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Abstract

We consider a two-color randomly reinforced urn with equal re-
inforcement distributions and we characterize the distribution of
the urn’s limit proportion as the unique continuous solution of a
functional equation involving unknown probability distributions on
[0,1].



1 Introduction

An urn contains initially b > 0 black balls and w > 0 white balls. The
urn is sequentially sampled. At time n =1,2,... a ball is drawn from the
urn and its color is observed: if the sampled ball is black, it is replaced
in the urn together with a random number M, of balls of color black, if
the sampled ball is white it is replaced in the urn together with a random
number N, of balls of color white. The processes {M,} and {N,} are
two independent sequences of i.i.d., non-negative and bounded random
variables with distributions p and v respectively. This urn scheme is called
a two-color, randomly reinforced urn.

A randomly reinforced urn generates some interesting stochastic pro-
cesses: the sequences {B,} and {W,} of the number of balls, black and
white respectively, present in the urn at time n = 1,2,...; the sequence
{Z,} of the urn proportions where, for n =1,2, ...,

By,
Zp = ;
B, + W,

and finally, the sequence {X,} of the colors generated by the urn, where
X, is 1 or 0 according to the color black or white of the ball drawn from the
urn at time n = 1, 2, .... In this paper we mostly focus on the process of urn
proportions {Z,}. In Muliere.et.al. (2005) it is proved that the sequence
{Z,} is eventually a bounded super- or sub-martingale and it thus con-
verges almost surely to a random limit Z,, € [0, 1]. When the first moment
of p is strictly greater than the first moment of v, the random variable
Zs 1s equal to 1 with probability one. On the other extreme, May.et.al.
(2005) show that if the moments of y and v are all equal, i.e. u and v
coincide, then Z, has no point masses; however, the exact distribution
of Z is unknown but in a few particular cases, the only non trivial one
being the Polya’s urn where p and v are point masses at a non-negative
real number m and Z, has distribution Beta(b/m,w/m). The main result
of this paper states that, when pu = v, the distribution of the limit propor-
tion Z.,, regarded as function of the initial urn composition (b, w), is the
unique continuous solution, satisfying some boundary conditions, of a spe-
cific functional equation in which the unknowns are distribution functions
on [0, 1].

The study of the distribution of Z,, has its origins in the seminal paper
of Athreya (1969) and stems from theoretical and applicative motives. In
May.et.al (2005) and in Muliere.et.al. (2005) it is proved that, conditionally
on Z, the random variables of the sequence of colors {X,,} generated by
a randomly reinforced urn are asymptotically i.i.d. Bernoulli(Z,,); hence
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the distribution of Z,, may represent the prior distribution for a Bayesian
adopting the randomly reinforced urn scheme as a metaphor for the con-
struction of the statistical model. Moreover, in Muliere.et.al.(2005) and
in Paganoni and Secchi (2005) it is stressed that a two-color, randomly
reinforced urn implements a sequential, randomized, response-driven de-
sign for clinical trials where the experimenter is willing to bias, along the
experiment, the allocation probability toward the better treatment; for a
well informed review on urns and response-adaptive, randomized designs
see Rosenberger (2002). To be specific, suppose that p and v represent
the distributions of responses after treatment, say A and B respectively:
if the mean response after A is greater than the mean response after B,
allocating the n-th patient in the clinical trial to A or B according to the
color of n-th ball drawn from a two-color randomly reinforced urn with re-
inforcements equal to responses after treatments guarantees that patients
will be assigned to treatment A with higher and higher probability along
the experiment, since Z,, = 1 almost surely. Hence, for testing hypothesis
about treatment effects, it is important to know the distribution of Z.
when p = v, i.e. there is no difference between treatment effects. Indeed, a
randomly reinforced urn where both reinforcement distributions are equal
to the same p, is the scheme considered in this paper.

After setting the notation and specifying the probabilistic model for a
randomly reinforced urn with equal reinforcement distributions in the next
section, in Section 3 we introduce the function JF that, given a probabil-
ity distribution u, maps any admissible couple (b, w) in the distribution
of the limit proportion of a two-color, randomly reinforced urn with re-
inforcement distributions equal to px and initial composition (b, w). After
discussing some interesting properties regarding the class of distributions
in the range of F, we end the section with the introduction of a functional
equation solved by F and with the statement of the main result of the
paper: namely that F is the unique continuous solution, satisfying some
boundary conditions, of this functional equation. In Section 4 we prove
that F is indeed continuous, while in Section 5 we conclude the proof
of the main result by showing that a suitable transformation of F is the
unique fixed point of a certain operator. An example will conclude the

paper.
2 Model specification

On a rich enough probability space, define two independent sequences
{M,} and {U,} of real valued random variables. The variables of the



sequence {M,} are i.i.d with probability distribution yx : the support of u
is contained in [0, 8], with 8 > 0. Moreover it is assumed that u({0}) < 1
for avoiding a trivial case. The random variables of the sequence {U,}
are i.i.d. with uniform distribution on [0, 1]. Finally, let b and w be two
non-negative real numbers such that b +w > 0.

Set By = b, Wy = w, and, for n > 0, let

Bn+1 = B,+ Mn+1Xn+1 (1)
Wn+1 = Wn + Mn—|—1(1 - Xn—|—1)-

where, for n = 1,2, ..., the variable X, is the indicator of the event {U, <
B,_1(Bn-1 + W,_1)"'}. Then the law of the sequence {(B,,W,)} is that
of the stochastic process counting, along time, the number of black and
white balls present in a randomly reinforced urn with initial composition
(b,w) and reinforcement distributions both equal to p whereas the law of
the sequence {X,} is that of the process of colors generated by the same
urn.
Forn=0,1,2,... let

B,
B, +W,’

Z,, indicates the proportions of black balls in the urn before the (n + 1)-th
ball is sampled. The process {Z,} is a bounded martingale with respect to
the filtration {o (X1, My, ..., X1, M,,_1)} and it converges almost surely to
a random variable Z, € [0,1] (May.et.al. 2005): moreover, the distribution
of Z, has no atoms and is completely determined once the parameters
(b, w, u) are specified, even though its analytical expression is unknown.
We will say that the distribution of Z, is that of the limit proportion of a
randomly reinforced urn with initial composition (b, w) and reinforcement
distributions equal to yu; this paper is focused on this distribution and its
properties. Our approach will be to fix the reinforcement distribution p
and to explore how the distribution of Z,, varies according to changes in
the urn’s initial composition (b, w). When the argument requires it, we will
draw the reader’s attention on the dependency of the law of the stochastic
elements generated by the urn on its initial composition (b, w), by using
the obvious notations B, (b, w), W, (b, w), X,,(b,w), Z, (b, w), Zs (b, w).
Pemantle (1990) introduces the following time-dependent version of the
Polya’s urn. Let F': {1,2,...} — [0,00) be any function and consider an
urn containing initially 6 > 0 black balls and w > 0 white balls, with
b+ w > 0. The urn is sequentially sampled: at time n = 1,2, ... a ball is
drawn from the urn and reintroduced in it together with F'(n) balls of the
same color. Pemantle studies the behavior of the sequence of the successive
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proportions V,, of black balls in the urn. The link between Pemantle’s
urn and our two-color, randomly reinforced urn with equal reinforcement
distributions is evident. In fact, let M be the sigma-field generated by the
random variables M7, My, .... Given M, the conditional law of the process
{(Bn, Wy)} (and therefore also the conditional laws of the processes {X,,}
and {Z,}) is the same as that of the process counting the number of black
and white balls in Pemantle’s urn, once we define his reinforcement function
F by setting F'(n) = M, for n = 1,2, .... In the next sections we will make
use of the following two results proved in Pemantle’s (1990).

Theorem 2.1 For any function F, the sequence of successive proportions
{V,.} of black balls in a Pemantle’s urn directed by F is a martingale con-
verging almost surely to a random variable V € [0,1]. If F is not the null

function and is bounded by some constant 5 > 0, then V has no atoms on
[0, 1].

Theorem 2.2 Consider two Pemantle’s urns; both urns have initial com-
position equal to (b,w). The first urn is directed by the function FO),

the second by the function F®. Let {V\V} and {Vi®'} represent the se-
quences of successive proportions of black balls in the two urns. If, for all
n=172 ..,
F(l)(n) S F(Q)(n)
b+w+ 30 FO®E) ~ b+ w+ Y FO(0)

then E(h,(Vn(Jlr)l)) > E(h(V(i)l)), for all continuous convex h : [0,1] — [0, 2].

n

3 The function F and the characteristic equa-
tion

Fix a probability distribution p on the interval [0, 8], with § > 0. Let S =
[0,00) x [0,00) \ (0,0) and indicate with P([0,1]) the space of distribution
functions with support in [0, 1]; define

F:S—P(0,1])

to be the function that maps any couple (b, w) of non-negative real num-
bers with positive sum in the distribution F(b, w) of the limit proportion
Z oo (b, w) of a randomly reinforced urn with initial composition (b, w) and
reinforcement distributions equal to pu.

For x € R, let §, be the distribution of the point mass at x.
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Theorem 3.1
(i) F(b,0) =6y for all b > 0;
(i1) F(0,w) = g for all w > 0;
(i1i) For all (b,w) € S,
F,w)(z)+ Flw,b)(1—z) =1
for x € R.
(iv) for all ¢ > 0 and all (b,w) € S such that b/(b+ w) = ¢,

/x]-'(b, w)(dz) = ¢,

i.e. the distribution F(b,w) has constant mean along the line

b
— =
b+w
Proof. Properties (i) and (ii) are trivial; to prove (iii) note that the distri-

bution of the limit proportion of a randomly reinforced urn with reinforcement
distributions equal to p and initial composition equal to (b, w) must be the same
as the distribution of 1 minus the limit proportion of the same urn when the
initial composition is (w, b), i.e. the distribution of Z, (b, w) is the same as the
distribution of 1 — Z,,(w, b); now (iii) follows, since the distribution of Z,, has
no point masses (May.et.al 2005). Finally, property (iv) is true because, for all
(b,w), the sequence {Z, (b, w)} is a bounded martingale converging to Z (b, w)
(May.et.al 2005) and thus

E(Zoo(b,w)) = Zo(b, w) = I)Jer

O

Endow the space S with the lower-right-quadrant order relationship
such that (b,w) < (b,w) if and only if b < b and w > w; give P([0,1]) the
stochastic order such that G <y H if and only if 1 — G(z) <1 — H(x) for
all z € [0, 1]. The proof of the next result uses for the first time a coupling
argument that will frequently appear in the rest of the paper.

Theorem 3.2 F is monotonic.



Proof. = We need to prove that if (b, w) and (b,w) are states of S such that
(b,w) % (b,10), then ]
F(b,w) <g F(b,w).

Consider two different randomly reinforced urns. The first urn has initial
composition (b, w) and generates the counting process {(By,, W)} according to
the dynamics described in (1). Analogously, the second urn has initial composi-
tion (b,w) and generates the counting process {(By, Wy)}. The urns are coupled
in the sense that the processes {M,}, {U,} and {M,}, {U,} appearing in (1)
for the definition of {(B,,W,)} and {(B,, W,)} respectively are identical; i.e.
we assume that

P[M,, = M,,, U, = U, for alln] = 1.

Notice that and

b b
< —" . hence Uy < = iU, <
b+w ~btw I e T S hrw

P[(B1,W1) = (B, W1)] = 1.
By induction on n,
P((By,,W,) = (Bn,Wn) for alln] =1

and thus B
P[Zy(b,w) < Zy(b,w)] = 1.

O

Since the support of i is bounded above by 3, it is natural to conjecture
that when the initial number of balls in the urn is large, the limit proportion
Zs will be close to its mean value; we will in fact prove the conjecture by
means of the next theorem. For (b,w) € S, let B(b/S,w/F) indicate a
random variable with distribution Beta(b/3,w//) on [0, 1].

Lemma 3.1 For every j > 1 and (b,w) € S,
E[ZL,(b,w)] < E[B(b/8, w/B)). (2)
Proof. Let N > 1. Given M1 = m1, My = ma, ..., My = my, ..., note that
E[Z%,(b,w)| My = m1, My = ma,..] = E [Vy7] (3)

where V7, V5, ... is the sequence of proportion of black balls in a Pemantle’s urn
with initial composition (b, w) and reinforcement directed by F', with F(n) = m,,
for n < N and F(n) = 0 for n > N. We now use a trick learned in Pemantle
(1990). If it is not the case that F(1) > F(2) > F(3) > ..., let F(V(n) = F(n)
for every n except for two indices k > 1 and k + 1, where FU) (k) = F(k +1) >
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F(k) = FO(k+1), and consider a Pemantle’s urn with intial composition (b, w)
and reinforcements directed by F(1); then Proposition 2 of Pemantle (1990)
proves that

E[h(Va)] < E(VV)],

for all » > 1 and for all continuous, convex h : [0,1] — [0,2], where v
indicates the successive proportions of black balls in the urn directed by F®).
By repeatedly applying this result and by setting h(z) = z™, for z € [0, 1], we
obtain

E[VZ] < E[(VY)] (4)
where, for n = 1,2, ..., 752) are the successive proportions of black balls in a

Pemantle’s urn with reinforcements directed by a function F?) with the same
values as F but rearranged in descending order. Finally, let Vi, Vs, ... be the
sequence of proportions of black balls in a Polya’s urn with initial composition
(b, w) and constant reinforcement equal to 3; Theorem 2.2 implies that

B|(vP)] <E[W]. (5)

Let M be the sigma-field generated by Mi, Mo, ...; equations (3),(4) and (5)
prove that, for N > 1 and (b,w) € S,
E[Z3 (b,w)| M] < B[V].

Equation (2) now follows by computing the expected values on both sides of the
previous inequality and applying the Dominated Convergence Theorem. O

Theorem 3.3 For every n > 0 and € > 0 there exists K = K(n,¢) such
that

b
P[\Zw(b,w)—m\ > <e
ifb+w > K.

Proof.  Let (b,w) € S and n > 0. Then

P Zoo(b0) — | > 0] < Var(Zoo(b,w))

b+ w - n?
< 1 bw I}
- n?b+w? b+w+p
115
- 24 b4w

the first inequality is Chebichev’s while the second one follows from (2) with
j = 2 and the fact that the expected value of Z, (b, w) is b/(b+w). The theorem
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is thus proved by setting K = B(4n%e)~L. O

Theorem 3.3 has interesting consequences in applications, for instance
when one wants to approximate the distribution of Z,, by means of a Monte
Carlo simulation. In fact, given ¢, > 0, let

7(e,n) =inf{n > 0: B, + W,, > K(n,¢)}.

Since p is not concentrated on 0, 7(e,7n) is finite almost surely; the next
corollary states that by approximating the distribution of Z,, with that
of Z;(c,m we don’t loose much. Its proof follows from Theorem 3.3 and
the observation that the process {(B,, W,)} is Markov. Hence the strong
Markov property holds and implies that, given the sigma-field generated
by the stopping time 7(¢, 1), the conditional law of the process

((BT(e,n) ) WT(e,n))v (BT(e,nH-lv WT(é,n)H)v )

is that of the process counting the successive number of balls of color black
and white respectively in a randomly reinforced urn with reinforcement
distributions equal to x4 and initial composition equal to (B, Wr(en))-

Corollary 3.1 For all (b,w) € S and ¢, > 0,

P[|Zoo (b, w) — Zr(en) (b,w)| > 1] <.
Remark 3.1 If p has support contained in [o, B] with o > 0, then
p

P <
(e < 4o

+1]=1.

Finally, we consider the variance of Z (b, w). The next result states
that for b + w = constant, the variance of Z,,(b,w) reaches its maximum
value when b = w, and that for b = constant - w, i.e. along the lines from
the origin, the variance of Z, (b, w) decreases when w increases: see Figure
1 for illustration.

Theorem 3.4
(i) For every (b,w) € S,

Var(Zu (b, w)) < var(zoo(b*T“’, HTU]))-



w b=w

b + w = const

v

Figure 1: Variance of Z, (b, w).

(ii) For every (b,w) € S and t > 1,

Var(Zy (b, w)) > Var(Zy(th, tw)).

Proof. For proving (i), set A?Z,,1 = Z72L-|—1 — Z2 for n = 0,1, ...; we claim
that, for (b,w) € S,

b+w b+w

— ) (6)

2 72

E(AQZTH—I(baw)) < E(AZZn—H(

Since Var(Z,4+1) = E[>.1 A2Z;41], from (6) it follows that

b+ w b+w))
)

Var(Zn11(b, w)) < Var(Zn 41 (

for all n; letting n — oo we get (i) from the Dominated Convergence Theorem.
In order to prove (6), let M be the sigma-field generated by My, Ms, ..., and
compute

E(Zn_|_12‘ M) = E(E(Zn+12|ZTLa M)| M)

E(Z) + Hi+1Zn - H5+1Z§IM), (7)
where M
i=1 M
for n =1,2,.... Hence

E(Zpp1 — Za”| M) = Hy (s E(Zy — Z0”| M). (8)
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For n =0, 1,..., set Wy, = E(Z, — Z,%| M). Theorem 2.1 states that the propor-
tion of black balls in a Pemantle’s time-dependent version of the Polya’s urn is
a martingale; thus E(Z,,1|M) = E(Z,|M) for n =0,1,2,.... Hence, (7) implies
that, for all n,
Wn+1 = Wn(l - Hn—|—12)a
and then .
W, =Wo [[(1 - H?).
i=1

Hence (8) can be rewritten as

n
E(Zni1? = Zn?| M) = Hop 2 Wo [ (1 - HP);

i=1
taking expectations, we see that

E(A?Zn11) = WoE[Haya? [[(1 - H?)). (9)
i=1

Finally, to obtain (6) from (9), it is sufficient to notice that

b+w b+w
Hy(b,w) = Hn(Ta T)
and that
Wobyw) = —— (1- 2
0t Cb+w b+w

reaches its maximum value when b = w.

For proving (ii), consider two urns, the first with initial composition (b, w) €
S and the second with initial composition (¢b,tw), with ¢ > 1. The urns are
coupled in the sense that, as in the proof of Theorem 3.2, the same sequences
{M,} and {U,} generate the urns successive compositions by means of (1).
Notice that, forn = 1,2, ...,

M, . M,
btw+ S M T tb+w) + 3 My

By conditioning to M and setting h(z) = (z — HLW)Q, for z € [0,1], it follows
from Theorem 2.2 that

E(h(Zp (b, w))|M) > E(h(Z,(tb, tw))|M).

Now (ii) follows by taking expectations. O
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By conditioning on X; and M; and computing the expected values, we
see that F must satisfy the following condition: for all (b, w) € S,
b

w
F(b,w) = P w o F(b+ k,w)u(dk) + b w o F(b,w+ k)u(dk).
(10)

We call (10) the characteristic equation of a randomly reinforced urn with
reinforcement distributions equal to p. The following question arises nat-
urally: does equation (10) characterize the class of distributions for limit
proportions of randomly reinforced urns with reinforcement distributions
equal to p and initial compositions varying in S? In other words: is the
function F introduced in this section the unique map from S to P([0,1])
that solves the functional equation (10)? Without further conditions, the
answer to this question is no; for instance, any constant function mapping
S to a fixed element of P([0,1]) is a solution of (10), albeit what we al-
ready know about F implies that F is not a constant function. The main
result of this paper states that F is the unique continuous solution of (10)
satisfying some boundary conditions. In order to have a precise statement
of the theorem, consider S as a subset of the space R? with the euclidean
metric and endow P([0,1]) with the Wasserstein metric defined, for all

F,G € P([0,1]), as

dw (F,G) = /0 F(z) — G(z)|dz. (11)

Theorem 3.5 The function F is the unique solution of (10) among the
continuous functions G : S — P[0, 1] satisfying the following three condi-
tions:

(a) G(0,w) = dg for w > 0;
(b) G(b,0) =, forb > 0;
(c) for every e > 0, there is a K = K(g) such that
dW(G(b,w),(Sb%w) <e
ifb+w > K.

We already know that F satisfies conditions (a) and (b) of the theorem:
in the next section we will prove that F is indeed continuous on S and sat-
isfies condition (c). Then, in Section 5, through a suitable transformation
of the space S and the function F, we will prove that F is the unique
continuous solution of (10) satisfying (a)-(c).
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Remark 3.2 When modelling our two-color randomly reinforced urn with
reinforcement distributions equal to p, we assumed u({0}) < 1. For all
Borel subsets B of R define

 u(BNO,8).
B =T oy

hence v s the conditional distribution of My, given that M, > 0. Note that,
F: S —P([0,1]) solves (10) if and only if

[1 = u({0})]F (b, w)
b

w
= — Fb+k,w)u(dk) + —— F(b,w+ k)u(dk),
b w oy ( Juldk) + 53— o ( )u(dk)
i.e. if and only if
b w
Flbw) = —— F(b+k,w)v(dk)+—— F(b,w+k)v(dk) (12
w) =gy [ Pk [ F 0wk 12

for all (b,w) € S. In light of Theorem 8.5, we can thus say that F is also the
unique solution of (12) among the continuous functions G : S — P([0, 1])
satisfying conditions (a)-(c) of the theorem.

4 F 1s continuous

Before proceeding to prove that F is continuous, we recall that the dis-
tance dy, introduced in (11), metrizes the weak convergence in P(|0, 1]).
Moreover, by the Kantorovich-Rubinstein theorem,

dw (F,G) = inf{E(X = Y|): X ~ Y ~ G} (13)

where the infimum is taken over all joint distributions for (X,Y) with
marginals equal to ' and G respectively (see Gibbs and Su (2002) for a
review on this and other distances for probability distribution functions).

Theorem 4.1 F is continuous on S.

Proof.

First case. Continuity on the azes

Consider a point (0,w) with @ > 0 and note that F(0,w) = d§y because of (ii)
of Theorem 3.1. For (b,w) € S,

' b
dw (F (b, w), F(0,w)) = /0 [1 — F(b,w)(z)] dz = E[Zs(b,w)] = T

13



Hence limy ) (0,5) dw (F (b, w), F(0,w)) = 0. This proves that F is continuous
on the axis b = 0; by symmetry, F is continuous also on the axis w = 0.

Second case. Continuity at the inner points of S.

Consider a point (b,w) € S with b > 0 and @ > 0. For (b,w) € S, compare two
randomly reinforced urns with reinforcement distributions equal to y and initial
compositions (b,w) and (b, w) respectively. As in the proof of Theorem 3.2,
the two urns are coupled in the sense that the same processes {M,} and {U,}
generate both {(By (b, w), W, (b, w))} and {(By (b, w), W, (b, w)) according to the
dynamics described in (1); let Zoo(b, ) and Zy (b, w) be the limit proportions
for the two urns.

From (13) and the triangular inequality, it follows that

dy (F (b, w), F (b, @))
< E(|Zoo (b, w) — Zoo (b, @)])
< E(|Zoo (b, w) = Zn (b, w)|) +
+E(|Zoo (b, w) — Zn (b, w)]) + E(|Zn (b,w) — Zn(b,w)])  (14)

for all N > 1.
Next we prove that the first two terms of the last right member can be taken
arbitrarily small for N large enough. In fact, for all (b,w) € S and m > 1,
E(| Zoo (b, w) — Zm (b, w)])
< E1/2(|Zoo(baw) - Zm(baw)|2)
= EY2 (E(|Zoo (b, w) — Zum (b, w)|*|(B1, W), ey (B, Win)))

_ Rgl/2 (E(zgo(Bm,Wn)l(Bm,Wm)) - (Bmiimvvm)Z)

the last equality is true because the process {(By, W)} is Markov and, more-
over, E(Zuo(b,w)|(B1, W1), .-, (Bm, Win)) = Bim(Bm+Wy,) ™! the last inequality
follows from Lemma 3.1 as in the proof of Theorem 3.3. Since u({0}) < 1,

therefore, for every € > 0 and K > 0 there is an m = m(K, ¢) such that
m
P> M;>K]>1-¢.
For (b,w) € S, let F be the event that is true when

m
B (b, w) + Win(b,w) + B=B+b+w+ > M; > K;
i=1

14



then P[F] > 1 — €% Set K = 4‘% and N = m(K,¢). Then, for all (b,w) € S,
€

E(|Zoo (b, w) — Zn (b, w)])

< E1/2 ( BNWN ,6 )
- (BN +Wn)2 By +Wn +

ByWy p
- (E((BN —f—VVN)2 By + Wy +,8;F) +E(
< (3 B— P . p +P[FC]>1/2
~\4 'By+Wy+p
< (P[F] + P[F9))'/?
V2.

Now consider the term E(|Zy (b, w) — Zy (b, w)|) in (14). For i =1,2,...,N,
let

(Bn + Wx)2By + Wy + 5’

IA

b b
PA)=|——— ——
(41) ‘b—l—w b+ w
and, for: =1,..., N — 1,
i b b
P(A A;)° e
( Z““H )< 53w b+w‘
Hence,
P(A) = P(AiUAyU---UAp)
= PAUMAINAY)U---UANN(A1U---UAN 1))
< P(A1)+P(A1|AQC)—l—---+P(AN|(A1U"'UAN_1)C)
b b
< — ——.
- b+w b+w
M hen A€ is true | Zn (b, w) — Zy (b, w)| < L—L Therefore
oreover, when ue |Zn (b, w N w)| < e b1 al 5

E(|Zn (b, w) — Zn(b,w)|)
= E(|Zn (b, w) — Zy (b, w)|; AC) + E(|Zn (b, w) — Zn (b, w)]; A)
b b

f(m“)‘m—m- (16)

15

BNWN ,3 FC)) 1/2

(15)



e S fbsw

LA

Figure 2: Continuity of F on the points of the projective line.

To finish the proof, let € > 0. From (14), (15) and (16) it follows that there
is an N = N(e) such that
dw (F(b,w), F(b,w)) < e2v2 + (2N +1) b _L :
- b+w b4+w

Hence

lim  dy (F(b,w), F(b,w)) < e2v/2.
(bw)—(b;w)

Since ¢ is arbitrary, this proves that

lim  dy (F(b,w), F(b,@)) = 0.
(bw)—(5.)

O

An immediate corollary of Theorem 3.3 is that JF is continuous at the
points of the projective line corresponding to the directions b(b + w)™!, if
we set F equal to pb in these points. Figure 2 illustrates the next result.

Corollary 4.1 For everye > 0 there exists K = K(€) such that if b+w >
K, then
dw (F (b, w), (5%) <e.

We conclude the section by describing the behavior of F near the origin
of R%. Note that F cannot be extended with continuity in (0,0). In fact
F(b,w) has constant mean ¢ along the points (b,w) € S such that b(b +
w)~! = ¢ : hence, the weak limit of F (b, w) for (b,w) — (0,0) does not
exist.

16



Theorem 4.2 For every € > 0 there is a neighborhood U, of (0,0) such

that
dw (F (b, w) 0+ Y s )<e
hrw ' btw ’

for (b,w) € U..

Proof. As stated in Remark 3.2, F solves (10) if and only if, for all
(b,w) € 5,
b
Fb,w) = —— F(b+ k,w)v(dk) + —— F(b,w+ k)v(dk
) = g [ Pk + 7 [ Fw s ki)

where v is the conditional probability distribution of M, given that M; > 0.
Since the support of v is contained in (0, §], for every € > 0 there is an o > 0
such that v((0,q]) < £/2. Let b < a-¢/2 and w < a-¢/2 and set y = b(b+w)™?
Then

dw (F(b,w), yd1 + (1 —y) do)
/|.7-"bw ~(1-y)| da

dr

J(dk) + (1—y /]—"bw+k)()(dk)—(1—y)
/ /}" (b + k, w)(z)v(dk)dz +/01(1 —y)/[l — Fbow + k) (@)](dk)dz
= [ e 10+ ) [ g via
y(%*%(“%))+<1—y>(§+ﬁ(l—§))

‘.

IA

IA

Remark 4.1 Theorem 4.2 implies that F can be extended with continuity
in the origin (0,0) along the lines b(b + w) ™! = constant.

5 F is the unique solution of the character-
istic equation

Given the probability distribution p, in order to describe the distribution of
the next state of a randomly reinforced urn with reinforcement distributions

17



equal to p one needs to know either the current number of black and white
balls contained in the urn or, equivalently, the current total number of balls
in the urn and the proportion of black balls. This fact and the behavior
of the function F near the origin and at infinity, suggest to transform the
state space S according to the map

1
r=-—-,
. ngw
y:b+w

Let S* = [0,00) x [0,1]. For (z,y) € (0,00) x [0, 1] define
F(z,y) = F(r ' (z,9));

set
F*(0,y) = 6,

for y € [0,1].

Theorem 5.1 F* is continuous on S*.

Proof. Because of Theorem 4.1, we need to prove the continuity of F* only
in the states (0,y) € S*, with y € [0,1]. Let g € [0,1] and consider the state
(0,7); the triangular inequality implies that, for every (z,y) € S*,

dW(]:*(may)’]:*(Oag)) = dW(]:*(I’y)vég) < dW(]:*(-Tay)aéy) +dW(5g’6y)'

However,

dw (F*(2,9),8) = dw(F(L, 7= 1),5,),

and Corollary 4.1 implies that this quantity converges to 0 when £ — 0, whereas

1
dw (85, 8,) = /0 Ty, (@) — F, (2) de = |y — 9]

that goes to 0 when y — 4. O

The function F* maps any (z,y) € (0,00) x [0,1] in the distribution
Fyz=, (1 — y)xz~t) of the limit proportion Z,, of a randomly reinforced
urn with reinforcement distributions equal to p and initial composition
equal to (yz~', (1 —y)z~"). The results of Section 3 allow some instructive
descriptions of the distribution F*(z,y). For instance: along the horizontal
lines y = constant, the mean of F*(x,y) is constant while the variance
increases with x. Along the vertical lines z = constant, the variance of

18
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Figure 3: Boundary values of F* and the variance of F*(z,y).

F*(z,y) increases as y moves from 0 to 1/2 and decreases for y moving
from 1/2 to 1, reaching its maximum value at y = 1/2. Moreover, for

(z,y) € S*,
F*(z,0) = 6y, F*(z,1) = 6y and F*(0,y) = 6,.

See Figure 3 for illustration.
Finally, note that F* satisfies the characteristic equation

F(z,y) (17)
o (2 ) - [ ()

Let C(S*) be the space of continuous function G : S* — P([0,1]) such
that, for every (z,y) € S*,

G(z,0) = by, G(z,1) = d; and G(0,y) = 0.

For (z,y) € S* and G € C(S*), define

R £ (EEET, Y f (S

then A*(G)(z,y) € P([0,1]). Note that, for every G € C(S*), the function
A*(G) € C(S*); hence we may regard A* as an operator mapping C(S*)
into C(S*).

Theorem 5.2 F* is the unique fized point of A*.
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Proof.  For c € (0,+00), let S¥ = [0, ] x [0,1] and consider the space C(S})
of the continuous functions G : S} — P([0,1]) such that, for every (z,y) € S*,

G(z,0) = by, G(z,1) = 61 and G(0,y) = 6.

Set A% to be the restriction of A* to C(S}); note that A} maps C(S7) into C(S}).
Let F7 be the restriction of F* to S;. Note that, for every ¢ > 0, F7 is a fixed
point of A} since F* satisfies (17): if F7 is the unique fixed point of A}, then

the theorem is proved because S* = J.( S=.

By way of contradiction, assume that, for ¢ > 0, there is a G* € C(S}) that
is a fixed point of A% different from F;. Then we claim there is a (z,y) € S}
such that

dw (Fe(Z,9),G"(7,9)) > dw (A (F)(Z, ), Ac(G7)(Z, 7)) (18)

which contradicts the assumption that both F7 and G* are fixed points of A}.
To prove (18), for (z,y) € S}, define

(I)]:C*’ g*(a:,y) = dW(fZ(.’B,y),g*(.’E,y)).

Observe that ®zx g« is a continuous function defined on the compact set S;.
Moreover ®zx g« > 0 and, for (z,y) € S,

Dr:, g+ (2,0) = 5z, g-(2,1) = @z, g(0,9) = 0.
However,®z: g« # 0 since, by assumption, G* # F.. Let
M = max{®z: g« (z,y) : (z,y) € S;}.

Then &1 g+(M) is a closed subset of (0,¢] x (0,1). Indicate with IT; : R? —
R the projection on the first coordinate defined by setting II;(z,w) = z, for
(z,w) € R2. Since II; is an open map, Hl(é}i’ g-(M)) is a closed subset of
(0,¢]. Let
Z = min {x Lo e (95 g*(M))}
and y such that ®x- g«(z,y) = M : the point (Z,y) makes (18) true.
In fact, firstly note that, for (z,y) € S} withz < Z, @5« g«(x,y) < M. Then
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compute
dw (A(F2)(Z,7), Ac(G7)(, 7))
1
=/0 |AC(F)(,9)(8) — Ac(G7)(Z, 9) ()] dt

. T T T 7]
y/f*1+kx1j::x)() (dk) +(1 -y /P kj)(t)“(dk)

‘g/g*ﬁfm’i’i:;)(t)u(dk) —(1—@/9*(1“@, 1+kE)(t)u(dk) dt

_ T Grkz
< S on | ——— dk
_’y/ F*, G (1+k:ﬁ’1+k§:>“( )

_ z ]
+( y)/%*,g* (HM,HM) p(dk)
<yg-M+(1-g)-M

This proves (18) and shows that F7 is the unique fixed point of A}. O

Theorem 3.5 is now easy to obtain.
Proof. [of Theorem 3.5]. Theorem 4.1 proves that F is continuous, while
F satisfies conditions (a)-(c) because of (i) and (ii) of Theorem 3.1 and because
of Corollary 4.1. Assume that G : S — P([0, 1]) is another continuous solution
of (10) for which (a)-(c) are true; then, as in Theorem 5.1, show that G* : S* —
P([0,1]) defined by setting G*(z,y) = G(1(z,y)), for (z,y) € (0,00) x [0,1],
and G*(0,y) = &y, for y € [0,1], is continuous on S* and satisfies (a)-(c). Verify
moreover that A*(G*) = G*, i.e. that G* solves (17). Hence Theorem 5.2 proves
that G* = F* and thus G = F. O

6 An example

When 1 = dg, the point mass at a given 8 > 0, our two-color randomly re-
inforced urn with reinforcement distributions equal to 1 becomes a Polya’s
urn and the unique continuous solution of (10) satisfying conditions (a)-(c)
of Theorem 3.5 is

]Z'(b’ w) = Beta(b/ﬁ, w/ﬁ)

for (b,w) € S, where, for ¢,d > 0, Beta(c,d) is the Beta distribution on
[0, 1] whereas we define Beta(c,0) = d; and Beta(0, d) = dy.
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Now let p = pdy + (1 — p)és with p € (0,1) and § > 0 : then, by
Remark 3.2, Beta(b/3,w/f3) is again the unique continuous solution of
(10) satisfying conditions (a)-(c) of Theorem 3.5.

The next step is to assume pu = pd, + (1 —p)dg with 0 < o < S integers
and p € (0,1). Let M = pa+(1—p)p be the mean of u. A result by Athreya
(1969) implies that the solution F(b, w) of (10) determined by Theorem
3.5 cannot be equal to Beta(b/M,w/M), for (b,w) € S. A tentative guess
could be

F(b,w) = pBeta(b/a, w/a) + (1 — p)Beta(b/B,w/5) (19)

for (b, w) € S. This F does not solve (10): in fact, for (b, w) € S, the second
moment of F(b, w) defined as in (19) coincides with the second moment of
the right member of (10) if and only if

bwp(1 —p)(8 — a)?
b+w)b+w+a)b+w+p)(b+w+a+pP)

=0

for all (b, w) € S; but this can’t happen since 0 < o <  and p € (0,1).
Hence in this case the analytical expression of F(b, w) is still unknown,
although interesting approximations for it can be found by simulations, as
in May.et.al. (2005).
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