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Abstract

We present a variational framework for shape optimization problems
that establishes and clarifies explicit connections among the continuous for-
mulation, its full discretization and the resulting linear algebraic systems.
Our approach hinges on the following essential features: shape differential
calculus, a semi-implicit time discretization and a finite element method
for space discretization. We use shape differential calculus to express vari-
ations of bulk and surface energies with respect to domain changes. The
semi-implicit time discretization allows us to track the domain boundary
without an explicit parametrization, and has the flexibility to choose dif-
ferent descent directions by varying the scalar product used for the com-
putation of normal velocity. We propose a Schur complement approach
to solve the resulting linear systems efficiently. We discuss applications of
this framework to image segmentation, optimal shape design for PDE, and
surface diffusion, along with the choice of suitable scalar products in each
case. We illustrate the method with several numerical experiments, some
developing pinch-off and topological changes in finite time.

Keywords: Shape optimization, scalar product, gradient flow, implicit
discretization, finite elements, surface diffusion, image segmentation.

AMS subject classification: 49Q10, 65M60, 65K10

1 Shape Optimization and Gradient Flows

Shape optimization problems are ubiquitous in science, engineering and indus-
trial applications. They can be formulated as minimization problems with re-
spect to the shape of a domain Ω in R

d. If y(Ω) is the solution of a boundary
value problem in Ω

Ly(Ω) = 0, (1)
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and J(Ω, y(Ω)) is a cost functional, then we consider the minimization problem

Ω∗ ∈ Uad : J(Ω∗, y((Ω∗)) = inf
Ω∈Uad

J(Ω, y(Ω)), (2)

where Uad is the set of admissible domains in R
d. If the problem is purely

geometric, namely there is no state constraint (1), then we simply denote the
functional J(Ω). We refer to the books [24, 19, 15, 11, 21] for a description of
this problem and numerous applied examples (see e.g [20, 16]). In any case, we
review some basic material in §2 and discuss three relevant examples throughout
the paper.

Our main goal is to present a variational method which explicitly and clearly
leads to first design a flow Ω(t), starting from an initial configuration Ω(0) to
a relative minimum Ω(∞), that decreases the function t 7→ J(Ω(t), y(Ω(t)),
and next to discretize in time and space, thereby obtaining a natural descent
direction. Our approach hinges on three essential features:

• Shape sensitivity analysis: this allows us to express variations of bulk and
surface energies with respect to domain changes and formalize the notion of
shape derivative and thus shape gradient.

• Semi-implicit time discretization: this is crucial in order to maintain an im-
plicit computation of geometric quantities such as mean curvature and normal
velocity but not the entire geometry. This can be realized without explicit
parametrization of the domain boundary, and is sufficiently flexible to ac-
commodate several scalar products for the computation of normal velocity
depending on the application.

• Adaptive finite element method for space discretization: this is important for
the intrinsic computation of mean curvature as well as the control of local
meshsize to increase resolution.

We discuss shape sensitivity in §2, with special emphasis on our three sample
problems, and present the time and space discretization of the resulting gradient
flows in §3. We finally conclude in §4 with several numerical experiments that
illustrate performance of the method, choice of scalar products, and large domain
deformations sometimes leading to pinch-off and topological change.

In the rest of the introduction we briefly describe our three basic model prob-
lems and the notion of gradient flow. We now introduce our examples, image
segmentation, optimal shape design for PDE, and surface diffusion. They are
simple models of shape optimization with quite distinct behavior and require-
ments, which can nonetheless be studied within a unified framework. We make
also explicit the concept of shape derivative of J(Ω) in the direction of a normal
velocity V , namely

dJ(Ω;V ) =

∫

Γ
GV dS, (3)
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but derive the expressions of G in §2 for each case. We then indicate how to
exploit this information to design a gradient flow. Throughout the paper we
will denote with Γ that part of the boundary of Ω which is free to deform, with
κ the sum of the principal curvatures and with ~ν the unit outer normal of Γ;
thus V := ~V · ~ν. We assume that circle with outward normal has positive mean
curvature.

1.1 Image Segmentation

Image segmentation has been one of the central problems of image processing
ever since the inception of this discipline. Given an image the goal is to identify
the ”objects” or homogeneous regions with respect to some image features, such
as image intensity, texture etc. The geodesic active contour model proposed in [9]
addresses this problem in an energy minimization context and identifies object
boundaries by a set of curves (or surfaces in 3D). In the following we cast this
model within our framework.

Let I(x) : D ⊂ R
d → R be a given smoothed-out image intensity function on

an open and bounded image domain D. Since values of I(x) vary significantly at
object boundaries, the image gradient ∇I(x) gets large at these locations. We
can use this to define the edge detector function H(x) as follows

H(x) = h(|∇I(x)|), h(s) =
1

1 + s2
,

so that H(x) is small on object boundaries and H(x) ≈ 1 on smooth regions of
the image. We now associate an energy J(Ω) to a given curve Γ and enclosed
domain Ω so that object boundaries correspond to local minima of J(Ω). Such
an energy is given by the geometric functional

J(Ω) :=

∫

Γ
H(x)dS + λ

∫

Ω
H(x)dx, λ ≥ 0. (4)

Note that the first integral is minimized when Γ coincides with the object bound-
aries in the image. It is also common to include the domain integral in the
optimization process because it speeds up the convergence of the curve to the
object boundaries and helps detection of object concavities; see [5], [9] for more
details. We will see in §2.2.1 that G in (3) has the explicit form

G = (κ+ λ)H(x) + ∂νH(x). (5)

1.2 Optimal Shape Design for PDE

Motivated by the optimal shape design of a drug eluting stent, we consider an
extremely simplified problem, still presenting some of the main mathematical
difficulties one has to face in trying to solve a more realistic situation (for more
details on the mathematical modelling see e.g. [27]). A drug eluting stent
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is a normal metal stent that has been coated with a drug that is known to
interfere with the process of restenosis of the artery. Roughly speaking in optimal
shape design for drug eluting stents, one is interested in optimizing some of the
geometric properties of the stent in order to control the distribution of the drug
released in the arterial wall.

In this context Ω is the cross-section of part of the arterial wall, Γ is the
boundary of the cross section of a stent wire, D is the control region for the
drug distribution and zg is some clinical data to match.

Let Ωi, i = 1, 2 be sufficiently regular open bounded sets of R
d, such that

Ω1 ⊂ Ω2. We denote by Ω = Ω2 \ Ω1 and ∂Ω = Γ ∪ Σ, where Γ = ∂Ω1 and
Σ = ∂Ω2\Γ. Finally, let D be an open bounded set of R

d such that D ⊂⊂ Ω. Let
us now define the set Uad of admissible domains in R

d: it contains all domains
obtained through a deformation of Ω by keeping Σ fixed and by moving only Γ
in such a way that Γ ∩D = ∅.

We are interested in the solution of a simple shape optimization problem of
the form (2), associated to the energy functional

J(Ω, y(Ω)) :=
1

2

∫

D

(

y(Ω) − zg

)2
dx+ γ

∫

Γ
dS, (6)

where γ > 0 is a penalization parameter for the length of the moving surface
Γ, zg is a given function on R

d and y(Ω) is the solution of the following elliptic
problem on Ω

−∆y = 0 in Ω, y = 0 on Σ, ∂νy = 1 on Γ. (7)

We will see in §2.2.2 that G in (3) has the explicit form

G := −∇Γy∇Γp+ κp + κγ. (8)

1.3 Surface Diffusion and Epitaxially Stressed Solids

A very simple model of epitaxially stressed thin films can be described as follows
[4, 8, 25]. Consider an elastic solid with lattice spacing different from that of
a substrate. This mismatch induces stresses in the solid. On the other hand,
material particles on the free surface Γ in contact with gas are free to move and
rearrange their position so as to minimize surface tension, thereby yielding a
plastic deformation of the solid. Phenomenological arguments lead to the four
order (highly nonlinear) PDE

V = −∆Γ(γκ + ε) (9)

where γ is the surface tension constant and ε is the elastic energy density on
Γ. In this paper we consider a simplified situation in that elasticity is replaced
by the Laplace operator in Ω and thus ε := |∇y(Ω)|2, where y(Ω) solves the
boundary value problem

−∆y(Ω) = 0 in Ω, ∂νy(Ω) = 0 on Γ, y(Ω) = g on Σ, (10)
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where Σ is that part of the boundary of Ω in contact with the substrate (to mimic
a misfit). We will see in §3.3 that the physical law (9) is the H−1-gradient flow
for the energy functional

J(Ω, y(Ω)) :=

∫

Ω
|∇y(Ω)|2 + γ

∫

Γ
dS, (11)

whereas we will show in §2.2.3 that G in (3) has the explicit form

G := |∇y(Ω)|2 + γκ. (12)

1.4 Shape Gradient Flows

We observe that in all the examples above, the function G in (3) has the form

G = g(x,Ω)κ + f(x,Ω). (13)

This explicit expression can be exploited to deform Ω in the direction V of
maximal decrease of the functional J(Ω, y(Ω)). To do this, we first introduce a
bilinear form b(·, ·) on Γ which induces a scalar product, and next consider the
gradient flow

b(V,W ) = −

∫

Γ
GW, ∀W, (14)

where Γ (and hence G) implicitly depend on V by means of a suitable system
of ODE describing the deformation of Ω through V . If B is a (elliptic) operator
such that 〈BV,W 〉 = b(V,W ), then (14) is equivalent to solving the elliptic PDE
on the surface Γ for the normal velocity V

BV = −G. (15)

We point out that so far we have not discretized the underlying problem but
still have been able to find a descent direction for the domain shape. The next
step is to discretize in time in such a manner that we retain the implicit com-
putation of curvature in (13), for stability purposes, but not the full geometry.
This linearization process is fully discussed in §3.3 and is followed by space dis-
cretization via finite element methods in §3.5. The ensuing variational approach
is rather flexible to accommodate several scalar products b(·, ·) depending on the
application, as discussed in §3.3 and §4. Roughly speaking we can distinguish
between applications where the gradient flow has a physical meaning (e.g. sur-
face diffusion), and where it does not (e.g. image segmentation or optimal shape
design for PDE). In the first case the choice of the scalar product is dictated
by physics, whereas in the latter case it can be driven by issues concerning the
well-posedness of (15), as discussed in the example of optimal shape design for
PDE, or by stability and rate of convergence of the resulting numerical scheme,
as described in the example of image segmentation.
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In designing a numerical scheme (e.g. gradient method) for the approxi-
mation of the continuous gradient flow (14), and hence the construction of a
sequence of domains {Ωn}n≥0 aiming at convergence to Ω∗ = argminΩ∈Uad

J(Ω),
the following chief question arises:

Given a domain Ω, is it possible to choose a vector field
~V deforming Ω into Ω̃ such that J(Ω̃) < J(Ω)?

(16)

A key step in answering this question is the shape sensitivity analysis of the
mapping Ω 7→ J(Ω). This is briefly discussed in §2.

2 Shape Sensitivity Analysis

In §2.1 we introduce some elements of shape calculus, along with related refer-
ences, necessary to properly carry out the shape sensitivity of the model problems
in §2.2.

2.1 Shape Differential Calculus

We start by briefly recalling some useful notions of differential geometry. Let us
be given h ∈ C2(Γ) and an extension h̃ of h, h̃ ∈ C2(U) and h̃|Γ = h on Γ where
U is a tubular neighborhood of Γ in R

d. Then the tangential gradient ∇Γh of h
is defined as follows:

∇Γh = (∇h̃ −
∂h̃

∂ν
~ν)|Γ,

where ~ν denotes the normal vector to Γ. For an open set of class C 2 with
boundary Γ, we define the tangential divergence of ~V by

divΓ
~V = (div~V− < D~V · ~ν, ~ν >)|Γ, (17)

where D~V denotes the Jacobian matrix of ~V .
Finally the Laplace-Beltrami operator ∆Γ on Γ is defined as follows

∆Γh = divΓ(∇Γh). (18)

2.1.1 The Velocity Method

We consider now a hold-all D which contains Ω and a vector field ~V defined on
D which is used to define the continuous sequence of perturbed sets {Ωt}t≥0,
with Ω0 := Ω. Each point x ∈ Ω0 is continuously deformed by an ODE defined
by the field ~V . The parameter which controls the amplitude of the deformation
is denoted by t (a fictitious time).

We now consider the system of ODEs






dx
dt

= ~V (x(t)), ∀t ∈ I

x(0) = X.

(19)
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where X ∈ Ω0 = Ω. This defines the mapping

x(·, t) : X ∈ Ω → x(t,X) ∈ R
d, (20)

and also the perturbed sets

Ωt = {x(t,X) : X ∈ Ω0}. (21)

We recall [24] that the family of perturbed sets has its regularity preserved
for ~V smooth enough: if Ω0 is of class Cr, r ≤ k, then for any t ∈ I, Ωt is also
of class Cr.

2.1.2 Derivative of Shape Functionals

Let J(Ω) be a shape functional; examples of such functionals have been given in
Section 1. The Eulerian derivative (or Shape derivative) of the functional J(Ω)
at Ω, in the direction of the vector field ~V is defined as the limit

dJ(Ω; ~V ) = lim
t→0

1

t
(J(Ωt) − J(Ω)). (22)

Let B be a Hilbert space of perturbating vector fields. The functional J(Ω)
is said to be shape differentiable at Ω in B if the Eulerian derivative dJ(Ω; ~V )
exists for all ~V ∈ B and the mapping ~V → dJ(Ω; ~V ) is linear and continuous on
B. An analogous definition can be introduced for functionals J(Γ) depending
on a d− 1 manifold as an independent variable.

We now recall a series of results from shape calculus in R
d. We start with the

shape derivative of domain and boundary integrals of functions not depending
on the geometry.

Lemma 2.1 ([24, Prop. 2.45]) Suppose φ ∈ W 1,1(Rd) and Ω ⊂ R
d is open

and bounded. Then the functional

J(Ω) =

∫

Ω
φdx (23)

is shape differentiable. The shape derivative of J is given by

dJ(Ω; ~V ) =

∫

Ω
div(φ~V )dx. (24)

If Γ = ∂Ω is of class C1, then

dJ(Ω; ~V ) =

∫

Γ
φV ds, (25)

where V =< ~V , ~ν >, being ~ν the outward unit normal vector to Ω and < ·, · >
the inner product on R

d.
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Lemma 2.2 Suppose ψ ∈W 2,1(Rd) and Γ is of class C1. Then the functional

J(Γ) =

∫

Γ
ψdS (26)

is shape differentiable and [24, Prop. 2.50]

dJ(Γ; ~V ) =

∫

Γ
(< ∇ψ, ~V > +ψdivΓ

~V )ds, (27)

or equivalently [24, (2.145)]

dJ(Γ; ~V ) =

∫

Γ
(
∂ψ

∂ν
+ ψκ)V dS, (28)

where κ is the mean curvature of Γ.

Let us now consider more general functionals J(Ω), which are useful when we
consider problems of optimal shape design for partial differential equations, like
the one introduced in Section 1.2. In particular we are interested in computing
sensitivities for functionals of the form

J(Ω) =

∫

Ω
φ(x,Ω)dx, or J(Γ) =

∫

Γ
ψ(x,Γ)ds, (29)

where the functions φ(Ω, ·) : Ω → R and ψ(Γ, ·) : Γ → R themselves depend on
the geometric variables Ω and Γ, respectively. To handle the computation of the
sensitivities of such functionals we need to take care of the derivatives of φ and
ψ with respect to Ω and Γ.
First of all we recall the notion of material derivative φ̇(Ω; ~V ) of φ at Ω in
direction ~V . It is defined [24, Def. 2.71] as follows:

φ̇(Ω; ~V ) = lim
t→0

1

t
(φ(Ωt) ◦ x(·, t) − φ(Ω0)) (30)

where the mapping x(·, t) is defined as in (20).
The analogous definition holds for functions ψ(Γ, ·) which are defined on

boundaries and not on domains.
Let us now now recall the notion of shape derivative φ′(Ω; ~V ) of φ at Ω in
direction ~V . It is defined [24, Def. 2.85] as

φ′(Ω; ~V ) = φ̇(Ω; ~V )− < ∇φ, ~V > . (31)

Accordingly for boundary functions ψ(Γ) : Γ → R, the shape derivative is defined
[24, Def. 2.88] as

ψ′(Γ; ~V ) = ψ̇(Γ; ~V )− < ∇Γψ, ~V > |Γ. (32)

With these notions we are able to calculate the Eulerian derivatives for the
above shape functionals.
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Proposition 2.1 ([24, Sect. 2.31, 2.33]) Suppose φ = φ(Ω, x) is given such
that the material derivative φ̇(Ω; ~V ) and the shape derivative φ′(Ω; ~V ) exist.
Then, the cost functional in (29) is shape differentiable and we have

dJ(Ω; ~V ) =

∫

Ω
φ′(Ω; ~V )dx +

∫

Γ
φV dS. (33)

For boundary functions φ(Γ) we get

dJ(Γ; ~V ) =

∫

Γ
φ′(Γ; ~V )dS +

∫

Γ
κφV dS, (34)

where κ is the mean curvature. If φ(Γ, ·) = ψ(Ω, ·)|Γ, then we have

dJ(Γ; ~V ) =

∫

Γ
ψ′(Ω; ~V )|ΓdS +

∫

Γ
(
∂ψ

∂ν
+ κψ)V dS. (35)

To use this Proposition we need to be able to compute the shape derivative of
solutions y(Ω) to elliptic boundary value problems. We consider now a simple
case, though sufficient for our later developments: let f, g, h be functions defined
on R

d, i.e. they do not depend on Ω

−∆y(Ω) = f in Ω, y(Ω) = g on Σ, ∂νy(Ω) = h on Γ. (36)

Lemma 2.3 ([26],[24, Sect. 3.1 and 3.2]) The shape derivative y ′ := y′(Ω, ~V )
of y(Ω) in (36) satisfies the following boundary value problem







−∆y′ = 0, in Ω
y′ = V ∂ν(g − y(Ω)) on Σ

∂νy
′ = divΓ(V∇Γy(Ω)) + (κh + ∂νh+ f)V on Γ.

(37)

Let us conclude this part with a Riesz representation theorem that will play
an important role in the sequel.

Lemma 2.4 (Hadamard-Zolésio Theorem [24, Sect 2.11 and Th. 2.27]) The
Eulerian derivative of a domain or boundary functional always has a represen-
tation of the form

dJ(Ω; ~V ) = 〈G,V 〉Γ, (38)

where we denote by 〈·, ·〉Γ a duality pair on Γ; that is, the Eulerian derivative is
concentrated on Γ.

2.2 Shape Derivatives of the Model Problems

For each shape functional introduced in Section 1.2 we compute the shape deriva-
tive and derive the explicit expressions (5), (8), and (12) of the Riesz represen-
tative G.
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2.2.1 Image Segmentation

Following Lemmas 2.1, 2.2, we can write the shape derivative of J(Ω) as follows:

dJ(Ω;V ) =

∫

Γ

(

(κ + λ)H(x) +
∂H(x)

∂ν

)

V dS. (39)

Then the shape gradient is

G = (κ + λ)H(x) +
∂H(x)

∂ν
, (40)

and has the form (13) with g = H(x) and f = λH(x) + ∂H(x)
∂ν

.

2.2.2 Optimal Shape Design for PDE

Let us now compute the shape derivative of the functional

J(Ω, y(Ω)) = J1(Ω, y(Ω)) + J2(Ω) =
1

2

∫

D

(y(Ω) − zg)2dx+ γ

∫

Γ
dΓ, (41)

where y(Ω) solves the elliptic problem (7).
Let us first consider the shape derivative y ′ := y′(Ω; ~V ) at Ω in the direction

~V , where we allow ~V to be non-zero only in a neighborhood of Γ (i.e. D and
Σ are both assumed to be fixed). According to Lemma 2.3, y ′ is the solution of
the following elliptic problem







−∆y′ = 0 in Ω
y′ = −V ∂νy = 0 on Σ

∂νy
′ = divΓ(V∇Γy) + κV on Γ.

(42)

In order to relate the L2-norm in J1(Ω, y(Ω)) it is natural to introduce the
following adjoint problem







−∆p = χD(y − zg) in Ω
p = 0 on Σ

∂νp = 0 in Γ,
(43)

whence

dJ1(Ω, V ) =

∫

D

(y − zg)y′ = −

∫

Ω
∆py′

=

∫

Ω
∇p∇y′ −

∫

Γ
∂νpy

′ −

∫

Σ
∂νpy

′

(y′ = 0 on Σ, ∂νp = 0 on Γ) = −

∫

Ω
∆y′p+

∫

Γ
∂νy

′p+

∫

Σ
∂νy

′p

(p = 0 on Σ) = −

∫

Ω
∆y′p+

∫

Γ
∂νy

′p

=

∫

Γ
(divΓ(V∇Γy) + κV )p

=

∫

Γ
(−∇Γy∇Γp+ κp)V.
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By using Lemma 2.2 we have

dJ2(Ω, V ) = γ

∫

Γ
kV dΓ. (44)

Hence the Structure Theorem (see Lemma 2.4) holds with the Riesz representa-
tion function

G = −∇Γy∇Γp+ κp+ κγ, (45)

which has the form (13) with g = p+ γ and f = −∇Γy∇Γp.

2.2.3 Surface Diffusion and Epitaxially Stressed Solids

We now compute the shape derivative of the functional (11), namely,

J(Ω, y(Ω)) = J1(Ω, y(Ω)) + J2(Ω) =

∫

Ω
|∇y(Ω)|2 + γ

∫

Γ
dS, (46)

with y(Ω) satisfying (10). It follows from (37) that the shape derivative y ′ :=
y′(Ω; ~V ) of y(Ω) satisfies

−∆y′ = 0 in Ω, y′ = 0 on Σ, ∂νy
′ = divΓ(V∇Γy), on Γ. (47)

Consequently, using (33), we obtain

dJ1(Ω; ~V ) = 2

∫

Ω
∇y∇y′ +

∫

Γ
|∇y|2V

and
∫

Ω
∇y∇y′ = −〈∆y, y′〉 +

∫

Γ
y′∂νy = 0,

because of (10). Since the shape derivative for J2(Ω) obeys (44), we have thus
derived the expression

dJ(Ω; ~V ) =

∫

Γ

(

|∇y|2 + γκ
)

V ds.

This implies that the shape gradient G is

G = |∇y|2 + γκ,

and has the form (13) with g = γ and f = |∇y|2.

3 Discrete Gradient Flows

Now we are ready to answer the chief question (16) and provide a strategy to
build a sequence {Ωn}n≥0 such that J(Ωn+1) ≤ J(Ωn). We first consider in
§3.1 an implicit time discretization, as proposed by Luckhaus [18] and Almgren,
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Taylor and Wang [1] for the Stefan problem with Gibbs-Thomson law. This
technique is also related to the idea of minimizing movements introduced by E.
De Giorgi [2, 3].

Since the resulting scheme is not practical, we then study an explicit time
linearization in §3.2, followed in §3.3 by a semi-implicit time discretization which
keeps geometric quantities such as velocity and curvature implicit but the rest
of the geometry explicit.

3.1 Implicit Time Discretization

Let τn be a variable time-step, tn+1 = tn + τn and let Ωn+1 be the solution of
the following penalized minimization problem:

argminΩn+1

(

J(Ωn+1) +
1

2τn
d2(Ωn+1,Ωn)

)

, (48)

where the ”distance term” 1
2τn

d2(Ωn+1,Ωn) penalizes the distance between Ωn+1

and Ωn. In order to specify the distance function d(·, ·), we consider ~Vn+1 :=
~V ( ~Xn+1) to be the implicit Euler approximation of (19):

~Xn+1 = ~Xn + τn~Vn+1; (49)

Note that Ωn+1 is described by the set of points ~Xn+1 and that ~Vn+1 is defined
in Ωn+1, so (49) does not specify ~Vn+1 directly.

Let Vn+1 ∈ B(Γn+1), where (B(Γn+1), bn+1(·, ·), ‖ · ‖Γn+1
) is a Hilbert space

defined on the deformable part Γn+1 of the boundary of Ωn+1, thereby measuring
the (boundary) smoothness of the vector fields. The natural choice

d(Ωn+1,Ωn) = ‖τnVn+1‖B(Γn+1),

converts (48) into the following minimization problem for ~Vn+1 = Vn+1~νn+1:

argmin~Vn+1

(

J(Ωn + τn~Vn+1) +
1

2τn
‖τnVn+1‖

2
B(Γn+1)

)

. (50)

The optimality condition reads as follows

dJ(Ωn+1; τn ~W ) +
1

τn
bn+1(τnVn+1, τnW ) = 0, ∀W ∈ B(Γn+1), (51)

in terms of the variation ~W = W~νn+1 of ~Vn+1. Such a condition, via Hadamard-
Zolésio Lemma 3, is equivalent to

〈Gn+1, τnW 〉Γn+1
= −

1

τn
(τnVn+1, τnW )B(Γn+1), ∀W ∈ B(Γn+1).

This yields the following ideal equation for Vn+1

bn+1(Vn+1,W ) = −〈Gn+1,W 〉Γn+1
, ∀W ∈ B(Γn+1), (52)
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which is implicit in that the domain Ωn+1 is unknown and thus part of the
problem (see also [7]). However, a crucial consequence of (50) important for
theory is

J(Ωn+1) ≤ J(Ωn + τn~Vn+1) +
τn

2
‖Vn+1‖

2
B(Γn+1) ≤ J(Ωn), (53)

as results from taking ~Vn+1 = 0 in (50). Consequently,

J(Ωk) +
1

2

k
∑

i=1

τi‖~Vi‖
2
B(Ωi)

≤ J(Ω0), ∀k ≥ 1.

Solving the nonlinear problem (52) is unaffordable directly and would require
iteration. The following linearization technique may either replace the implicit
solve or be used as one step in an iterative process.

3.2 Explicit Linearization

The key idea is to replace in (52) the new domain Ωn+1 and its boundary Γn+1,
which are unknown, by the current ones Ωn and Γn. This gives rise to the
following elliptic PDE on Γn: find Vn+1 ∈ B(Γn) such that

bn(Vn+1,W ) = −〈Gn,W 〉Γn
, ∀W ∈ B(Γn). (54)

Then Ωn+1 results from the explicit update ~Xn+1 = ~Xn + τ ~Vn+1, but the en-
ergy decrease property (53) is no longer valid. Nevertheless equation (54) still
provides a weaker energy decrease. In fact, if one chooses ~Vn+1 = Vn+1~νn, being
Vn+1 the solution of

bn(Vn+1,W ) = −〈Gn,W 〉Γn
, ∀W ∈ B(Γn), (55)

then there holds that

dJ(Γn; ~Vn+1) = 〈Gn, Vn+1〉Γn
= −bn(Vn+1, Vn+1) ≤ −‖Vn+1‖

2
B(Γn), (56)

that is ~Vn+1 provides a descent direction for the energy J(Ωn) (see [10]). How-
ever, (53) may not be valid, thereby leading to the bisection of τn (backtracking)
until (53) holds. This is guaranteed by (56) which expresses the instantaneous
decrease of energy.

3.3 Semi-Implicit Time Discretization

To derive an effective algorithm, we still need to address two critical issues:

Computing geometric quantities such as curvature and normal
velocity implicitly, but most of the geometry explicitly, thereby
reaching a compromise between the schemes of §§3.1 and 3.2.

(57)

13



Providing a variational method to compute curvature that could
be used in unstructured meshes.

(58)

To deal with (57) we let Bn denote the linear operator defined by the scalar
product bn(·, ·) on Γn, namely,

〈BnV,W 〉 = bn(V,W ) ∀V,W ∈ B(Γn).

Recalling the special form (13) of G, we thus propose the following semi-implicit
computation of Vn+1 and κn+1:

BnVn+1 + g(Ωn)κn+1 = −f(Ωn). (59)

This relation satisfies neither (53) nor (56) but tends to (15) for τn → 0. So
backtracking must be employed to guarantee energy decrease.

To assess (58) we resort to basic differential geometry which asserts that the
Laplace-Beltrami operator ∆Γ of the position vector ~X of Γ is the vector mean
curvature ~κ of Γ, namely,

−∆Γ
~X = ~κ = κ~ν. (60)

Hereafter we use the minus sign to be consistent with the convention that a
circle with outward unit normal ~ν has positive curvature. The use of (60) for
computation is due to Dziuk [13]. Since we need the scalar curvature κ instead
of ~κ, we proceed as Bänsch, Morin, and Nochetto [6] and consider the four
unknowns ~κ, κ, V, ~V along with their algebraic relations:

κ = ~κ · ~ν, ~V = V ~ν. (61)

If we take Γ = Γn+1, then for consistency with (59) we enforce (60) and (61)
semi-implicitly

−∆Γn

~Xn+1 = ~κn+1, κn+1 = ~κn+1 · ~νn, ~Vn+1 = Vn+1~νn.

Finally, to close the system we must relate position ~Xn+1 of Γn+1 and velocity
~Vn+1. We impose

~Xn+1 = ~Xn + τn~Vn+1, (62)

and thereby get the semi-implicit scheme: find (~κn+1, κn+1, Vn+1, ~Vn+1) s.t.

~κn+1 + τn∆Γn

~Vn+1 = −∆Γn

~Xn (63)

κn+1 − ~κn+1 · ~νn = 0 (64)

BnVn+1 + g(Ωn)κn+1 = −f(Ωn) (65)

~Vn+1 − Vn+1~νn = 0. (66)
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3.4 Choosing the Scalar Product

Depending on the application one is interested in (e.g. image segmentation,
optimal shape design for PDE or surface diffusion and epitaxially stressed solids),
there are several possibilities in choosing the space B(Γ) and the associated
bilinear form b(·, ·).

A first possibility is to choose b(·, ·) to coincide with the L2(Γ) scalar product.
Then equation (65) takes the form

Vn+1 + g(Ωn)κn+1 = −f(Ωn), (67)

which is a backward-forward parabolic-type equation, depending on the sign of
the function g. In fact, (67) is locally backward (ill-posed) in regions where
g < 0 and forward otherwise. This issue is of particular importance in the case
of optimal shape design for PDE, where the sign of g is unknown (see §4).

A second possibility is to choose b(·, ·) to coincide with a weighted H 1(Γ)
scalar product. In this case equation (65) reads

−divΓ(α∇ΓVn+1) + βVn+1 + g(Ωn)κn+1 = −f(Ωn), (68)

where β and α are some positive functions. In §4 we will see that this choice (for
suitable β’s and α’s) is well suited to stabilize the (ill-posed) L2 gradient flow in
the case of optimal shape design for PDE and it is helpful in increasing the rate
of convergence of the numerical scheme in the case of image segmentation.

A third option is to choose the bilinear form b(·, ·) to coincide with the
H−1(Γ) scalar product. If we assume g(Ωn) = 1 for simplicity, then equation
(65) becomes

Vn+1 − ∆Γκn+1 = ∆Γf(Ωn). (69)

This is the case for epitaxially stressed solids. Their dynamics described by the
physical law (9) is given by the H−1 gradient flow of the energy functional (11).
Hence the choice of the scalar product has to be driven by consistency with the
physics of the underlying phenomena.

Now to derive a weak formulation, we can proceed as in [6], that is multiply
by suitable test functions, integrate by parts the terms involving ∆Γ, and ignore
boundary terms either because Γn is closed or we assume Dirichlet boundary
conditions. This is explained in detail for the H−1(Γ) case in [6]. In the following
we describe the the finite element formulation for the weighted H 1(Γ) case.

3.5 Finite Element Discretization

We now discuss the finite element discretization of (63)-(66). Let T = Tn be a
regular but possibly graded mesh of triangular finite elements over the surface
Γ = Γn, which, from now on, is assumed to be polyhedral. To simplify the
notations we hereafter drop the scripts n and n + 1. Let T ∈ T be a typical
triangle and let ~νT = (νi

T )d
i=1 be the unit normal to T pointing outwards. We
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denote by ~ν the outward unit normal to Γ, which satisfies ~ν|T = ~νT for all T ∈ T ,
and is thus discontinuous across inter-element boundaries. Let {φi}

I
i=1 be the

set of canonical basis functions of the finite element space V(Γ) of continuous
piecewise polynomials P k of degree ≤ k over T for k ≥ 1; we also set ~V(Γ) :=
V(Γ)d. We thus have a conforming approximation V(Γ) of H 1(Γ).

We now multiply equations (63)-(66) by test functions φ ∈ V(Γ) and ~φ ∈
~V(Γ) and integrate by parts terms involving the second order operator ∆Γ. If
〈·, ·〉 denotes the L2 inner product over Γ, we arrive at the fully discrete problem:
seek ~V ,~κ ∈ ~V(Γ), V, k ∈ V(Γ), such that

〈~κ, ~φ〉 − τ〈∇Γ
~V ,∇Γ

~φ〉 = 〈∇Γ
~X,∇Γ

~φ〉 ∀~φ ∈ ~V(Γ), (70)

〈κ, φ〉 − 〈~κ · ~ν, φ〉 = 0 ∀φ ∈ V(Γ), (71)

〈α∇ΓV,∇Γφ〉 + 〈βV, φ〉 + 〈gκ, φ〉 = −〈f, φ〉 ∀φ ∈ V(Γ), (72)

〈~V , ~φ〉 − 〈V, ~φ · ~ν〉 = 0 ∀~φ ∈ ~V(Γ). (73)

3.6 Matrix Formulation

We turn our attention to an equivalent matrix formulation to the fully discrete
problem. Given the matrix entries

Mgi,j
:= 〈gφi, φj〉, Mβi,j

:= 〈βφi, φj〉, Mi,j := 〈φi, φj〉, ~Mi,j := Mi,j
~Id,

~Ni,j := (Nk
i,j)d

k=1 := 〈φi, φjν
k〉dk=1,

Ai,j := 〈∇Γφi,∇Γφj〉, Aαi,j := 〈α∇Γφi,∇Γφj〉, ~Ai,j := Ai,j
~Id,

with ~Id ∈ R
d×d being the identity matrix and (~ek)d

k=1 the canonical basis of R
d,

the mass and stiffness matrices are

Mg := (Mgi,j)I
i,j=1, Mβ := (Mβi,j

)I
i,j=1, M := (Mi,j)I

i,j=1,
~M := ( ~Mi,j)I

i,j=1,

~N := ( ~Ni,j)
I
i,j=1,

Aα := (Aαi,j)
I
i,j=1, A := (Ai,j)I

i,j=1,
~A := ( ~Ai,j)

I
i,j=1.

We point out that ~M, ~A and ~N possess matrix-valued entries and therefore the
matrix-vector product is understood in the following sense

~M ~V =
(

I
∑

j=1

~Mi,j
~Vj

)I

i=1
, (74)

each component ~Vi of ~V, as well as each of ~M ~V, is itself a vector in R
d.

We use the convention that a vector of nodal values of a finite element function is
written in bold face: V = (Vi)

I
i=1 ∈ R

I is equivalent to V =
∑I

i=1 Viφi ∈ V(Γ).
We are now in a position to write the matrix formulation of (63)-(66). Upon
expanding the unknown scalar function V, k ∈ V(Γ) and vector functions ~V ,~k ∈
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~V in terms of the basis functions and setting φ = φi and ~φk = φ~ek, we easily
arrive at

−τ ~A~V + ~M ~K = ~A~X (75)

MK − ~NT ~K = 0 (76)

(Aα +Mβ)V +MgK = −f (77)

~M ~V − ~NV = ~0. (78)

(79)

This system can be written equivalently in block-matrix form and 2D as follows:

Cx = g,

where x := (V1, V2, κ,K1,K2, V )T and

C =

















M 0 0 0 0 −N1

0 M 0 0 0 −N2

0 0 M −N1 −N2 0
−τA 0 0 M 0 0

0 −τA 0 0 M 0
0 0 Mg 0 0 Aα +Mβ

















, g =

















0
0
0

AX1

AX2

−f

















. (80)

3.7 Schur Complement Approach

Let us rewrite the system Cx = g in the following way










~M 0 0 − ~N

0 M − ~NT 0

−τ ~A 0 ~M 0
0 Mg 0 Aα +Mβ



















~V

κ
~K

V









=









0
0
~A ~X

−f









, (81)

or equivalently, with obvious meaning of the notations,
(

Γ N

Σ Ã

)(

X1

X2

)

=

(

0
h

)

. (82)

As the following equalities hold

X1 = −Γ−1NX2 (83)

(−ΣΓ−1N + Ã)X2 = h, (84)

then equation (84) is equivalent to
(

~M −τ ~A ~M−1 ~N

MgM
−1 ~NT Aα +Mβ

)

(

~K

V

)

=

(

~A ~X

−f

)

. (85)

Finally the Schur complement reads as follows

(τMgM
−1 ~NT ~M−1 ~A ~M−1 ~N +Aα +Mβ)V = −f −MgM

−1 ~NT ~M−1 ~A ~X. (86)

17



4 Numerical Experiments

The numerical experiments presented here were implemented and carried out
within the finite element toolbox ALBERTA of Schmidt and Siebert [22]. Com-
putations are driven by curve or surface evolution of the deformable part Γ of
the domain Ω. To solve elliptic PDE in Ω, as in §§4.3 and 4.4.2, we invoked the
2d mesh generator TRIANGLE of Shewchuk [23], which partitions Ω into shape
regular triangles. Finally, we used GEOMVIEW [14] for visualization.

4.1 Implementation

It is typical of surface evolution undergoing large deformations that triangles
may tangle and cross, and that their angles may become large. These mesh
distortions limit resolution and approximability, as well as impair computations
thereby leading to numerical artifacts. We have resorted to a number of geo-
metric enhancements as proposed by Bänsch, Morin and Nochetto for surface
diffusion [6]. An additional feature for curves in 2D is the capability for topo-
logical changes. We list these features below and briefly comment on them.

• Mesh Regularization: This is a procedure to maintain mesh quality, namely to
keep all angles on element stars approximately of the same size. Mesh regular-
ization is a redistribution of nodes on the surface, which entails a tangential
flow and does not affect the normal motion. We use the volume preserving
Gauss-Seidel type iteration of [6].

• Time Adaptivity: This is a procedure to allow large timesteps when the normal
velocity does not exhibit large variations, and to force small timesteps when
the relative position change of the nodes of an element may exceed the element
size. This accounts for very disparate time scales and prevent mesh distortion
and even node crossing. We have two types of timestep control. The first one,
following [6], is geometric and limits the tangential motion of nodes: if z0, z1

are nodes belonging to a triangle T on Γn, and ~τT is any unit tangent vector
to T , then

τ
∣

∣(~Vn+1(z0) − ~Vn+1(z1)) · ~τT
∣

∣ ≤ CτhT |∇Γ
~Vn+1|T | ≤ ετhT ,

with C, ε > 0 mesh independent constants.

• Backtracking: We monitor energy decrease J(Ωn+1) < J(Ωn) in the following
way: After the timestep has been accepted according to the previous criterion
we check that the functional value of the new domain is smaller than that of
the previous domain. If this is not the case, we divide the timestep by two
and re-compute, repeating if necessary until the functional value is smaller
than the previous one. The algorithm stops when the timestep necessary for
functional decrease is smaller than a pre-specified minimum timestep.
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• Space Adaptivity: This is about keeping, via refining/coarsening, an accurate
representation of Γn in the sense that the node density correlates with the
local variation (regularity) of Γn. We measure the latter intrinsically by mon-
itoring the variation of normals ~ν. Since the pointwise accuracy of a mesh in
representing a smooth surface is proportional to h2

S |∇Γ~ν
∣

∣, we impose [6]

h2
S |∇Γ~ν

∣

∣ ≈ h2
S

∣

∣~ν1 − ~ν2

∣

∣

hS
≈ βShS ≤ ε;

here T1, T2 are two adjacent elements in Γn with unit normals ~ν1, ~ν2 and com-
mon side (node in 2d) S, βS is the angle between ~ν1, ~ν2, and ε > 0 is a given
constant.

• Angle Width Control: This consists of a single splitting (one bisection) of those
elements with angles wider than a certain threshold βmax, followed by a few
mesh regularization sweeps [6]. This procedure is important close to pinch-off
where mesh distortion increases dramatically (see Figure 11).

• Topological Changes in 2D: This is given by a set of algorithms that allow us
to perform topological changes in 2D, such as merging and splitting. At each
iteration, we check for element intersections that signal topological changes.
If there are intersections, we adjust the time step and local resolution. We
reconnect the elements at intersection location and delete some elements if
necessary. See [12] for details of the procedure.

4.2 Image Segmentation

In this section we perform numerical experiments with a number of synthetic
images, by minimizing the geodesic active contour functional

J(Ω) :=

∫

Γ
H(x)dS + λ

∫

Ω
H(x)dx.

The process starts with an initial curve (or surface in 3D), which is iteratively
deformed to decrease its energy at each step, and should terminate at the bound-
aries of the objects in the image.

4.2.1 Two Gradient Flows: L2 vs Weighted H1

In our first experiment, we have a simple image with one (connected) object in
it and we want to compare the L2 gradient flow with the one resulting from the
following weighted H1 scalar product

b(V,W ) =

∫

Γ
α∇ΓV∇ΓW + βVW, (87)

where

α = H, β =
(

νTD2Hν + (2κ + λ)
∂H

∂ν
+ λκH

)

+

19



k = 400 k = 600 k = 900 k = 1400

J = 11.176 J = 9.822 J = 9.240 J = 8.950

Figure 1: Detection of a simple object with L2 gradient descent (λ = 30).

k = 30 k = 80 k = 110 k = 160

J = 12.146 J = 8.419 J = 7.545 J = 6.513

Figure 2: Detection of a simple object with weighted H 1 gradient descent (λ =
30). This flow is faster and more accurate than the L2 gradient flow of Fig. 1.

and (·)+ = max(·, ε), ε > 0. This scalar product has been obtained in [17] by
taking the second order shape derivative into account, thereby resulting in a
Newton-type flow.

Both the L2 and weighted H1 Newton-type flows successfully detect the
object, but the latter exhibits a smaller number of iterations and thus a higher
rate of convergence (see Figure 1 and Figure 2). In this case the choice of the
“good” scalar product has been essentially driven by issues concerning stability
and rate of convergence of the descent method.

In the rest of section 4.2 we perform the numerical experiments by using the
weighted H1 scalar product (87). We should remark that the choice of ε is a
subtle issue here. Hintermüller and Ring report in [17] that a small value suffices
in general. Our experiments also show that ε = 0.1 is well-behaved for a 100×100
image if we take interpixel distance equal to 1 to obtain a computing domain of
[0, 100]2. However we prefer to take x̃ = 0.01x and rescale the computing domain
to [0, 1]2. This change of variables scales α by a factor 104 through D2H, ∂H

∂ν
and

κ. To preserve the time scale, ε must also be replaced with ε̃ = (0.01)−2ε = 103.
This is the value we use in our simulations.
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k = 20 k = 70 k = 120 k = 290

J = 19.130 J = 10.681 J = 7.795 J = 4.860

k = 320 k = 350 k = 430 k = 480

J = 3.939 J = 3.411 J = 3.055 J = 2.830

Figure 3: Detection of multiple objects with weighted H 1 gradient descent (λ
= 40). The initial curve breaks into four curves and recovers all four objects in
the image

4.2.2 Multiple Objects

In this example we have an image with multiple objects in it. We start with a
single closed curve, that evolves and breaks into four smaller curves, which even-
tually converge to the boundaries of the objects (see Figure 3). The topological
changes have been handled by using numerical tools developed in [12].

4.2.3 A 3D Image

We finally consider a 3D image consisting of two spheres touching each other.
The initial configuration of the iterative process is a spherical surface.

4.3 Optimal Shape Design for PDE

In this section we present some numerical experiments for the model problem of
§1.2 and §2.2.2. Here, the energy functional reads

J(Ω) :=
1

2

∫

D

(

y(Ω) − zg

)2
dx

where zg is a given target function on a subdomain D of Ω. The goal is to have
the solution y of (7) closest to zg in the least squares sense, inside D. We assume
that both Ω and D are polygonal domains, and when we generate the meshes for
solving the elliptic problems on Ω we enforce the mesh generator to match the
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k = 10 k = 30 k = 40

J = 2.667 J = 1.463 J = 0.966

k = 50 k = 60 k = 110

J = 0.536 J = 0.230 J = 0.036

Figure 4: Detection of a 3D object with H1 gradient descent (λ = 0).
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k = 3 k = 6 k = 9 k = 22

J = 0.09879199 J = 0.08488141 J = 0.07282547 J = 0.03951210

Figure 5: L2 Evolution of a non-centered ellipse to a centered circle. The exact
solution is a circle of radius one centered at the origin, and the initial configura-
tion is a small ellipse centered at (0.5, 0.7). See initial configuration and exact
solution in figure 6 below. The L2 scalar product produces a dynamics which is
locally stable where p > 0 (upper right) and locally unstable where p < 0 (lower
left).

boundary of D exactly. This minimizes the quadrature error for the right-hand
side evaluation in the equations for both y and p.

4.3.1 The choice of Scalar Product

We performed the numerical experiments with a bilinear form b(·, ·) correspond-
ing to a weighted H1 scalar product, which gives rise to the elliptic PDE (68)
on Γn:

−divΓ(α∇ΓVn+1) + βVn+1 + g(Ωn)κn+1 = −f(Ωn), (88)

where g = p, f = −∇Γy∇Γp, and the weight functions β and α were chosen
appropriately.

The first attempt consisted in using just the L2(Γ) scalar product, which is
obtained by taking α = 0 and β = 1. In this case (88) reduces to

Vn+1 + pκn+1 = ∇Γy∇Γp, (89)

which is a backward-forward parabolic-type equation, depending on the sign of
the adjoint solution p. More precisely, (89) is locally backward parabolic in
regions where p < 0 and forward otherwise.

The illposedness of (89) in regions where p < 0 produces strong oscillations
on the surface, which can be observed in Figure 5. This ruled out the simple
minded option of using just the L2(Γ) scalar product.
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The idea behind the choice of an adequate scalar product was to set β = 1
on the whole surface Γ and take α variable to smooth the evolution where it
would produce oscillations.

After trying different possibilities we arrived at a compromise solution for
the definition of α. We wanted the evolution to produce smooth surfaces to be
able to compute, but at the same time we wanted to respect as much as possible
the information given by the primal and dual solutions about the gradient of the
shape functional.

The essential idea was to take α = 1 where p < 0 and α small where p > 0.
In order to avoid spurious singularities in the velocity we decided to make α vary
smoothly from one element to the neighbor. In order to do that we defined α as
constant on each edge e, but this constant was taken depending on pM := maxe p

and pm := mine p as follows: we defined the average p̄ = 1
2 (pM + pm) and the

oscillation osc = pM − pm of p over e. If he denotes the length of e, we let α|e
be defined as follows:

α|e =







1, if pm < 0

1 − p̄(1−h2
e)

osc , if pm ≥ 0 & p̄ ≤ osc
h2

e, if pm ≥ 0 & p̄ > osc.

(90)

That is, in the transition region where p changes sign, α|e is some kind of linear
interpolation value between 1 and h2

e.

4.3.2 Test 1: Exact solution

In this section we present an example with a known optimal shape. To build
this example, we let zg = log 3

|x| be the exact solution of Laplace’s equation on

the ring {1 < |x| < 3} with homogeneous Dirichlet data on {|x| = 3}, and outer
normal derivative equal to 1 on {|x| = 1}. We let D = {2 ≤ |x| ≤ 2.5}, and we
recall that the functional to minimize is

J(Ω, y(Ω)) :=
1

2

∫

D

(

y(Ω) − zg

)2
dx.

Then Ω∗ := {1 < |x| < 3} is the global minimum.
As we mentioned before, we tested several scalar products. The weighted

H1-scalar product with α as in (90) turned out to be a reasonable compromise
between numerical stability and rate of convergence. We present a sequence of
computations in Figure 6 starting from a noncentered ellipse. In contrast, the
L2-inner product yields unstable computations as documented in Figure 5 for
the same initial configuration.

We also studied the evolution from different initial configurations and ob-
served that the algorithm always reaches a local minimum, but not necessarily
the global minimizer Ω∗.

In Figure 7 we show the evolution obtained with an initial configuration
consisting of two squares. This evolution stops at a local minimum different from
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k = 0 k = 20 k = 40 k = 60

J = 0.10257 J = 0.05646 J = 0.02642 J = 0.00973

k = 80 k = 100 k = 120 k = 140

J = 0.00232 J = 0.000288 J = 0.0000213 J = 0.00000137

Figure 6: Weighted H1-evolution of a non-centered ellipse to a centered circle.
This dynamics is stable and efficient to detect a local minimizer.

the optimal configuration Ω∗ but nevertheless the functional decreases several
orders of magnitude.

An observation common to all simulations is that the reduction of J(Ω) and
the change of shape of Γ are fast at the beginning but somewhat slow close to
the optimal shape. We do not report these results here.

4.3.3 Test 2: Unknown solutions

We present here two examples where the exact minimizer is not known.
The first example consists of the same initial configuration and the same ring

D as in the examples above, but the goal is to minimize

J(Ω, y(Ω)) :=
1

2

∫

D

(

y(Ω) − zg

)2
dx.

with the goal function zg given in polar coordinates by

zg(r, θ) = 0.45 + 0.4 cos(6 θ).

That is, the objective function zg is oscillating with respect to the angle θ. The
goal of this experiment is to check whether this gradient flows are able to capture
more complicated geometries than circles.

In Figure 8 we present some snapshots of the approximating domains Ωn

together with the value of the functional J(Ωn). It is interesting to notice that
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k = 0 k = 4 k = 8 k = 12

J = 0.08224 J = 0.05721 J = 0.02863 J = 0.02436

k = 24 k = 36 k = 48 k = 96

J = 0.01114 J = 0.00309 J = 0.00017 J = 0.00000222

Figure 7: Evolution of two squares merging to a centered circle. The evolution
stops at a local minimum before reaching the optimal configuration.

the functional value does not decrease as drastically as in the previous example.
However, it is worth mentioning that the flow is able to capture the direction
of decrease, even when the energy decrease is very small in relative terms. For
example, between the fifth and sixth images, the energy decrease is just 0.03%,
but the method is still able to detect how the curve should be modified to get
an energy reduction.

Next, we consider a problem which resembles a lot a problem found in real
applications. We take the starting domain to be

Ω =
{

(x1, x2) ∈ R
2 : max{x1, x2} < 3, and |(x1, x2)| > 0.25

}

.

We consider homogeneous Dirichlet boundary conditions on the outer boundary,
which is kept fixed, and the outer normal derivative equal to 1 in the “inner
boundary”. The goal is to optimize the shape of the inner boundary in order to
minimize the functional

J(Ω, y(Ω)) :=
1

2

∫

D

(

y(Ω) − zg

)2
dx.

with zg ≡ 0.45 on the domain D :=
{

(x1, x2) ∈ R
2 : 2.0 < max{x1, x2} < 2.5

}

.
That is, the ideal goal would be that the solution y is equal to 0.45 on the
(square) ring D. We present a sequence of computations in Figure 9 starting
from a small centered circle (of radius 0.5). The little circle evolves first into a
big circle, and later into a smoothed square obtaining an energy reduction that
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k = 0 k = 80 k = 160 k = 320

J = 0.43772 J = 0.36703 J = 0.35719 J = 0.35015

k = 640 k = 960 k = 1280 k = 1600

J = 0.33915 J = 0.32786 J = 0.31786 J = 0.31461

Figure 8: Evolution of a small circle towards a smoothed triangle. The exact
solution is not known. The goal is to have the solution u as closest to an
oscillating function zg in the ring D =

{

(x, y) ∈ R
2 : 2.0 < |(x, y)| < 2.5

}

.

goes from an initial value of 0.97481 to a final value of 0.19826. As mentioned
before, there is a quick energy reduction at the beginning and a slower reduction
in the end, which is typical of gradient flows.

4.4 Surface Diffusion and Epitaxially Stressed Solids

We present a couple of simulations exhibiting pinch-off in finite time, for the
model problem of §1.3 and §2.2.3:

J(Ω, y(Ω)) =

∫

Ω
|∇y(Ω)|2 +

∫

Γ
dS.

We first consider in §4.4.1 the pure geometric motion by surface diffusion, namely
y(Ω) = 0, and next the coupled problem in §4.4.2:

V = ∆Γ(κ + |∇Γy(Ω)|2).

We illustrate the use of space-time adaptivity as well as mesh smoothing and
angle width control as explained in §4.1 to maintain mesh quality.

4.4.1 Test 1: Surface Diffusion with Pinch-off

Let the initial surface Γ(0) be an 8 × 1 × 1 prism. This surface evolution is
geometric and, even though it is regularizing, it leads to pinch-off in finite time

27



k = 0 k = 50 k = 100 k = 200

J = 0.97481 J = 0.23049 J = 0.20665 J = 0.20432

k = 400 k = 600 k = 800 k = 1000

J = 0.20115 J = 0.19997 J = 0.19890 J = 0.19826

Figure 9: Evolution of a small circle towards a smoothed square. The exact
solution is not known. The goal is to have the solution u as closest to 0.45 as
possible in the region D =

{

(x1, x2) ∈ R
2 : 2.0 < max{x1, x2} < 2.5

}

.

as depicted in Figure 10. This is a key example for the use of mesh smoothing
and space-time adaptivity to avoid mesh distortion. However, close to the pinch-
off some elements would tend to degenerate if it were not for the angle width
control. Their combined effect is displayed is Figure 11.

4.4.2 Test 2: Formation of an Inclusion

We now couple surface diffusion of the free surface of a film with the Laplace
equation in the bulk, as explained in §§1.3 and 2.2.3. We imposed the Dirichlet
boundary condition y = x on both the bottom and lateral boundary. The
initial free surface Γ(0) is a small cosine perturbation of the flat case, and its
evolution Γ(t) is periodic in x. We observe that Γ(t) retains the graph property
for a while and eventually develops into a mushroom-like shape which closes up
forming an insertion. See Figure 12 for details. This preliminary experiment,
conducted in collaboration with Eberhard Bänsch during a Research in Pairs in
Oberwolfach, reveals a superior performance of TRIANGLE [23] with respect to
mesh deformation techniques in 2d. The situation in 3d is quite different and
needs to be explored further.
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t = 0 (2178) t = 0.39501 (1624)

t = 0.00129 (2170) t = 0.41316 (1528)

t = 0.30538 (1632) t = 0.41349 (1004)

Figure 10: Pinch-off in finite time. Evolution of an 8 × 1 × 1 prism at various
time instants leading to a dumbbell and cusp formation (between parentheses
we indicate the number of vertices used to represent the surface.) The evo-
lution was computed using timestep control, mesh regularization, mesh refine-
ment/coarsening, and a routine for controlling angle width (taken from [6]).

t = 0.399123
(1568)

t = 0.411839
(1512)

t = 0.413154
(1528)

t = 0.413400
(1368)

t = 0.413464
(1200)

Figure 11: Detailed view of the pinch-off for the 8 × 1 × 1 prism. The control of
wide angles, coupled with mesh regularization, refinement and coarsening cure
mesh distortion until the very moment of pinch-off, when the elements are rather
elongated but not degenerate. An angle is considered to be wide when bigger
than 120o (taken from [6]).
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Figure 12: Coupling surface diffusion with the Laplace operator in the bulk leads
to a mushroom-like free surface that gives rise to an inclusion.
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