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Abstract

In this paper a local automatic planar curve fairing algorithm based parametric
B-spline class is presented. In particular we employ a particular class of spline
characterized by a shape parameter λ: for this family of spline it has been shown
(see [9]) that the value of the parameter affects the shape of the whole spline curve.
We have exploited this last property locally in order to move a subset of the control
points defining the given curve. In our approach the value of λ is chosen in order
to minimize a functional related to the fairness of the curve and in particular we
have considered a functional involving the second derivative of the curvature. The
numerical test cases we have performed showed the effectiveness of algorithm both
in academic and real-world situations.
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1 Introduction

The current trend in manufacturing industries towards the use of free-form
shapes has given raise to significant research efforts in the fields of design,
manufacturing and inspection of this kind of shapes. In fact, nowadays, all
CAD systems support functions for modeling free-form surfaces, modern CNC
machines can be adopted to create them and different digitizing devices can
be used to inspect such objects. A great deal of effort has been reported in
literature on free-form inspection techniques (see for example [4]). In particular
many reverse engineering problems, using free form modeling, are presented
in [15].
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Since generated or recreated free form shapes frequently present irregularities
such as aesthetic undulations, we are faced to the problem of eliminating them
by means of a fairing process.

In interactive fairing [12] an operator identifies points of curve affected by
irregularities and makes appropriate corrections; this process is repeated until
an acceptable fairness is obtained. Interactive fairing is simple but is time
consuming and can hardly be automatized, therefore research activities are
directed towards automatic fairing.

Currently, automatic fairing methods are based on two alternative approaches:
global fairing where the undulations are directly eliminated during the inter-
polation or approximation process [5],[14] and local fairing where the profile
construction and the fairing process are separated.

In local automatic fairing an analytical indicator is used to identify the ”bad
points” (bad in the sense of a particular fairness criterion) that are moved
according to a specific method minimizing some particular functional (fairing
indicators). This process continues until a suitable end condition is fullfilled.

In the case of B-spline curves, a first automatic fairing algorithm, based on
the movement of ”bad points” by means of the minimization of the curva-
ture functional, has been proposed by Farin and Sapidis in [13] and refined by
Kjellander [6] and Poliakoff et al. [11]. Another automatic algorithm has been
presented by Eck and Hadenfeld [3]: their key idea is to minimize the energy
integral. In [16] is presented an algorithm that can be used to fair B-spline
curves. Recently, in [7] the authors present a fairing algorithm for planar cu-
bic B-spline. In order to identify bad points they use a target curvature plot.
The corresponding control points are modified using a local constrained opti-
mization procedure; the objective function is a weighted combination of two
components: the first one related to the fairness of the curve, the second con-
cerns the coherence to the original design. In [10] another automatic curve
fairing algorithm is presented (with application to ship design). This algo-
rithm is based on the use of optimization tools and cubic B-spline functions.
The objective of the optimization algorithm is the minimization of the energy
functional and some geometric constraints are imposed in order to obtain an
optimum curve in terms of both fairness and closeness to the original curve.

Our paper proposes a local automatic fairing algorithm based on parametric
B-spline approximating planar curves. Fairness and closeness to the original
curve are the objectives of the work.

The central idea is the following: to move a ”bad set” of approximating B-
spline control points, the algorithm employs a particular operator (integral
spline operator): this operator is characterized by a shape parameter which is
chosen in order to minimize a suitable cost-functional related to the fairness
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of curve.

The paper is organized as it follows: section two deals with some preliminar-
ies concerning differential geometry of curves; in section three the so-called
λ-spline integral operator is introduced along with a brief description of their
principal graphically interesting properties; section four describes the fairing
indicators used and the fairing algorithm; finally in section five some prelimi-
nary numerical results are presented in order to assess the effectiveness of the
proposed method.

2 Notations

In this section, just for the sake of completeness, we will briefly recall basic
notations concerning fundamental concepts of differential geometry of curves.

Let us consider a parametric curve p = p(t) = (x(t), y(t), z(t))T , the lenght
of infinitesimal arc of curve is

ds = |ṗ|dt (1)

where the ˙ denotes the derivative with respect to t. The unit tangent vector t

is given by

t =
ṗ

|ṗ|
= p′ (2)

where ′ denotes the derivative with respect to s.

Since p′ · p′′ = 0, i.e. the vector p′′ is orthogonal to p′; hence we can define
the following unit principal normal vector n

n =
p′′

|p′′|
(3)

The quantity κ = |p′′| is the so-called curvature and ρ = 1/κ is the radius of
curvature.

The expression of the curvature for a generic parametric planar curve can be
written as follows

κ =
(ṗ × p̈) · ez

v3
=

ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
(4)
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where ez is the unit vector normal to the xy plane and v = ds
dt

is the parametric
speed.

3 Univariate integral parametric spline

In this section we recall the basics of VDS splines and of the univariate integral
parametric splines proposed in [9].

Given a set of control points P0,P1, . . . ,Pm and a knots vector t

0 = t−k = ... = t0 < t1 < ... < tn−1 < tn = tm = 1 n = m − k

the expression

(SmP)(t) =
m

∑

i=0

PiB
k
i (t) 0 ≤ t ≤ 1 (5)

is called a k-order variation diminishing spline operator (VDS operator).

The basis function Bk
i (t) (i = 0, 1, . . .m) are recursively defined as

Bk
i (t) =

t − ti−k

ti−1 − ti−k

Bk−1

i (t) +
ti − t

ti − ti−k+1

Bk−1

i+1 (t) (6)

where

B0

i (t)= 1 ti ≤ t ≤ ti+1

B0

i (t)= 0 otherwise (7)

In matrix form the VDS operator can be written as follows

(SmP)(t) = bm(t)p 0 ≤ t ≤ 1 (8)

where

bm = (Bk
0 (t), Bk

1 (t), ..., Bk
m(t)), p = (P0,P1, ...,Pm)T (9)

In [9] some modifications to this class of splines are introduced: in particular a
family of integral spline operators depending on a real parameter is presented.
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This new family of spline will be called Univariate Integral λ−Variation Di-
minishing Splines.

Assuming that ti is the value of the parameter corresponding to the given
control point Pi we define

ξk
i =

ti−k+1 + ...ti
k

(10)

These points in the field of approximation are called Schonberg points [2]. We
will call “correspondence points” such ξk

i values.

Let xi
j , (j = 1, 2, 3) be the generic component of vector Pi and ϕj, (j = 1, 2, 3)

the piecewise linear function interpolating points (ξk
i , xi

j) and whose graphic
is the control polygon.

The Sm operator on j-th component of P can then be expressed as

(SmP)j = (Smϕj) =
m

∑

i=0

ϕj(ξ
k
i )Bk

i (t), j = 1, 2, 3 (11)

Substituting ϕj(ξ
k
i ) with the following integral mean

µiϕj(t) =

∫ ξk+1

i+1

ξk+1

i

ϕj(u)du

ξk+1
i+1 − ξk+1

i

(12)

we obtain the following operator Tm (integral VDS operator)

(Smµiϕj) = (Tmϕj) = (TmP )j j = 1, 2, 3. (13)

The Tm operator can be used to generate a new curve model and in matrix
form it can be written as

(TmP)(t) = bm(t)(MP) 0 ≤ t ≤ 1 (14)
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where matrix M has the following form

M =





























β0 γ0 0 ... 0

α1 β1 γ1 ... 0

0 α2 β2 ... 0

0 ... ... γm−1

0 ... ... βm γm





























(15)

with

α0 = 0, αi =
(δl

i)
2

2∆k
i−1∆

k+1
i

, i = 1, ...m

γi =
(δr

i )
2

2∆k
i ∆

k+1
i

, i = 1, ..., m − 1, γm = 0

βi = 1 − αi − γi, i = 1, ..., m

(16)

∆k
i = ξk

i+1 − ξk
i , δr

i = ξk+1
i+1 − ξk

i

δl
i = ξk

i − ξk+1
i , ξk+1

i < ξk
i < ξk+1

i+1

(17)

Equation (14) shows that the integral spline can be regarded as the VDS
operator produced by a new control points set P̃, obtained transforming in a
global way the given set P: e.g. P̃ = MP. It follows that

(TmP)(t) = (SmP̃)(t) 0 ≤ t ≤ 1 (18)

The obtained curve model is characterized by the following properties:

• it is invariant under affine transformations of the coordinate system;
• the whole curve lies inside the convex hull of the control polygon (the piece-

wise line whose vertices are the control points);
• it is uniquely determined by its control polygon and no two polygons pro-

duce the same curve;
• it crosses an arbitrary plane no more then does the control polygon ;
• it reproduces points and lines.

A further step is the introduction of a shape parameter λ in the VDS integral
operator (see [9]). The integral mean expression in (12) is replaced by

µλ
i ϕj(t) =

∫ ηi

ζi
ϕj(u)du

ηi − ζi

(19)
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where

ζi = (1 − λ)ξk
i + λξk+1

i , ηi = (1 − λ)ξk
i + λξk+1

i+1 (20)

with 0 ≤ λ ≤ 1.

In matrix form this new operator can be written as

(T λ
mP)(t) = bm(t)(Mλ(λ)P) 0 ≤ λ ≤ 1 (21)

where

Mλ(λ) =





























βλ
0 γλ

0 0 ... 0

αλ
1 βλ

1 γλ
1 ... 0

0 αλ
2 βλ

2 ... 0

0 ... ... γλ
m−1

0 ... ... βλ
m γλ

m





























(22)

with

αλ
i = λαi, βλ

i = 1 − λ(αi + γi), γλ
i = λγi i = 0, ..., m (23)

The operator (T λ
mP) is called integral spline VDS operator, with shape param-

eter. It can be shown that the λ parameter allows to control the global shape
of the curve (whereas with the conventional spline only a local control can be
achieved). Moreover this operator shares the same properties of the integral
spline operator Tm: in particular it is worthwhile to underline that the convex
hull property is valid as long as λ lies in the interval [0,1] (see the following
figures).

In order to show the influence of the parameter λ on the shape of the curve
we consider the following set of control points

P0 =







4

1






, P1 =







2

3






, P2 =







1

6






, (24)

P3 =







3

8






, P4 =







4

9






, P5 =







5

8






, (25)
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Figure 1. B-spline curve for a given set of control points (λ = 0).

P6 =







7

6





 , P7 =







6

3





 , P8 =







4

1





 . (26)

using this set of control points the B-spline curve shown in figure 1 is obtained
whereas figure 2 shows the influence of the λ parameter on the shape of the
resulting curve for the same set of control points.

4 Fairing

A fairing process consists in detecting and removing irregularities along a
curve profile.

The mathematical problem can be stated as follows. First of all, given a set of
measured points Qi ∈ R2, i = 0, . . . , n we compute the corresponding control
points Pi, i = 0, . . . , n such that the following B-spline curve

(SnP)(t) =
n

∑

i=0

Bi,k(t)Pi (27)

interpolates points Qi. In (27) k is the order of the spline, t is the knot vector
and Bi,k(t) are the B-spline basis functions.

We assume that the measured points are obtained by means of an high-
accuracy measuring system (e.g. CMM) and hence they can be thought to
belong to the “real curve”: this fact justify the first step of the algorithm in
which we build an interpolating curve.
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Figure 2. Shapes obtained for different values of λ.
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The aim is to find a new spline curve (SnP)new(t) that minimize a suitable cost
functional related to the fairness of the curve. In addition, a shape constraint
has to be considered in order to avoid large deviations from the original curve.

4.1 Fairness criteria

The first problem is to determine what fairness means. There is a consensus
among authors that the fairness of a curve is related to its curvature and to
the way it varies along the curve. If the curvature is monotonically increasing
or decreasing the curve shape is considered good. On the other hand, if a curve
has large and frequent variations of its curvature this has to be considered as
a bad indication. Therefore, the curvature plot can be used to show how the
curvature varies and some authors used it for interactive fairing process. For
an automatic procedure it is necessary to adopt a fairness criterion that is
quantifiable. The two main criteria well known and accepted in literature are:

• C1: A curve is fair if the corresponding curvature plot k(s) is continuous,
and is as close as possible to a piecewise monotone function with few as
possible monotone pieces [13].

• C2: A curve is fair if it minimizes the integral of the squared curvature k2(s)
with respect to the arc length (i.e. the strain energy of a thin elastic beam)
[8].

First of all it must be noticed that both these criteria lead to a non-linear
problem since the arc-length is also an unknown. Therefore a linearization is
required and usually it is assumed that the actual parameter t of the spline
curve nearly represents the arc-length.

Furthermore it has been shown (see [3]) that the adoption of criteria C2 is
equivalent to considering the following Global Fairing Indicator (GFI)

GFI =
∑

i

LFIi, (28)

where the Local Fairing Indicator (LFI) is defined as follows

LFIi = (κ′′)2 (29)

4.2 Description of the algorithm

The fairing algorithm we are advocating can be summarized as follows:
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• Step 1.
Build the initial spline curve interpolating the given points.

• Step 2.
Evaluate the local fairing indicator (LFIi) and the corresponding global

fairing indicator (GFI).
• Step 3.

Sort the points in descending order according to their LFIi. Start pro-
cessing point i having the highest LFIi.

• Step 4.
Consider the following set of five points

Li = Pi−2,Pi−1,Pi,Pi+1,Pi+2

The local procedure creates a new set of control points

LN
i = PN

i−2,P
N
i−1,P

N
i ,PN

i+1,P
N
i+2

using the λ-spline operator introduced in section 2: in particular the ”op-
timal” value of the shape parameter is computed so that the LFIi is min-
imized. After this minimization procedure the new GFI (GFInew) is com-
puted: if GFInew < τGFI (where τ is a relaxation parameter) the movement
is accepted and we come back to Step 2; if GFInew > τGFI we have two
possibilities: if i is the last point the procedure is finished and we go to Step
5 otherwise the movement is rejected and the following highest LFIi point
is processed.

• Step 5.
Build the final curve using the new global set of computed control points.

In figure 3 a schematic flow chart of the algorithm is presented.

It is worthwhile to notice that the local minimization procedure is a con-
strained procedure since λ can assume only values in the interval [0,1]: we
have seen that values outside this interval do not assure the ”convex hull”
property. In this sense the approach we are advocating does not require the
explicit imposition of the shape constraint.

5 Numerical tests

In this section both academic and real-world test are presented in order to
assess the effectiveness of the proposed algorithm.

The numerical results of this section have been obtained using cubic basis
function and a relaxation parameter τ = 0.99.
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END

Build final faired curve

Step 5.

Figure 3. Flow chart of the algorithm

5.1 Strophoid

In the first case we consider the following parametric curve

x =
t3 − t

t2 + 1
,

y =
t2 − 1

t2 + 1
,

(30)

with −2 ≤ t ≤ 2. We take 31 equally spaced points on the curve and we
perturbe 25 internal nodes with a random noise characterized by a normal
distribution with zero mean and variance equal to 0.15. Figure 4 shows the
original noised curved in dashed line and the corresponding faired curve. In
figures 5 and 6 the curvature plots of the original noised curved and of the
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Figure 4. Original perturbed curve (dashed) and the faired one (solid).
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Figure 5. Curvature plot of the original noised curved (dashed) and of the analytic
curve (solid).

faired curve are compared with the curvature plot of the analytic curve: we can
see that, despite of the presence of some oscillations, the curvature plot of the
faired curve is very close to the analytic one; moreover the starting maximum
value of the unsigned curvature is 1.5 whereas after the fairing procedure this
maximum value is approximately 0.8 (the analytic one is about 0.7). Finally
we can see in figure 7 that the starting value of the GFI was about 75 and
after the fairing it has been decreased to 10; it is worthwhile to notice that
the faired curve has been obtained moving only 7 points (circles in figure 7).

5.2 Sole profile

In the second test case we consider a sole profile (see figure 8). The profile
is described by 202 points which have been acquired using a CMM. Figure 9
shows the comparisons between the curvature plot before (dashed) and after
(solid) the fairing procedure: we have obtained an improvement of an order
of magnitude. Figure 10 shows three different details of the profile: in all
these cases we can see that the fairing algorithm has performed very well in
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Figure 6. Curvature plot of the faired curve (dashed) and of the analytic curve
(solid).

1 2 3 4 5 6 7 8
10

20

30

40

50

60

70

80

Figure 7. GFI trend during the fairing procedure for the analytic test case.
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Figure 8. Sole profile.

smoothing the original profile. Finally 11 shows the trend of the GFI during
the fairing procedure: in this case the final curve has been obtained moving
33 points.

The second real-world test concerns the lateral profile of the sole. As in the
previous situation the points have been acquired using a CMM machine: in
this case we are considering 151 points (see figure 12). Figure 13 shows the
comparisons between the curvature plot before (dashed) and after (solid) the
fairing procedure: we have obtained an improvement of an order of magnitude.
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Figure 9. Comparison of the curvature plot of the original profile (dashed) and of
the faired profile (dashed).
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Figure 10. Three details of the faired profile (solid) with respect to the original one
(dashed).
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Figure 11. GFI trend during the fairing procedure for the sole profile.
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Figure 12. Lateral Sole profile.
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Figure 13. Comparison of the curvature plot of the original profile (dashed) and of
the faired profile (dashed).
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Figure 14. Two details of the faired profile (solid) with respect to the original one
(dashed).

Figure 14 shows three different details of the profile: in all these cases we can
see that the fairing algorithm has performed very well in smoothing the original
profile. Finally 15 shows the trend of the GFI during the fairing procedure: in
this case the final curve has been obtained moving 33 points.

6 Conclusion

In this paper a new automatic fairing algorithm has been introduced. The al-
gorithm is based on the modification of the control points set using a suitable
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Figure 15. GFI trend during the fairing procedure for the lateral sole profile.

integral spline operator. This class of spline is characterized by a shape pa-
rameter which allows to change globally the shape of the spline curve. In the
context of the fairing algorithm the ”optimal” value of the shape parameter
has been computed in order to minimize a functional related to the fairness
of the curve. The preliminary numerical results show the effectiveness of the
proposed algorithm in terms of the ability to reduce the unwanted oscillations
in the curvature plot of the curve at hand. In [1] the proposed algorithm is
compared to existing fairing algorithms.

The extension to 3D curve and to surface is under development and will be
the subject of a future work.
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