 2 Pd;nm oof all dual fun
tionals whose a
tion on any polynomial from Pd;nm is zero.Now solving the re
onstru
tion problem (1) under linear 
onstraints (5) withassuming (3) for the form of the interpolant s, amounts to solving the (N �Q)-by-(N �Q) linear equation systemA
+ Pd = u��� (4)
TP = 0 (5)where A = (�(� ��))�;�2� 2 RN�N and P = (�(p`)) �2�1�`�Q 2 RN�Q ; (6)with p1; : : : ; pQ being a basis of Pd;nm .By using a standard argument from radial basis fun
tion interpolation [24℄, itis straightforward to show that the linear system (4),(5) is well-posed, providedthat � is 
onditionally positive de�nite.De�nition 1 We say that � is 
onditionally positive definite of orderm, � 2 CPD(m), i� the quadrati
 formX�;�2� 
�
��(� ��)is positive for any set � of linearly independent fun
tionals and any non-zerove
tor 
 = (
�) 2 RN n f0g satisfying 
TP = 0, i.e.,X�2� �(p) = 0; for all p 2 Pd;nm : (7)We say that � is positive definite, � 2 PD, i� � is 
onditionally positivede�nite of order 0.In order to keep this paper widely self-
ontained, we repeat that quite in-stru
tive standard argument. 5



Theorem 1 Suppose � 2 CPD(m). Then the linear re
onstru
tion problem(1) has under 
onstraints (7) a unique solution s of the form (3), provided thatfor p 2 Pd;nm , the impli
ation�(p) = 0; for all � 2 � =) p = 0; (8)holds.Proof: First note that the problem (1),(7) is equivalent to the problem(4),(5). In order to show that the linear system (4),(5) has a unique solutionfor � 2 CPD(m), we regard the homogeneous system belonging to (4),(5).Multiplying (4) from left with 
T with using (5) immediately yields 
TA
 = 0.But sin
e � 2 CPD(m), this implies 
 = 0, and so (4) be
omes Pd = 0. Inorder to see that also d = 0, note that (8) is equivalent to requiring P is inje
tive.Hen
e, the solution of the homogeneous system belonging to (4),(5) is uniquelygiven by zero, whi
h 
ompletes our proof.Note that the 
ondition (8), often referred to as the unisolven
e of � withrespe
t to the polynomials Pd;nm , is equivalent to requiring that ea
h polynomialp 2 Pd;nm 
an uniquely be re
onstru
ted from its samples f�(p) : � 2 �g. This
ondition is rather weak. Indeed, for the spe
ial 
ase, wherem = 0, the 
ondition(8) is empty, and so the interpolant s in (3) 
ontains no polynomial part. Inthis 
ase, a

ording to Theorem 1, it it suÆ
ient to require � 2 PD in orderto guarantee the well-posedness of re
onstru
tion problem (1). Let us formulatethis important observation in a seperate 
orollary.Corollary 1 For � 2 PD, the re
onstru
tion problem (1) has a unique solutions of the form s(x) = X�2� 
�(� ��);where the unknown 
oeÆ
ients 
 = (
�)�2� of s 
an be 
omputed by solving thelinear equation system A
 = u���, whose 
oeÆ
ient matrix A in (6) is positivede�nite.In the remainder of this se
tion, we show that a diagonal � is 
onditionallypositive de�nite of order m, if and only if all its diagonal 
omponents �jj, 1 �j � n, are 
onditionally positive de�nite of order m.To this end, �rst note that the De�nition 1 for CPD(m) 
overs the spe
ial
ase where n = 1, so that it makes sense to require �jj 2 CPD(m) for theindividual s
alar-valued 
omponents in the diagonal of �. But for this spe
ial
ase, the 
lass of 
onditionally positive de�nite fun
tions is well-understood [24℄,see also the 
hara
terization of the fun
tion 
lass CPD(m) in [25, 26, 27℄.Now it is straightforward to show that the following observation is true.6



Lemma 1 Let � : Rd ! Rn�n be a diagonal matrix-valued fun
tion of the form� = 264 �11 . . . �nn 375 ;with s
alar-valued diagonal 
omponents �jj, 1 � j � n. Then, � is 
onditionallypositive de�nite of order m, i� every diagonal 
omponent �jj is 
onditionallypositive de�nite of order m, i.e.,�jj 2 CPD(m) for all 1 � j � n () � 2 CPD(m):Proof: Regard for any pair �; � 2 � the quadrati
 formX�;�2� 
�
��(� ��) = X�;�2� 
�
� nXj;k=1�xj (�yk�jk(x� y)) (9)= X�;�2� 
�
� nXj=1 �xj (�yj �jj(x� y))= nXj=1 24 X�;�2� 
�
��xj (�yj �jj(x� y)35 : (10)Now, a

ording to [25℄, for ea
h �jj 2 CPD(m) the quadrati
 formX�;�2� 
�
��xj (�yj �jj(x� y)) = X�;�2� 
�
��j(�j � �jj)is positive for any non-vanishing 
 = (
�)�2� 2 RN n f0g, satisfyingX�2� 
��j(p) = 0; for all p 2 Pd;1m :But this, in 
ombination with the representation (10) for the quadrati
 form(9), immediately implies that (9) is positive for all non-vanishing 
 2 RN n f0gsatisfying X�2� 
��(p) = 0; for all p 2 Pd;nm ;and so � is 
onditionally positive de�nite of order m, � 2 CPD(m).As for the 
onverse, it is easy to see from (10) that � 2 CPD(m) implies�jj 2 CPD(m), for any 1 � j � n, whi
h 
ompletes our proof.
7



3 Lo
al Ve
tor Field Re
onstru
tion in Two Dimen-sionsWe now formulate the spe
i�
 ve
tor re
onstru
tion problem that we wish toaddress in hydrodynami
al appli
ations, some of whi
h are dis
ussed in Se
tion 5.In this parti
ular 
ase we work with planar ve
tor �elds u : R2 ! R2 , u =[u1; u2℄, so that d = 2 and n = 2. Moreover, we assume we are given a (possiblys
attered) set X = fx1; : : : ;xNg � R2 of N pairwise distin
t planar points,where ea
h point xi 2 X 
orresponds to a unit ve
tor ni = [n1i ; n2i ℄T 2 R2 ,1 � i � N .Now we wish to re
onstru
t a smooth ve
tor �eld u : R2 ! R2 , from givens
alar samples ui = u(xi) �ni 2 R, for 1 � i � N . A

ording to the more generalre
onstru
tion problem, formulated in the previous se
tion, we are 
on
ernedwith solving the re
onstru
tion problem�i(u) = �i(s); for 1 � i � N;where �i = Æxi �ni, and where Æxi denotes the Dira
 point evaluation fun
tional,de�ned as Æxi(u) = u(xi), for 1 � i � N .Now the re
overy fun
tion s : R2 ! R2 is required to have the form (3).Hen
e, ea
h term in the major part of s has the form(� ��)(x) = �(x� xi) � n = "�11(x� xi)n1i�22(x� xi)n2i# : (11)In the implementation of RBF re
onstru
tion in Se
tions 4 and 5, we preferto work with positive de�nite radial basis fun
tions, i.e., � 2 PD. Re
all fromLemma 1 that in this 
ase we require �11; �22 2 PD. Possible 
hoi
es for thediagonal entries in � are, for instan
e, the Gaussians �(r) = e��r2 2 PD forany � > 0, or the inverse multiquadri
s, �(r) = (
2 + r2)�1=2 2 PD for 
 6= 0.In this 
ase, no polynomial part is in
luded in the s
heme, in whi
h 
ase theinterpolant s has the forms(x) = NXi=1 
i "�11(x� xi)n1i�22(x� xi)n2i# ;whose unknown 
oeÆ
ients 
 = (
1; : : : ; 
N )T 2 RN are 
omputed by solving thelinear system A
 = u��� in (4).4 Comparison between RBF and RT Ve
tor FieldRe
onstru
tionIn this se
tion, we report on sele
ted numeri
al experiments in order to dis
ussthe e�e
tive a

ura
y order of RBF re
onstru
tion by using the positive de�nite8



Gaussians, i.e., where we let �11(r) � �22(r) � �(r) = e�r2=4 2 PD. Due tothe theory of RBF interpolation [3, Chapter 11℄, spe
tral 
onvergen
e rates areexpe
ted in this 
ase. One should note, however, that the spe
tral 
onditionnumber �(A) of the arising interpolation matrix A is, as a fun
tion of the min-imal distan
e between di�erent sample points, of exponential growth. This isdue to the un
ertainty prin
iple of RBF re
onstru
tion, whi
h says that none ofthe 
ommonly used radial basis fun
tions manages to 
ombine good approxima-tion behaviour with a numeri
ally stable re
onstru
tion pro
ess. This dilemma,dis
overed by S
haba
k [28℄, requires 
arefully sele
ting available method pa-rameters in order to obtain a reasonable trade-o� between the two 
on
i
tingrequirements, i.e., high approximation order and good numeri
al stability.Our numeri
al results 
on
erning RBF interpolation, as re
e
ted by Tables 1and 2, are involving four di�erent sten
ils of sizes N = 3; 9; 15; 21. The foursten
ils are shown in Figure 1. Note that for either sten
il, the interpolationpoints are lying on a hexagonal grid. This is in order to reasonably balan
e themethods' resulting a

ura
y, on the one hand, and their numeri
al stability, onthe other hand. For further motivation 
on
erning this parti
ular point samplingwe refer to our previous �ndings in [2, Subse
tion 3.9℄.
(a) N = 3 (b) N = 9 (
) N = 15 (d) N = 21Figure 1: Sten
ils of di�erent sizes N for a

ura
y tests.To evaluate the methods' approximation behaviour, we 
onsider the resultingmaximal error � = ks�uk1 among the bary
enters of the triangles in the sten
ils'
orresponding Delaunay triangulation, see Figure 1. Similar to the assessmentin our previous paper [14℄ for RBF re
onstru
tion for the s
alar 
ase, we 
onsiderusing the ve
tor �eld� uv � = � 
os(k � (x� 14)) sin(k � (y � 14))sin(k � (x� 14)) 
os(k � (y � 14)) � ;where in
reasingly denser data sets are used. The data sets were generated bys
aling the interpolation points X, so that qX � h = 2�i, i = 0; 1; 2; 3; 4, for theseparation distan
e qX = minx;y2Xx6=y kx� ykof the interpolation points in sten
il X.9



The numeri
al results in Table 1 show the approximation error �(RT0) ob-tained when using Raviart-Thomas elements of order zero, RT0, in 
omparisionwith the approximation error �(RBF) from RBF re
onstru
tion by Gaussians.Table 1 also shows the 
orresponding spe
tral 
ondition number �(A) of the RBFinterpolation matrix A. Moreover, estimates for 
onvergen
e rates, obtainedby the two di�erent methods, RBF and RT0, are displayed in Table 1. Thetest were performed for a de
reasing sequen
e of separation distan
es h = 2�i,i = 0; 1; 2; 3; 4, just before the linear system of RBF interpolation be
omes nu-meri
ally unstable, due to too large spe
tral 
ondition numbers, 
f. the last
olumn of Table 1.Table 1: Comparison between RT0 and RBF re
onstru
tion by Gaussians for the15-point sten
il in Figure 1 (
). The relative approximation error �, approximate
onvergen
e rate, and spe
tral 
ondition number �(A) of the 
orresponding RBFinterpolation matrix A are shown, respe
tively.h �(RT0) rate �(RBF) rate �(A)2�0 7:177 � 10�1 - 7:248 � 10�1 - 3:625 � 1042�1 3:070 � 10�1 1.225 1:151 � 10�1 2.654 2:511 � 1062�2 1:349 � 10�1 1.187 1:451 � 10�2 2.988 1:650 � 1082�3 6:238 � 10�2 1.112 1:773 � 10�3 3.033 1:064 � 10102�4 2:991 � 10�2 1.060 2:178 � 10�4 3.025 6:833 � 1011All linear systems were solved by Gauss elimination, and for the results in Ta-ble 1, the 15-point sten
il of Figure 1 (
) was utilized. As expe
ted, we obtainlinear 
onvergen
e for Raviart-Thomas re
onstru
tion of order zero, whereasRBF re
onstru
tion yields third order a

ura
y, see Table 1. Moreover, de-spite the small separation distan
e of up to h = 2�4, RBF interpolation is stillvery robust. But for smaller values of h, the 
orresponding linear system isill-
onditioned, so that it does not make sense to further evaluate the method'sa

ura
y.In a se
ond test 
ase, we 
ompare the approximation quality of GaussianRBF re
onstru
tion for four di�erent sten
ils of sizes N = 3; 9; 15; 21, displayedin Figure 1. Our numeri
al results are re
e
ted by Table 2 (for N = 3; 9; 21)and Table 1 (for N = 15).Not too surprisingly, the a

ura
y order is in
reasing with the size N of theutilized sten
ils, see Table 1 and 2. Indeed, the sten
il with N = 21 interpola-tion points yields the best a

ura
y rate among the four sten
ils, namely slightly10



Table 2: RBF re
onstru
tion by Gaussians for sten
ils of di�erent sizes N , seeFigure 1.h � (N = 3) rate � (N = 9) rate � (N = 21) rate2�0 7:177 � 10�1 - 7:156 � 10�1 - 7:180 � 10�1 -2�1 3:070 � 10�1 1.225 1:251 � 10�1 2.516 8:767 � 10�2 3.0342�2 1:349 � 10�1 1.187 1:769 � 10�2 2.823 1:181 � 10�2 2.8922�3 6:238 � 10�2 1.112 2:594 � 10�3 2.770 1:819 � 10�3 2.6982�4 2:991 � 10�2 1.060 4:270 � 10�4 2.603 9:958 � 10�5 4.192above order four, whereas the sten
il with N = 3 points yields �rst order a
-
ura
y only, whi
h is about 
omparable to the 
onvergen
e rate obtained fromRaviart-Thomas re
onstru
tion of order zero, RT0. In other words, for any sten-
il with more than three interpolation points, RBF re
onstru
tion by Gaussiansis superior to RT0 re
onstru
tion. Further supporting numeri
al results werere
ently re
orded in [29℄.5 Appli
ation to Fluid Dynami
s ProblemsIn this se
tion, we dis
uss appli
ations of the proposed RBF re
onstru
tionmethod to 
omputational 
uid dynami
s models. More spe
i�
ally, we will re-fer to models for the shallow water equations using dis
retization approa
hes inwhi
h the velo
ity �eld is represented by its normal 
omponents with respe
t tothe mesh edges. The shallow water equations model the two dimensional 
owof a thin 
uid layer in domains whose 
hara
teristi
 wave length in the hori-zontal is mu
h larger than the 
uid depth. The shallow water equations resultfrom the Navier-Stokes equations when the hydrostati
 assumption holds andonly barotropi
 and adiabati
 motions are 
onsidered. Furthermore, a verti
alaverage is performed, so that only mean values for the velo
ities in the horizon-tal dire
tions are 
onsidered, see e.g. [30℄. The shallow water equations 
an bewritten as �h�t +r � �Hv� = 0; (12)�v�t + (v � r)v = �fk� v � grh: (13)Here, v denotes the two-dimensional velo
ity ve
tor, k is the radial unitve
tor perpendi
ular to the plane on whi
h v is de�ned (or to the lo
al tangentplane, in 
ase of appli
ations in spheri
al geometry), h is the height of the 
uidlayer above a referen
e level, H = h � hs is the thi
kness of the 
uid layer, hsis the orographi
 or bathymetri
 pro�le, g is the gravitational 
onstant, and f11



is the Coriolis parameter. This formulation is the starting point for Eulerian-Lagrangian dis
retizations. Another widely used formulation for appli
ationsto large s
ale atmospheri
 dynami
s is the so 
alled ve
tor invariant form, seee.g. [31℄, whi
h 
an be written as�v�t = �(� + f)k� v �r�gh+K�: (14)Here, � is the 
omponent of relative vorti
ity in the dire
tion of k and K de-notes the kineti
 energy. This formulation is usually the starting point for thederivation of energy, potential enstrophy and potential vorti
ity preserving dis-
retizations, see e.g. [32℄.Spatial dis
retizations with staggered arrangements of the dis
rete variablesare popular for the shallow water equations, sin
e they allow for better represen-tation of the gravity wave propagation, see e.g. [33℄. On unstru
tured grid, ananalog of a staggered dis
retization is given by the zero order Raviart-Thomaselements RT0, see e.g. [17℄. Although high order RT elements are also available,the low order ones, RT0 elements, lead more easily to numeri
al methods thatexhibit important dis
rete 
onservation properties, su
h as dis
rete mass or vor-ti
ity preservation. These properties are important for a number of appli
ationsand various methods whi
h take advantage of them is dis
ussed in the two fol-lowing subse
tions. The main point here is that the a

ura
y of these modelshas been limited so far by the �rst order 
onvergen
e of the RT0 elements. Asit will be shown in the following, matrix-valued RBF re
onstru
tion 
an e�e
-tively improve these methods, by a
hieving a more a

urate dis
retization of thenonlinear momentum adve
tion terms, either in Eulerian or in semi-Lagrangianformulations. Although in general this is not suÆ
ient to raise the 
onvergen
eorder of the overall methods, models employing RBF re
onstru
tions display sig-ni�
antly smaller errors and have in general less numeri
al dissipation, makingtheir use attra
tive for a number of appli
ations.5.1 Eulerian Shallow Water ModelsEulerian dis
retizations of equations (12),(14) have been proposed in [20, 21℄,whi
h preserve dis
rete approximations of mass, vorti
ity and potential enstro-phy. These properties are important for numeri
al models of general atmospheri

ir
ulation, espe
ially for appli
ations to 
limate modelling. The two time level,semi-impli
it s
heme in these papers used RT re
onstru
tion to 
ompute thenonlinear terms in the dis
retization of (14). Here, we will 
ompare resultsobtained with a three-time level, semi-impli
it time dis
retization, 
oupled tothe potential enstrophy preserving spatial dis
retization of [21℄, using either theRaviart-Thomas algorithm or a ve
tor RBF re
onstru
tion of the velo
ity �eldne
essary for the solution of equation (14). For these tests, we employed RBF re-
onstru
tion using the positive de�nite Gaussians, where �(r) = e�r2 . Moreover,a 9-point sten
il was employed, see Figure 1 (b), using the normal 
omponents12



to the edges of the triangle on whi
h the interpolation is being 
arried out andto the edges of its nearest neighbours (i.e., of the triangles whi
h have 
ommonedges with it).We 
onsider one stationary and two non-stationary test 
ases for the shallowwater equations belonging to the set of standard ben
hmark problems intro-du
ed in [31℄. First, we study how the algorithm performs when applied to test
ase 3 of the standard shallow water suite [31℄, whi
h 
onsists of a steady-state,zonal geostrophi
 
ow with a narrow jet at midlatitudes. For this test 
ase, ananalyti
 solution is available, so that errors 
an be 
omputed by applying thenumeri
al method at di�erent resolutions. The values of the relative error invarious norms, as 
omputed at day 2 with di�erent spatial resolutions and withtime step �t = 1800 s, is displayed in Tables 3 and 4 for both Raviart Thomaselements and ve
tor RBF re
onstru
tion, respe
tively. It 
an be observed that,although the 
onvergen
e rates remain approximately un
hanged (due to the fa
tthat the approximately se
ond order dis
retization of the geopotential gradientwas the same in both tests), the errors both in the height and velo
ity �elds havede
reased by an amount that ranges approximately between 30 % and 50 %.Table 3: Relative errors for nonlinear terms in shallow water test 
ase 3 obtainedby using RT0 re
onstru
tion.Level `2-error, h `2-error, v `1-error, h `1-error, v3 7.42e-3 0.25 2.53e-2 0.334 1.94e-3 5.9e-2 8.1e-3 9.1e-25 6.05e-4 1.27e-2 2.9e-3 1.87e-26 2.54e-4 3.19e-3 1.24e-3 4.17e-3Table 4: Relative errors for nonlinear terms in shallow water test 
ase 3 obtainedby using Gaussian RBF re
onstru
tion on a 9-point sten
il, see Figure 1 (b).Level `2-error, h `2-error, v `1-error, h `1-error, v3 7.27e-3 0.16 2.08e-2 0.174 1.52e-3 3.38e-2 6.74e-3 5.77e-25 4.05e-4 7.7e-3 1.7e-3 1.22e-26 1.45e-4 2.11e-3 4.8e-4 2.89e-3We have then 
onsidered the non-stationary test 
ase 5 of [31℄, for whi
hthe initial datum 
onsists of a zonal 
ow impinging on an isolated mountain of
oni
al shape. The imbalan
e in the initial datum leads to the development of awave whi
h propagates all around the globe. This test is relevant to understandthe response of the numeri
al model to orographi
 for
ing and it has been a
ommon ben
hmark sin
e the development of the �rst spe
tral models. Plots of13



the meridional velo
ity 
omponent at simulation day 5 are shown in Figure 2,as 
omputed using the 
onstant timestep �t = 900 s on an i
osahedral gridat spatial resolution of approximately 240 km. We observe that the meridionalvelo
ity �eld obtained by using RT0 �nite elements is mu
h less regular than thatobtained by RBF re
onstru
tion, whi
h 
omplies with previous results obtainedin similar referen
e simulations at higher resolution.Finally, we have 
onsidered the non-stationary test 
ase 6 of [31℄, for whi
hthe initial datum 
onsists of a Rossby-Haurwitz wave of wavenumber 4. Thistype of wave is an analyti
 solution for the barotropi
 vorti
ity equation, whi
h
an also be used to test shallow water models on a time s
ale of up to 10-15days. The relative vorti
ity �eld is shown in Figure 3, as 
omputed at day 5with a timestep of �t = 900 s on an i
osahedral grid with a spatial resolutionof approximately 240 km. It 
an be observed that, when using RT0 re
on-stru
tion, the stru
ture of some vorti
ity extrema is disrupted, while spuriousmaxima and minima appear 
lose to the poles. This is in 
ontrast to the moreregular �eld obtained by RBF re
onstru
tion, whi
h better 
omplies with highresolution referen
e simulations. Furthermore, the relative 
hange in total en-ergy for both model runs is displayed in Figure 3. It 
an be observed that totalenergy loss is redu
ed by approximately 30 % when using RBF re
onstru
tion,thus improving the energy 
onservation properties of the model, whi
h 
onservespotential enstrophy but not energy as dis
ussed in [21℄. We remark that for Eu-lerian models, additional 
omputational 
osts required for RBF re
onstru
tion
an signi�
antly be redu
ed. Indeed, it is possible to 
ompute for ea
h grid 
ella set of time independent 
oeÆ
ients whi
h yield the velo
ity ve
tor at the 
ell
enter as linear 
ombination of the velo
ity 
omponents at the points in
ludedin the RBF sten
il. For the model runs des
ribed above, it was observed thatRBF re
onstru
tion in
reases, in 
omparison with the simpler s
heme RT0, therequired CPU time by approximately 20 %.5.2 Eulerian-Lagrangian Shallow Water ModelsNumeri
al methods for the shallow water equations using formulation (12),(13)have been proposed in [22, 23℄, whi
h 
ouple a mass 
onservative, semi-impli
itdis
retization on unstru
tured Delaunay meshes to an Eulerian-Lagrangian treat-ment of momentum adve
tion. The resulting methods are highly eÆ
ient dueto their rather weak stability restri
tions, while mass 
onservation allows fortheir pra
ti
al (and su

essful) appli
ation to a number of pollutant and sed-iment transport problems. A key step of the Eulerian-Lagrangian method isthe interpolation at the foot of 
hara
teristi
 lines, whi
h in the papers quotedabove is performed by RT0 elements or by low order interpolation pro
eduresbased on area weighted averaging. These interpolators have at most �rst order
onvergen
e rate and 
an introdu
e large amounts of numeri
al di�usion, whi
hlimits their appli
ability espe
ially in long term simulations.Firstly, the test proposed in [12℄ has been 
arried out, in whi
h a 800 m long14



(a) Re
onstru
tion by RT0 (b) Re
onstru
tion by Gaussian RBFFigure 2: Meridional velo
ity in shallow water test 
ase 5, obtained by (a)RT0 re
onstru
tion (b) Gaussian RBF re
onstru
tion on a 9-point sten
il. The
ontour line spa
ing is 6 ms�1.and 800 m wide basin was 
onsidered. The domain was dis
retized by an unstru
-tured triangular mesh with 26,812 elements and 13,868 nodes, 
orresponding toa horizontal resolution of approximately 2 km. The basin depth was taken tobe 20 m. A periodi
 in
ow boundary 
ondition was imposed on the free surfa
e,with an amplitude of 1 m and a period of approximately 12 h. The result-ing wavefront, 
omputed after approximately 30 h by the Eulerian-Lagrangianmethod of [23℄, with using either RT0 elements or RBF re
onstru
tion at thefoot of the 
hara
teristi
, is displayed in Figure 5, It 
an be observed that forRBF re
onstru
tion the wavefront is mu
h sharper and the 
omputed dis
hargerate at a given lo
ation along the basin rea
hes 
onsiderably higher values. Themaximum in the free surfa
e elevation (whi
h would be equal to the maximumboundary value in the linear regime) is better 
aptured by approximately 10 %.We remark that for spe
i�
 quantities, su
h as free surfa
e elevation, this leadsto signi�
ant improvements in a number of relevant appli
ations, su
h as 
ood-ing predi
tion in the Veni
e Lagoon, whi
h is at end of a 
losed sea basin ofapproximately the same magnitude.Furthermore, another shallow water test involving a 
losed re
tangular basin,150 m long and 15 m wide, was performed, whose dis
retization is given byan unstru
tured triangular mesh with 3,646 elements and 1,984 nodes. Forthe free surfa
e, an unbalan
ed initial datum was assumed, given by �(x) =h0 
os(x�=150). The amplitude of the disturban
e was taken to be equal toh0 = 0:1 and the initial velo
ity �elds were assumed to be zero. The resultingfree os
illations have been simulated by the same method des
ribed above, usingagain either RT0 elements or matrix-valued RBFs for re
onstru
tion at the footof the 
hara
teristi
. The free os
illations of the 
uid were simulated for a total15
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(b) Re
onstru
tion by Gaussian RBFFigure 3: Relative vorti
ity in shallow water test 
ase 6, obtained by (a) RT0 re-
onstru
tion (b) Gaussian RBF re
onstru
tion on a 9-point sten
il. The 
ontourline spa
ing is 10�5 ms�1. 16
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Figure 6: Kineti
 energy for free os
illations test with Eulerian-Lagrangianmodel, obtained by RT0 re
onstru
tion (solid line) and Gaussian RBF re
on-stru
tion on a 9-point sten
il (dotted line).of 100 s at time step �t = 0:1 s. The time evolution of kineti
 energy is shownin Figure 6, while the height �eld values 
omputed throughout the simulationin an element 
lose to one of the boundaries are shown in Figure 7. It 
an beobserved that the energy dissipation 
aused by the interpolation of the Eulerian-Lagrangian method is redu
ed by 20 % when using RBF re
onstru
tion, whereasthe maxima and minima in the height �eld are improved by approximately 10 %.In other tests, even larger improvements were observed. For example, asquare domain of width 20 m was 
onsidered, whi
h was dis
retized by an un-stru
tured triangular mesh with 3,984 elements and 2,073 nodes. A 
onstantbasin depth of 2 m was assumed. At initial time, still water was assumed andthe free surfa
e pro�le was taken to be a Gaussian hill 
entered at the 
enterof the domain, with amplitude 0:1 m and standard deviation 2 m. In absen
eof any expli
it dissipative term, the total energy of the system should be 
on-served. The free os
illations of the 
uid were simulated for a total of 6 s at a
onstant time step �t = 0:01 s. The time evolution of total energy is shown inFigure 8. It 
an be observed that the energy dissipation 
aused by the interpo-lation of the Eulerian-Lagrangian method is redu
ed by 40 % when using RBFre
onstru
tion. 19
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We remark that in the 
ase of Eulerian-Lagrangian models the extra 
ompu-tational 
ost due to the use of RBF re
onstru
tion is higher than in the Eulerian
ase. This is be
ause the 
oeÆ
ients whi
h yield the velo
ity ve
tor at the 
ell
enter as linear 
ombination of the velo
ity 
omponents have to be re
omputedat ea
h time step for ea
h of the traje
tory departure points.6 Con
lusionThe utility of matrix-valued radial basis fun
tions for a

urate re
onstru
tionof ve
tor �elds in 
uid dynami
s problems has been demonstrated. The the-ory of RBF re
onstru
tion has been reviewed and adapted to appli
ations in
omputational 
uid dynami
s. Important 
omputational aspe
ts 
on
erning theimplementation of the RBF re
onstru
tion method were dis
ussed. A numberof supporting numeri
al tests have shown that RBF re
onstru
tion improvesthe a

ura
y of low order Raviart-Thomas (RT) elements, RT0, while retainingimportant dis
rete 
onservation properties, unlike high order RT elements.A
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