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Abstract

In this paper we propose and analyze a Stochastic-Collocation method
to solve elliptic Partial Differential Equations with random coefficients and
forcing terms (input data of the model). The input data are assumed to
depend on a finite number of random variables. The method consists in a
Galerkin approximation in space and a collocation in the zeros of suitable
tensor product orthogonal polynomials (Gauss points) in the probability
space and naturally leads to the solution of uncoupled deterministic prob-
lems as in the Monte Carlo approach. It can be seen as a generalization of
the Stochastic Galerkin method proposed in [Babuška -Tempone-Zouraris,
SIAM J. Num. Anal. 42(2004)] and allows one to treat easily a wider
range of situations, such as: input data that depend non-linearly on the
random variables, diffusivity coefficients with unbounded second moments
, random variables that are correlated or have unbounded support. We
provide a rigorous convergence analysis and demonstrate exponential con-
vergence of the “probability error” with respect of the number of Gauss
points in each direction in the probability space, under some regularity
assumptions on the random input data. Numerical examples show the
effectiveness of the method.

Key words: Collocation method, stochastic PDEs, finite elements, un-
certainty quantification, exponential convergence.

AMS subject classification: 65N35, 65N15, 65C20

Introduction

Thanks to the fast growing computer power, numerical simulations are used
every day more to produce predictions of the behavior of complex physical or
engineering systems. Some sources of errors arising in computer simulations
can be controlled and reduced, by now, using sophisticated techniques such as
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a posteriori error estimation [1, 3, 37], mesh adaptivity and the more recent
modeling error analysis [30, 31, 10]. All this has increased the accuracy of
numerical predictions as well as our confidence in them.

Yet, many engineering applications are affected by a relatively large amount
of uncertainty in the input data such as model coefficients, forcing terms, bound-
ary conditions, geometry, etc. In this case, to obtain a reliable numerical pre-
diction, one has to include uncertainty quantification due to the uncertainty in
the input data.

Uncertainty can be described in several ways, depending on the amount
of information available; among others we mention: the worst case scenario
analysis and fuzzy set theory, evidence theory, probabilistic setting, etc (see
[6, 24] and the references therein).In this paper we focus on elliptic partial
differential equations with a probabilistic description of the uncertainty in the
input data. The model problem has the form

L(a)u = f in D (1)

where L is an elliptic operator in a domain D ⊂ R
d, which depends on some

coefficients a(x, ω), with x ∈ D, ω ∈ Ω, and Ω indicates the set of possible
outcomes. Similarly, the forcing term f = f(x, ω) can be assumed random as
well.

We will focus on the case where the probability space has a low dimension-
ality, that means, the stochastic problem depends only on a relatively small
number of random variables.

This can be the case if, for instance, the mathematical model depends on few
parameters, which can be taken as random variables with a given joint proba-
bility distribution. To make an example we might think at the deformation of
an elastic homogeneous material in which the Young’s modulus and the Pois-
son’s ratio (parameters that characterize the material properties), are random
variables, either independent or not.

In other situations, the input data may vary randomly from one point of the
physical domain D to another and their uncertainty should rather be described
in terms of random fields with a given covariance structure (i.e. each point of
the domain is a random variable and the correlation between two distinct points
in the domain is known and non zero, in general; this case is sometimes referred
to as colored noise ).

Examples of this situation are, for instance, the deformation of inhomoge-
neous materials such as wood, foams, or bio-materials such arteries, bones, etc.;
groundwater flow problems where the permeability in each layer of sediments
(rocks, sand, etc) should not be assumed constant; the action of wind (direction
and point intensity) on structures; etc.

A possible way to describe such random fields consists in using a Karhunen-
Loève [27] or a Polynomial Chaos (PC) expansion [38, 42]. The former represents
the random field as a linear combination of an infinite number of uncorrelated
random variables, while the latter uses polynomial expansions in terms of in-
dependent random variables. Both expansions exist provided the random field
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a : Ω → V , as a mapping from the probability space into a functional space V ,
has bounded second moment. Other non-linear expansions can be considered
as well (see e.g. [22] for a technique to express a stationary random field with
given covariance structure and marginal distribution as a function of (infinite)
independent random variables; non-linear transformations have been used also
in [29, 39]). The use of non-polynomial expansions may be advantageous in
some situations: for instance, in groundwater flow problems, the permeability
coefficient within each layer of sediments can feature huge variability, which is
often expressed in a logarithm scale. In this case, one might want to use a
Karhunen-Loève (or Polynomial Chaos) expansion for the logarithm of the per-
meability, instead of the permeability field itself. This leads to an exponential
dependence of the permeability on the random variables and the resulting ran-
dom field might even have unbounded second moments. An advantage of such a
non-linear expansion is that it guarantees a positive permeability almost surely
(a condition which is difficult to enforce, instead, with a standard truncated
Karhunen-Loève or PC expansion).

Although such random fields are properly described only by means of an
infinite number of random variables, whenever the input data vary slowly in
space, with a correlation length comparable to the size of the domain, only few
terms in the above mentioned expansions are typically enough to describe the
random field with sufficient accuracy. Therefore, for this type of applications it
is reasonable to limit the analysis to just a few number of random variables in
the expansion (see e.g. [2]).

This argument is also strengthened by the fact that the amount of measured
data at one’s disposal to identify the input data as random fields is in general
very limited and barely sufficient to identify the first few random variables in
the expansion.

Conversely, situations in which the random fields are highly oscillatory with
a short correlation length, as in the case of materials with a random microstruc-
ture, do not fall in this category and will not be considered in the present work.
The interested reader should refer, instead, to the wide literature in homoge-
nization and multiscale analysis (see e.g. [16] and references therein).

To solve numerically the stochastic partial differential equation (1), a rela-
tively new numerical technique, which has gained much attention in the last few
years, is the so called Spectral Galerkin approximation (see e.g. [21]) . It em-
ploys standard approximations in space (finite elements, finite volumes, spectral
or h-p finite elements, etc. ) and polynomial approximation in the probability
domain, either by full polynomial spaces [41, 29, 20], tensor product polynomial
spaces [4, 18] or piecewise polynomial spaces [4, 26].

The use of tensor product spaces is particularly attractive in the case of a
small number of random variables, since it allows naturally the use of anisotropic
spaces where the polynomial degree is chosen differently in each direction in
probability. Moreover, whenever the random fields are expanded in a truncated
Karhunen-Loève expansion and the underlying random variables are assumed
independent, a particular choice of the basis for the tensor product space (as
proposed in [4, 5]), leads to the solution of uncoupled deterministic problems
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as in a Monte Carlo simulation. In this case, exponential convergence of the
“probability error” has been proved in [4].

On the other hand, tensor product spaces suffer from the so called curse of
dimensionality since the dimension of the approximating space grows exponen-
tially fast in the number of random variables. If the number of random variables
is moderate or large, one should rather consider full polynomial spaces or sparse
tensor product spaces [7, 18, 40]. We will not address this issue in this paper.

The extension of the Spectral Galerkin method to cases in which the input
data depend non-linearly on the random variables and possibly have unbounded
second moments is not straightforward and, in any case, would lead to fully
coupled systems of equations, which demand for highly efficient parallel solvers.

In this work we propose a Collocation method which consists in collocating
problem (1) in the zeros of tensor product orthogonal polynomials with respect
to the joint probability density ρ of the random variables, should they be inde-
pendent, or any other auxiliary density ρ̂ corresponding to independent random
variables, as long as the ratio ρ/ρ̂ is bounded. Stochastic collocation has already
been applied in a variety of problems and it is the subject of ongoing research,
see among others [35, 28] and the recent work [40] which the authors became
aware of upon completion of this work.

As it will be pointed out in the paper, this method offers several advantages:

• it naturally leads to uncoupled deterministic problems also in case of input
data which depend non-linearly on the random variables;

• treats efficiently the case of non independent random variables with the
introduction of the auxiliary density ρ̂;

• can easily deal with random variables with unbounded support, such as
Gaussian or exponential ones.

• deals with no difficulty with a diffusivity coefficient a with unbounded
second moment.

The main result of the paper is given in Theorem 1, Section 4, where we
prove that the Collocation method preserves the same accuracy as the Spectral
Galerkin approach and achieves exponential convergence in all the above men-
tioned cases, provided the input data are infinitely differentiable with respect
to the random variables, under very mild assumptions on the growth of their
derivatives in the probability directions, as it is the case for standard expansions
of random fields.

The Collocation method can also be seen as a Pseudo Spectral method (see
e.g. [33] and [19] for unbounded domains), i.e. a Spectral Galerkin approxima-
tion with the use of suitable Gaussian quadrature formulas. We will also show
that in some particular cases, where such Gaussian quadratures are exact, it
actually coincides with the Spectral Galerkin method based on tensor product
spaces.

The outline of the paper is the following: in Section 1 we introduce the
mathematical problem and the main notation used throughout. In Section 2
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we describe the Collocation method. In Section 3 we provide some regularity
results on the solution of the stochastic partial differential equation. In particu-
lar, we show that the solution is analytic with respect to the random variables,
provided that the input data, as functions of the random variables, have infinite
derivatives which do not grow too fast. In Section 4 we give a complete con-
vergence result for the Collocation method and prove exponential convergence.
Finally, in Section 5 we present some numerical results showing the effectiveness
of the proposed method.

1 Problem setting

Let D be a convex bounded polygonal domain in R
d and (Ω,F , P ) be a complete

probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of
events and P : F → [0, 1] is a probability measure. Consider the stochastic
linear elliptic boundary value problem: find a random function, u : Ω×D → R,
such that P -almost everywhere in Ω, or in other words almost surely (a.s.), the
following equation holds:

−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) on D,

u(ω, ·) = 0 on ∂D.
(2)

We will make the following assumptions:

A1) a(ω, ·) is uniformly bounded from below, i.e.

there exist amin > 0 s.t. P
(
ω ∈ Ω : a(ω, x) > amin ∀x ∈ D

)
= 1

A2) f(ω, ·) is square integrable w.r.t. P , i.e.
∫

D
E[f2] dx <∞

Moreover, we introduce the following Hilbert spaces:

• VP = L2
P (Ω) ⊗H1

0 (D) equipped with the norm ‖v‖2
P =

∫

D
E
[
|∇v|2

]
dx

• VP,a ≡ {v ∈ VP :
∫

D
E
[
a|∇v|2

]
dx < ∞}, equipped with the norm

‖v‖P,a =
∫

D
E
[
a|∇v|2

]
dx.

Observe that under the above assumptions, the space VP,a is continuously
embedded in VP and

‖v‖P ≤ 1√
amin

‖v‖P,a.

Problem (2) can be written in a weak form as

find u ∈ VP,a s.t.

∫

D

E[a∇u · ∇v] dx =

∫

D

E[fv] dx ∀ v ∈ VP,a. (3)

A straightforward application of the Lax-Milgram theorem allows one to
state the well posedness of problem (3); precisely
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Lemma 1 Under assumptions A1 and A2, problem (3) admits a unique solution
u ∈ VP,a, which satisfies the estimate

‖u‖P ≤ CP

amin

(∫

D

E[f2] dx

) 1
2

. (4)

In the previous Lemma we have used the Poincaré inequality

‖w‖L2(D) ≤ CP ‖∇w‖L2(D) ∀w ∈ H1
0 (D).

1.0.1 Weaker Assumptions on the random coefficients

It is possible to relax the assumptions A1 and A2 substantially and still guaran-
tee the existence and uniqueness of the solution u to problem (3). In particular,
if the lower bound for the coefficient a is no longer a constant but a random
variable, i.e. a(x, ω) ≥ amin(ω) > 0 a.s. a.e. on D, we have the following
estimate for the moments of the solution:

Lemma 2 (Moments estimates) Let p, q ≥ 0 with 1/p + 1/q = 1. Take a

positive integer k. Then if f ∈ Lkp
P (Ω;L2(D)) and 1/amin ∈ Lkq

P (Ω) we have
that u ∈ Lk

P (Ω;H1
0 (D)).

Proof. Since

‖u(·, ω)‖H1
0 (D) ≤ CP

‖f(·, ω)‖L2(D)

amin(ω)
a.s.

the result is a direct application of Hölder’s inequality:

∫

Ω

‖u(·, ω)‖k
H1

0 (D)dP (ω) ≤ Ck
P

∫

Ω

(‖f(·, ω)‖L2(D)

amin(ω)

)k

dP (ω)

≤ Ck
P

(∫

Ω

‖f(·, ω)‖kp
L2(D)dP (ω)

)1/p
(
∫

Ω

(
1

amin(ω)

)qk

dP (ω)

)1/q

¤

Example 1 (Lognormal diffusion coefficient) As an application of the pre-
vious lemma, we can conclude the well posedness of (3). with a lognormal dif-
fusion coefficient. For instance, let

a(x, ω) = exp

(
N∑

n=1

bn(x)Yn(ω)

)

, Yn ∼ N(0, 1) iid.

Use the lower bound

amin(ω) = exp

(

−
N∑

n=1

‖bn‖L∞(D)|Yn(ω)|
)
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and then for k, q <∞

‖1/amin‖kq

Lkq
P

(Ω)
=

∫

Ω

(
1

amin(ω)

)qk

dP (ω)

=

∫

RN

exp

(

kq

N∑

n=1

‖bn‖L∞(D)|zn|
)

exp

(

−1

2

N∑

n=1

z2
n

)

dz1 . . . dzN <∞.

(5)

Now let ε > 0. Then by Lemma 2 the assumption f ∈ L
k(1+ε)
P (Ω;L2(D)) together

with (5) imply u ∈ Lk
P (Ω;H1

0 (D)) .

1.1 Finite Dimensional Noise Assumption

In many problems the source of randomness can be approximated using just a
small number of uncorrelated, sometimes independent, random variables; take
for example the case of a truncated Karhunen-Loève expansion [4]. This moti-
vates us to assume that

Assumption 1 (finite dimensional noise) The coefficients used in the com-
putations have the form:

a(ω, x) = a(Y1(ω), . . . , YN (ω), x) and f(ω, x) = f(Y1(ω), . . . , YN (ω), x) on Ω×D,

where N ∈ N+, {Yn}N
n=1 are real valued random variables with mean value zero

and unit variance.

We will denote with Γn ≡ Yn(Ω) the image of Yn, Γ =
∏N

n=1 Γn and we
will assume that the random variables [Y1, Y2, . . . , Yn] have a joint probability
density function ρ : Γ → R+, with ρ ∈ L∞(Γ).

Example 2 The following standard transformation guarantees that the diffu-
sivity coefficient is bounded away from zero almost surely

log(a− amin)(ω, x) = b0(x) +
∑

1≤n≤N

√

λnbn(x)Yn(ω), (6)

i.e. one performs a Karhunen-Loève expansion for log(a−amin), assuming that
a > amin almost surely. On the other hand, the right hand side of (2) can be
represented as a truncated Karhunen-Loève expansion

f(ω, x) = c0(x) +
∑

1≤n≤N

√
µncn(x)Yn(ω).

Remark 1 It is usual to have f and a to be independent, because the loads
and the material properties are seldom related. In such a situation we have
a(Y (ω), x) = a(Ya(ω), x) and f(Y (ω), x) = f(Yf (ω), x), with Y = [Ya, Yf ] and
the vectors Ya, Yf independent.
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After making Assumption 1, we have by Doob–Dynkin’s lemma (cf. [32]),
that the solution u of the stochastic elliptic boundary value problem (3) can be
described by just a finite number of random variables, i.e. u(ω, x) = u(Y1(ω), . . . , YN (ω), x).
Thus, the goal is to approximate the function u = u(y, x), where y ∈ Γ and
x ∈ D. Observe that the stochastic variational formulation (3) has a “deter-
ministic” equivalent which is the following: find u ∈ Vρ,a such that

∫

Γ

ρ (a∇u,∇v)L2(D) dy =

∫

Γ

ρ (f, v)L2(D) dy, ∀ v ∈ Vρ,a (7)

noting that here and later in this work the gradient notation, ∇, always means
differentiation with respect to x ∈ D only, unless otherwise stated. The space
Vρ,a is the analogue of VP,a with (Ω,F , P ) replaced with (Γ,BN , ρdy). The
stochastic boundary value problem (2) now becomes a deterministic Dirich-
let boundary value problem for an elliptic partial differential equation with an
N−dimensional parameter. For convenience, we consider the solution u as a
function u : Γ → H1

0 (D) and we use the notation u(y) whenever we want to
highlight the dependence on the parameter y. We use similar notations for the
coefficient a and the forcing term f . Then, it can be shown that problem (2) is
equivalent to

∫

D

a(y)∇u(y) · ∇φdx =

∫

D

f(y)φdx, ∀φ ∈ H1
0 (D), ρ-a.e. in Γ. (8)

For our convenience, we will suppose that the coefficient a and the forcing term
f admit a smooth extension on the ρ-zero measure sets. Then, equation (8)
can be extended a.e. in Γ with respect to the Lebesgue measure (instead of the
measure ρ).

Hence, making Assumption 1 is a crucial step, turning the original stochastic
elliptic equation into a deterministic parametric elliptic one and allowing the use
of finite element and finite difference techniques to approximate the solution of
the resulting deterministic problem (cf. [25, 13]).

Remark 2 Strictly speaking, equation (8) will hold only for those values of
y ∈ Γ for which the coefficient a(y) is finite. In this paper we will assume that
a(y) may go to infinity only at the boundary of the parameter domain Γ.

2 Collocation method

We seek a numerical approximation to the exact solution of (7) in a finite
dimensional subspace Vp,h based on a tensor product, Vp,h = Pp(Γ) ⊗ Hh(D),
where

• Hh(D) ⊂ H1
0 (D) is a standard finite element space of dimension Nh,

which contains continuous piecewise polynomials defined on regular trian-
gulations Th that have a maximum mesh spacing parameter h > 0.
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• Pp(Γ) ⊂ L2
ρ(Γ) is the span of tensor product polynomials with degree at

most p = (p1, . . . , pN ) i.e. Pp(Γ) =
⊗N

n=1 Ppn
(Γn), with

Ppn
(Γn) = span(ym

n , m = 0, . . . , pn), n = 1, . . . , N.

Hence the dimension of Pp is Np =
∏N

n=1(pn + 1).

We first introduce the semi-discrete approximation uh : Γ → Hh(D), ob-
tained by projecting equation (8) onto the subspace Hh(D), for each y ∈ Γ, i.e.

∫

D

a(y)∇uh(y) · ∇φh dx =

∫

D

f(y)φh dx, ∀φh ∈ Hh(D), for a.e. y ∈ Γ. (9)

The next step consists in collocating equation (9) on the zeros of orthogonal
polynomials and build the discrete solution uh,p ∈ Pp(Γ) ⊗Hh(D) by interpo-
lating in y the collocated solutions.

To this end, we first introduce an auxiliary probability density function ρ̂ :
Γ → R

+ that can be seen as the joint probability of N independent random
variables, i.e. it factorizes as

ρ̂(y) =

N∏

n=1

ρ̂n(yn), ∀y ∈ Γ, and is such that

∥
∥
∥
∥

ρ

ρ̂

∥
∥
∥
∥

L∞(Γ)

<∞. (10)

For each dimension n = 1, . . . , N let yn,kn
, 1 ≤ kn ≤ pn+1 be the pn+1 roots of

the orthogonal polynomial qpn+1 with respect to the weight ρ̂n, which satisfies
then

∫

Γn
qpn+1(y)v(y)ρ̂n(y)dy = 0, ∀v ∈ Ppn

(Γn).
Standard choices for ρ̂, such as constant, Gaussian, etc., lead to well known

roots of the polynomial qpn+1, which are tabulated to full accuracy and do not
need to be computed.

To any vector of indexes [k1, . . . , kN ] we associate the global index

k = k1 + p1(k2 − 1) + p1p2(k3 − 1) + . . .

and we denote by yk the point yk = [y1,k1
, y2,k2

, . . . , yN,kN
] ∈ Γ. We also intro-

duce, for each n = 1, 2, . . . , N , the Lagrange basis {ln,j}pn+1
j=1 of the space Ppn

:

ln,j ∈ Ppn
(Γn); ln,j(yn,k) = δjk, j, k = 1, . . . , pn + 1

where δjk is the Kronecker symbol, and we set lk(y) =
∏N

n=1 ln,kn
(yn). Hence,

the final approximation is given by

uh,p(y, x) =

Np∑

k=1

uh(yk, x)lk(y)

where uh(yk, x) is the solution of problem (9) for y = yk.

9



Equivalently, if we introduce the Lagrange interpolant operator Ip : C0(Γ;H1
0 (D)) →

Pp(Γ) ⊗H1
0 (D), such that

Ipv(y) =
N∑

n=1

v(yk)lk(y), ∀v ∈ C0(Γ;H1
0 (D))

then we have simply uh,p = Ipuh.
Finally, for any continuous function g : Γ → R we introduce the Gauss

quadrature formula Ep
ρ̂ [g] approximating the integral

∫

Γ
g(y)ρ̂(y) dy as

Ep
ρ̂ [g] =

Np∑

k=1

ωkg(yk), ωk =

N∏

n=1

ωkn
, ωkn

=

∫

Γn

l2kn
(y)ρ̂n(y) dy. (11)

This can be used to approximate the mean value or the variance of u as

ūh ∈ Hh(D), ūh(x) = Ep
ρ̂

[
ρ

ρ̂
uh(x)

]

varh(uh) ∈ L1(D), varh(uh)(x) = Ep
ρ̂

[
ρ

ρ̂
(uh(x) − ūh(x))

2

]

as long as ρ/ρ̂ is a smooth function. Otherwise, ūh and varh(uh) should be
computed with a suitable quadrature formula which takes into account eventual
discontinuities or singularities of ρ/ρ̂.

2.1 Collocation versus Spectral Galerkin approximation

An approach, alternative to the Collocation method introduced so far, consists
in approximating problem (7) with a Spectral Galerkin method: find uG

h,p ∈
Pp(Γ) ⊗Hh(D) such that

∫

Γ

ρ (a∇uG
h,p,∇v)L2(D) dy =

∫

Γ

ρ (f, v)L2(D) dy, ∀ v ∈ Pp(Γ) ⊗Hh(D). (12)

This approach has been considered by several authors ([4, 13, 18, 41, 21, 29]).
Observe that, in general, problem (12) leads to a fully coupled system of linear
equations, whose dimension is Nh ×Np and demands for highly efficient strate-
gies and parallel computations for its numerical solution [15]. Conversely, the
Collocation method only requires the solutions of Np uncoupled linear systems
of dimension Nh, and is fully parallelizable.

In [4, 5] a particular choice of basis functions (named double orthogonal
polynomials) for the space Pp(Γ) is proposed . This choice allows to decouple
the system in the special case where the diffusivity coefficient and the forcing
term are multi-linear combinations of the random variables Yn(ω) (as it is the
case if one performs a truncated linear Karhunen-Loève expansion) and the

random variables are independent, i.e. ρ(y) =
∏N

n=1 ρn(yn). The proposed
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basis is then obtained by solving the following eigenvalue problems, for each
n = 1, . . . , N ,

∫

Γn

zψkn(z)v(z)ρn(z) dz = ckn

∫

Γn

ψkn(z)v(z)ρn(z) dz, k = 1, . . . , pn + 1.

The eigenvectors ψkn are normalized so as to satisfy the property

∫

Γn

ψkn(z)ψjn(z)ρn(z) dz = δkj ,

∫

Γn

zψkn(z)ψjn(z)ρn(z) dz = cknδkj .

See [4, 5] for further details on the double orthogonal basis.

We aim at analyzing, now, the analogies between the Collocation and the
Spectral Galerkin methods. The Collocation method can be seen as a Pseudo-
Spectral Galerkin method (see e.g. [33]) where the integrals over Γ in (12) are
replaced by the quadrature formula (11): find uh,p ∈ Pp(Γ)⊗Hh(D) such that

Ep
ρ̂

[
ρ

ρ̂
(a∇uh,p,∇v)L2(D)

]

= Ep
ρ̂

[
ρ

ρ̂
(f, v)L2(D)

]

, ∀ v ∈ Pp(Γ)⊗Hh(D). (13)

Indeed, by choosing in (13), the test functions of the form v(y, x) = lk(y)φ(x),
where φ(x) ∈ Hh(D) and lk(y) is the Lagrange basis function associated to the
knot yk, k = 1, . . . , Np, one is led to solve a sequence of uncoupled problems
of the form (9) collocated in the points yk, which, ultimately, gives the same
solution as the Collocation method.

In the particular case where the diffusivity coefficient and the forcing term
are multi-linear combinations of the random variables Yn(ω), and the random
variables are independent, it turns out that the quadrature formula is exact
if one chooses ρ̂ = ρ. In this case, the solution obtained by the Collocation
method actually coincides with the Spectral Galerkin one. This can be seen
easily observing that, with the above assumptions, the integrand in (12), i.e.
(a∇uh,p · ∇v) is a polynomial at most of degree 2pn + 1 in the variable yn and
the Gauss quadrature formula is exact for polynomials up to degree 2pn + 1
integrated against the weight ρ.

The Collocation method is a natural generalization of the Spectral Galerkin
approach, and has the following advantages:

• decouples the system of linear equations in Y also in the case where the
diffusivity coefficient a and the forcing term f are non linear functions of
the random variables Yn;

• treats efficiently the case of non independent random variables with the
introduction of the auxiliary measure ρ̂;

• can easily deal with random variables with unbounded support (see The-
orem 1 in Section 4).
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As it will be shown in Section 4, the Collocation method preserves the same
accuracy as the Spectral Galerkin approach and achieves exponential conver-
gence if the coefficient a and forcing term f are infinitely differentiable with
respect to the random variables Yn, under very mild requirements on the growth
of their derivatives in Y .

As a final remark, we show that the double orthogonal polynomials proposed
in [4] coincide with the Lagrange basis lk(y) and the eigenvalues ckn are nothing
but the Gauss knots of integration.

Lemma 3 Let Γ ⊂ R, ρ : Γ → R a positive weight and {ψk}p+1
k=1 the set of

double orthogonal polynomials of degree p satisfying
∫

Γ

ψk(y)ψj(y)ρ(y) dy = δkj ,

∫

Γ

yψk(y)ψj(y)ρ(y) dy = ckδkj .

Then, the eigenvalues ck are the nodes of the Gaussian quadrature formula asso-
ciated to the weight ρ and the eigenfunctions ψk are, up to multiplicative factors,
the corresponding Lagrange polynomials build on the nodes ck.

Proof. We have, for k = 1, . . . , p+ 1,
∫

Γ

(y − ck)ψk(y)v(y)ρ(y)dy = 0, ∀v ∈ Pp(Γ).

Take v =
∏p+1

j=1

j 6=k

(y − cj) ∈ Pp(Γ) in the above and let w =
∏p+1

j=1(y − cj). Then

∫

Γ

w(y)ψk(y)ρ(y)dy = 0, ∀k = 1, . . . , p+ 1.

Since {ψk}p+1
k=1 defines a basis of the space Pp(Γ), the previous relation implies

that w is ρ-orthogonal to Pp(Γ). Besides, the functions (y − ck)ψk are also
orthogonal to the same subspace: this yields, due to the one dimensional nature
of the orthogonal complement of Pp(Γ) over Pp+1(Γ),

(y − ck)ψk = αkw = αk

p+1
∏

j=1

(y − cj), k = 1, . . . , p+ 1

which gives

ψk = αk

p+1
∏

j=1

j 6=k

(y − cj), k = 1, . . . , p+ 1

i.e. the double orthogonal polynomials ψk are collinear to Lagrange interpolants
at the nodes cj . Moreover, the eigenvalues cj are the roots of the polynomial
w ∈ Pp+1(Γ), which is ρ-orthogonal to Pp(Γ) and therefore they coincide with
the nodes of the Gaussian quadrature formula associated with the weight ρ. ¤

12



3 Regularity results

Before going through the convergence analysis of the method, we need to state
some regularity assumptions on the data of the problem and consequent regu-
larity results for the exact solution u and the semi-discrete solution uh.

In what follows we will need some restrictive assumptions on f and ρ. In
particular, we will assume f to be a continuous function in y, whose growth at
infinity, whenever the domain Γ is unbounded, is at most exponential. At the
same time we will assume that ρ behaves as a Gaussian weight at infinity, and
so does the auxiliary density ρ̂, in light of assumption (10).

Other types of growth of f at infinity and corresponding decay of the prob-
ability density ρ, for instance of exponential type, could be considered as well.
Yet, we will limit the analysis to the aforementioned case.

To make precise these assumptions, we introduce a weight σ(y) =
∏N

n=1 σn(yn) ≤
1 where

σn(yn) =

{

1 if Γn is bounded

e−αn|yn|, for some αn > 0 if Γn is unbounded
(14)

and the functional space

C0
σ(Γ;V ) ≡ {v : Γ → V, v continuous in y, max

y∈Γ
‖σ(y)v(y)‖

V
< +∞}

where V is a Banach space of functions defined in D.

Assumption 2 (growth at infinity) In what follows we will assume

a) f ∈ C0
σ(Γ;L2(D))

b) the joint probability density ρ satisfies

ρ(y) ≤ Cρ e
− PN

n=1(δnyn)2 , ∀y ∈ Γ, (15)

for some constant Cρ > 0 and δn strictly positive if Γn is unbounded and
zero otherwise.

The parameter δn in (15) gives a scale for the decay of ρ at infinity and
provides an estimate of the dispersion of the random variable Yn. On the other
hand, the parameter αn in (14) controls the growth of the forcing term f at
infinity.

Remark 3 (growth of f) The convergence result given in Theorem 1, in the
next section, extends to a wider class of functions f . For instance we could take

f ∈ C0
σ(Γ;L2(D)) with σ = e−

PN
n=1(δnyn)2/8. Yet, the class given in (14) is

already large enough for most practical applications (see Example 2).
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We can now choose any suitable auxiliary density ρ̂(y) =
∏N

n=1 ρ̂n(yn) that
satisfies, for each n = 1, . . . , N

Cn
mine

−(δnyn)2 ≤ ρ̂n(yn) < Cn
maxe

−(δnyn)2 , ∀yn ∈ Γn (16)

for some positive constants Cn
min and Cn

max that do not depend on yn.
Observe that this choice satisfies the requirement given in (10), i.e. ‖ρ/ρ̂‖L∞(Γ) ≤

Cρ/Cmin with Cmin =
∏N

n=1 C
n
min.

Under the above assumptions, the following inclusions hold true

C0
σ(Γ;V ) ⊂ L2

ρ̂(Γ;V ) ⊂ L2
ρ(Γ;V )

with continuous embedding. Indeed, on one hand we have

‖v‖L2
ρ(Γ;V ) ≤

∥
∥
∥
∥

ρ

ρ̂

∥
∥
∥
∥

1
2

L∞(Γ)

‖v‖L2
ρ̂
(Γ;V ) ≤

√

Cρ

Cmin
‖v‖L2

ρ̂
(Γ;V ).

On the other hand,

‖v‖2
L2

ρ̂
(Γ;V ) =

∫

Γ

ρ̂(y)‖v(y)‖2
V dy ≤ ‖v‖2

C0
σ(Γ;V )

∫

Γ

ρ̂(y)

σ2(y)
dy ≤

N∏

n=1

Mn‖v‖2
C0

σ(Γ;V )

with Mn =
∫

Γn
ρ̂n/σ

2
n. Now, for Γn bounded, Mn ≤ Cn

max|Γn|, whereas if Γn is
unbounded

Mn =

∫

Γn

(

e−
(δny)2

2 +2αn|y|
)

e
(δny)2

2 ρ̂n(y) dy ≤ Cn
max

√
2π

δn
e2(αn/δn)2 .

The first result we need is the following

Lemma 4 If f ∈ C0
σ(Γ;L2(D)) and a ∈ C0

loc(Γ;L∞(D)), uniformly bounded
away from zero, then the solution to problem (8) satisfies u ∈ C0

σ(Γ;H1
0 (D)).

The proof of this Lemma is immediate. The next result concerns the analyticity
of the solution u whenever the diffusivity coefficient a and the forcing term f are
infinitely differentiable w.r.t. y, under mild assumptions on the growth of their
derivatives in y. We will perform a one-dimensional analysis in each direction
yn, n = 1, . . . , N . For this, we introduce the following notation: Γ∗

n =
∏N

j=1

j 6=n
Γj ,

y∗n will denote an arbitrary element of Γ∗
n. Similarly, we set ρ̂∗n =

∏N
j=1

j 6=n
ρ̂j and

σ∗
n =

∏N
j=1

j 6=n
σj .

Lemma 5 Under the assumption that, for every y = (yn, y
∗
n) ∈ Γ, there exists

γn < +∞ such that
∥
∥
∥
∥
∥

∂k
yn
a(y)

a(y)

∥
∥
∥
∥
∥

L∞(D)

≤ γk
nk! and

‖∂k
yn
f(y)‖L2(D)

1 + ‖f(y)‖L2(D)
≤ γk

nk!, (17)
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the solution u(yn, y
∗
n, x) as a function of yn, u : Γn → C0

σ∗
n
(Γ∗

n;H1
0 (D)) admits

an analytic extension u(z, y∗n, x), z ∈ C, in the region of the complex plane

Σ(Γn; τn) ≡ {z ∈ C, dist(z,Γn) ≤ τn}. (18)

with 0 < τn < 1/(2γn). Moreover, ∀z ∈ Σ(Γn; τn),

‖σn(Re z)u(z)‖C0
σ∗

n
(Γ∗

n;H1
0 (D)) ≤

CP e
αnτn

amin(1 − 2τnγn)
(2‖f‖C0

σ(Γ;H1
0 (D)) + 1) (19)

with the constant Cp as in (4).

Proof. In every point y ∈ Γ, the k-th derivative of u w.r.t yn satisfies the
problem

B(y; ∂k
yn
u, v) =

k∑

l=1

(
k
l

)

∂l
yn
B(y; ∂k−l

yn
u, v) + (∂k

yn
f, v), ∀v ∈ H1

0 (D),

where B is the parametric bilinear form B(y;u, v) =
∫

D
a(y)∇u · ∇v dx. Hence

‖
√

a(y)∇∂k
yn
u‖L2(D) ≤

k∑

l=1

(
k
l

)
∥
∥
∥
∥
∥

∂l
yn
a(y)

a(y)

∥
∥
∥
∥
∥

L∞(D)

‖
√

a(y)∇∂k−l
yn

u‖L2(D)+
Cp√
amin

‖∂k
yn
f‖L2(D).

Setting Rk = ‖
√

a(y)∇∂k
yn
u‖L2(D)/k! and using the bounds on the derivatives

of a and f , we obtain the recursive inequality

Rk ≤
k∑

l=1

γl
nRk−l +

Cp√
amin

γk
n(1 + ‖f‖L2(D)).

The generic term Rk admits the bound

Rk ≤ (2γn)kR0 +
Cp√
amin

(1 + ‖f‖L2(D))γ
k
n

k−1∑

l=0

2l.

Observing, now that R0 = ‖
√

a(y)∇u(y)‖L2(D) ≤ Cp√
amin

‖f(y)‖L2(D) and

‖∇∂k
yn
u‖L2(D)

k!
≤ Rk√

amin
,

we get the final estimate on the growth of the derivatives of u

‖∇∂k
yn
u(y)‖L2(D)

k!
≤ Cp

amin
(2‖f(y)‖L2(D) + 1)(2γn)k.

We now define for every yn ∈ Γn the power series u : C → C0
σ∗

n
(Γ∗

n, H
1
0 (D)) as

u(z, y∗n, x) =

∞∑

k=0

(z − yn)k

k!
∂k

yn
u(yn, y

∗
n, x).
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Hence,

σn(yn)‖u(z)‖C0
σ∗

n
(Γ∗

n,H1
0 (D)) ≤

∞∑

k=0

|z − yn|k
k!

σn(yn)‖∂k
yn
u(yn)‖C0

σ∗
n

(Γ∗
n;H1

0 (D))

≤ CP

amin
max

yn∈Γn

{

σn(yn)
(

2‖f(yn)‖C0
σ∗

n
(Γ∗

n;L2(D)) + 1
)} ∞∑

k=0

(|z − yn|2γn)
k

≤ CP

amin
(2‖f‖C0

σ(Γ;L2(D)) + 1)

∞∑

k=0

(|z − yn|2γn)
k

where we have exploited the fact that σn(yn) ≤ 1 for all yn ∈ Γn; the series
converges for all z ∈ C such that |z− yn| ≤ τn < 1/(2γn). Moreover, in the ball
|z − yn| ≤ τn, we have, by virtue of (14), σn(Re z) ≤ eαnτnσn(yn) and then

σn(Re z)‖u(z)‖C0
σ∗

n
(Γ∗

n,H1
0 (D)) ≤

CP e
αnτn

amin(1 − 2τnγn)
(2‖f‖C0

σ(Γ;L2(D)) + 1)

The power series converges for every yn ∈ Γn, hence, by a continuation argu-
ment, the function u can be extended analytically on the whole region Σ(Γn; τn)
and estimate (19) follows. ¤

Example 3 Let us consider the case where the diffusivity coefficient a is ex-
panded in a linear truncated Karhunen-Loève expansion

a(ω, x) = b0(x) +

N∑

n=1

√

λnbn(x)Yn(ω),

provided that such expansion guarantees a(ω, x) ≥ amin for almost every ω ∈ Ω
and x ∈ D [34]. In this case we have

∥
∥
∥
∥
∥

∂k
yn
a

a

∥
∥
∥
∥
∥

L∞(Γ×D)

≤
{√

λn‖bn‖L∞(D)/amin for k = 1

0 for k > 1

and we can safely take γn =
√
λn‖bn‖L∞(D)/amin in (17).

If we consider, instead, a truncated exponential expansion

a(ω, x) = amin + eb0(x)+
PN

n=1

√
λnbn(x)Yn(ω)

we have ∥
∥
∥
∥
∥

∂k
yn
a

a

∥
∥
∥
∥
∥

L∞(Γ×D)

≤
(√

λn‖bn‖L∞(D)

)k

and we can take γn =
√
λn‖bn‖L∞(D). Hence, both choices fulfill the assumption

in Lemma 5.
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Example 4 Similarly to the previous case, let us consider a forcing term f of
the form

f(ω, x) = c0(x) +

N∑

n=1

cn(x)Yn(ω)

where the random variables Yn are Gaussian (either independent or not), and the
functions cn(x) are square integrable for any n = 1, . . . , N . Then, the function f
belongs to the space C0

σ(Γ;L2(D)), with weight σ defined in (14), for any choice
of the exponent coefficients αn > 0.

Moreover,

‖∂k
yn
f(y)‖L2(D)

1 + ‖f(y)‖L2(D)
≤
{

‖cn‖L2(D) for k = 1

0 for k > 1

and we can safely take γn = ‖cn‖L2(D) in (17). Hence, such a forcing term
satisfies the assumptions of Lemma 5. In this case, though, the solution u is
linear with respect to the random variables Yn (hence, clearly analytic) and our
theory is not needed.

Observe that the regularity results are valid also for the semidiscrete solution
uh, as well.

4 Convergence analysis

Our aim is to give a priori estimates for the total error ε = u−uh,p in the natural
norm L2

ρ(Γ)⊗H1
0 (D). The next Theorem states the sought convergence result,

and the rest of the section will be devoted to its proof. In particular, we will
prove that the error decays (sub)exponentially fast w.r.t. p under the regularity
assumptions made in Section 3. The convergence w.r.t. h will be dictated by
standard approximability properties of the finite element space Hh(D) and the
regularity in space of the solution u (see e.g. [12, 11]).

Theorem 1 Under the assumptions of Lemmas 4 and 5, there exist positive
constants rn, n = 1, . . . , N , and C, independent of h and p, such that

‖u− uh,p‖L2
ρ⊗H1

0
≤ 1√

amin
inf

v∈L2
ρ⊗Hh

(∫

Γ×D

ρa|∇(u− v)|2
) 1

2

+ C

N∑

n=1

βn(pn) exp{−rn p
θn
n }

(20)

where

• if Γn is bounded

{
θn = βn = 1

rn = log
[

2τn

|Γn|

(

1 +
√

1 + |Γn|2
4τ2

n

)]

• if Γn is unbounded

{

θn = 1/2, βn = O(
√
pn)

rn = τnδn
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τn is the distance between Γn and the nearest singularity in the complex plane,
as defined in Lemma 5, and δn is defined as in (15).

The first term on the right hand side of (20) concerns the space approxima-
bility of u in the subspace Hh(D) and is controlled by the mesh size h. The
actual rate of convergence will depend on the regularity in space of a(y) and
f(y) for each y ∈ Γ as well as on the smoothness on the domain D. Observe
that an h or h−p adaptive strategy to reduce the error in space is not precluded
by this approach.

The exponential rate of convergence in the Y direction depends on the con-
stants rn, which on their turn, are related to distances τn to the nearest sin-
gularity in the complex plane. In Examples 3 and 4 we have estimated these
constants in the case where the random fields a and f are represented by ei-
ther a linear or exponential truncated Karhunen-Loève expansion. Hence, a full
characterization of the convergence rate is available in these cases.

Observe that in Theorem 1 it is not necessary to assume the finiteness of
the second moment of the coefficient a. Before proving the theorem, we recall

some known results of approximation theory for a function f defined on a one
dimensional domain (bounded or unbounded) with values in a Banach space
V , f : Γ ⊂ R → V . As in Section 2, let ρ : Γ → R

+ be a positive weight
which satisfies, for all y ∈ Γ, ρ(y) ≤ CMe−(δy)2 for some CM > 0 and δ strictly
positive is Γ is unbounded and zero otherwise; yk ∈ Γ, k = 1, . . . , p + 1 the
set of zeros of the polynomial of degree p orthogonal to the space Pp−1 with

respect to the weight ρ; σ an extra positive weight such that σ(y) ≥ Cme
−(δy)2/4

for some Cm > 0. With this choice, the embedding C0
σ(Γ;V ) ⊂ L2

ρ(Γ;V ) is
continuous. Observe that the condition on σ is satisfied both by a Gaussian
weight σ = e−(µy)2 with µ ≤ δ/2 and by an exponential weight σ = e−α|y| for any
α ≥ 0. Finally, we denote by Ip the Lagrange interpolant operator: Ipv(y) =
∑p+1

k=1 v(yk)lk(y), for every continuous function v and by ωk =
∫

Γ
l2k(y)ρ(y) dy

the weights of the Gaussian quadrature formula built upon Ip.
The following two lemmas are a slight generalization of a classical result by

Erdös and Turán [17].

Lemma 6 The operator Ip : C0
σ(Γ;V ) → L2

ρ(Γ;V ) is continuous.

Proof. We have, indeed, that for any v ∈ C0
σ(Γ;V )

‖Ipv‖2
L2

ρ(Γ;V ) =

∫

Γ

‖
p+1
∑

k=1

v(yk)lk(y)‖2
V
ρ(y) dy ≤

∫

Γ

(
p+1
∑

k=1

‖v(yk)‖
V
lk(y)

)2

ρ(y) dy.
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Thanks to the orthogonality property
∫

Γ
lj(y)lk(y)ρ(y) dy = δjk, we have

‖Ipv‖2
L2

ρ(Γ;V ) ≤
∫

Γ

p+1
∑

k=1

‖v(yk)‖2
V
l2k(y)ρ(y) dy

≤ max
k=1,...,p+1

‖v(yk)‖2
V
σ2(yk)

p+1
∑

k=1

∫

Γ

l2k(y)ρ(y)

σ2(yk)
dy

≤ ‖v‖2
C0

σ(Γ;V )

p+1
∑

k=1

ωk

σ2(yk)
.

In the case of Γ bounded, we have σ ≥ Cm and
∑p+1

k=1 ωk = 1 for any p and

the result follows immediately. For Γ unbounded, since ρ(y) ≤ CMe−(δy)2 ,
all the even moments c2m =

∫

Γ
y2mρ(y) dy are bounded, up to a constant, by

the moments of the Gaussian density e−(δy)2 . Therefore, using a result from
Uspensky ’28 [36], it follows

p+1
∑

k=1

ωk

σ2(yk)

p→∞−→
∫

Γ

ρ(y)

σ2(y)
dy ≤ CM

C2
m

√

2π

δ

and we conclude that

‖Ipv‖L2
ρ(Γ;V ) ≤ C1‖v‖C0

σ(Γ;V )

¤

Lemma 7 For every function v ∈ C0
σ(Γ;V ) the interpolation error satisfies

‖v − Ipv‖L2
ρ(Γ;V ) ≤ C2 inf

w∈Pp(Γ)⊗V
‖v − w‖C0

σ(Γ;V ).

with a constant C2 independent of p.

Proof. Let us observe that ∀w ∈ Pp(Γ) ⊗ V , it holds Ipw = w. Then,

‖v − Ipv‖L2
ρ(Γ;V ) ≤ ‖v − w‖L2

ρ(Γ;V ) + ‖Ip(w − v)‖L2
ρ(Γ;V )

≤ C2‖v − w‖C0
σ(Γ;V ).

Since w is arbitrary in the right hand side, the result follows. ¤

The previous Lemma relates the approximation error (v − Ipv) in the L2
ρ-

norm with the best approximation error in the weighted C0
σ-norm, for any weight

σ(y) ≥ Cme
−(δy)2/4. We analyze now the best approximation error for a func-

tion v : Γ → V which admits an analytic extension in the complex plane, in the
region Σ(Γ; τ) = {z ∈ C, dist(z,Γ) < τ} for some τ > 0. We will still denote
the extension by v; in this case, τ represents the distance between Γ ⊂ R and
the nearest singularity of v(z) in the complex plane.
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We study separately the two cases of Γ bounded and unbounded. We start
with the bounded case, in which the extra weight σ is set equal to 1. The
following result is an immediate extension of the result given in [14, Chapter 7,
Section 8]

Lemma 8 Given a function v ∈ C0(Γ;V ) which admits an analytic extension
in the region of the complex plane Σ(Γ; τ) = {z ∈ C, dist(z,Γ) ≤ τ} for some
τ > 0, it holds:

min
w∈Pp⊗V

‖v − w‖C0(Γ;V ) ≤
2

%− 1
e−p log(%) max

z∈Σ(Γ;τ)
‖v(z)‖

V

where 1 < % =
2τ

|Γ| +

√

1 +
4τ2

|Γ|2 .

Proof. We sketch the proof for completeness. We first make a change of vari-

ables, y(t) = y0 + |Γ|
2 t, where y0 is the midpoint of Γ. Hence, y([−1, 1]) = Γ.

We set ṽ(t) = v(y(t)). Clearly, ṽ can be extended analytically in the region of
the complex plane Σ([−1, 1]; 2τ/|Γ|) ≡ {z ∈ C,dist(z, [−1, 1]) ≤ 2τ/|Γ|}.

We then introduce the Chebyshev polynomials Ck(t) on [−1, 1] and the ex-
pansion of ṽ : [−1, 1] → V as

ṽ(t) =
a0

2
+

∞∑

k=1

akCk(t), (21)

where the Fourier coefficients ak ∈ V , k = 0, 1, . . ., are defined as

ak =
1

π

∫ π

−π

ṽ(cos(t)) cos(kt) dt.

It is well known (see e.g. [14, 9]) that the series (21) converges in any elliptic
disc D% ⊂ C, with % > 1, delimited by the ellipse

E% = {z = t+ is ∈ C, t =
%+ %−1

2
cosφ, s =

%− %−1

2
sin(φ), φ ∈ [0, 2π)}

in which the function ṽ is analytic. Moreover (see [14] for details) we have

‖ak‖V
≤ 2%−k max

z∈D%

‖ṽ(z)‖
V
.

If we denote by Πpv ∈ Pp(Γ)⊗V the truncated Chebyshev expansion up to the
polynomial degree p and we observe that |Ck(t)| ≤ 1, for all t ∈ [−1, 1], we have

min
w∈Pp⊗V

‖v − w‖C0(Γ;V ) ≤ ‖ṽ − Πpṽ‖C0([−1,1];V )

≤
∞∑

k=p+1

‖ak‖V
≤ 2

%− 1
%−p max

z∈D%

‖ṽ(z)‖
V
.
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Finally, we have to link % to the size of the analyticity region of ṽ. It is easy to
verify that the ellipse given by

% =
2τ

|Γ|

(

1 +

√

1 +
|Γ|2
4τ2

)

is the largest ellipse that can be drawn inside Σ([−1, 1]; 2τ/|Γ|) and this proves
the stated result. ¤

For the case of unbounded Γ we first recall a result given in [23] and then
we state in Lemma 10 a result tuned to our situation.

We denote by Hn(y) ∈ Pn(R) the normalized Hermite polynomials

Hn(y) =
√

π
1
2 2nn! (−1)ney2 ∂n

∂yn

(

e−y2
)

and by hn(y) = e−y2/2Hn(y) the Hermite functions. We recall that the Hermite
polynomials form a complete orthonormal basis of the L2(R) space with respect

to the weight e−y2

, i.e.
∫

R

Hk(y)Hl(y)e
−y2

dy = δkl.

Lemma 9 (Hille, 1940) Let f(z) be an analytic function in the strip of the
complex plane Σ(R; τ) ≡ {z = (y + iw) ∈ C,−τ ≤ w ≤ τ}. A necessary and
sufficient condition in order that the Fourier-Hermite series

∞∑

k=0

fkhk(z), fk =

∫

R

f(y)hk(y) dy, (22)

shall exist and converge to the sum f(z) in Σ(R; τ) is that to every β, 0 ≤ β < τ ,
there exists a finite positive C(β) such that

|f(y + iw)| ≤ C(β)e−|y|
√

β2−w2
, −∞ < y <∞, −β ≤ w ≤ β. (23)

Moreover, the following bound for the Fourier coefficients hold

|fn| ≤ Ce−τ
√

2n+1. (24)

In particular, the previous result tells us that, in order to have exponential
decay of the Fourier coefficients fn, we not only need f(z) to be analytic in
Σ(R; τ) but we have to require also that it decays on the real line, for y → ∞,
at least as e−τ |y|.

We introduce, now, two weights: the exponential one σ = e−α|y|, for some
α > 0 and the Gaussian one G = e−(δy)2/4. We recall that Lemma 7 holds
for both of them. We will assume that the function v is in the space C0

σ(Γ;V ),
but we will measure the best approximation error in the weaker norm C0

G(Γ;V ),
with Gaussian weight, so that we can use the result from Hille given in Lemma 9.
It holds:
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Lemma 10 Let v be a function in C0
σ(R;V ). We suppose that v admits an ana-

lytic extension in the strip of the complex plane Σ(R; τ) = {z ∈ C, dist(z,R) ≤
τ} for some τ > 0, and

∀z = (y + iw) ∈ Σ(R; τ), σ(y)‖v(z)‖
V
≤ Cv(τ).

Then, for any δ > 0, there exists a constant C, independent of p, and a function
Θ(p) = O(

√
p), such that

min
w∈Pp⊗V

max
y∈R

∣
∣
∣
∣
‖v(y) − w(y)‖

V
e−

(δy)2

4

∣
∣
∣
∣
≤ CΘ(p)e−τδ

√
p.

Proof. We introduce the change of variable t = δ y/
√

2 and we denote by ṽ(t) =

v(y(t)). Observe that ṽ ∈ C0
σ̃(R;V ) with weight σ̃ = e−

√
2 α

δ
|t|. We consider the

expansion of ṽ in Hermite polynomials

ṽ(t) =
∞∑

k=0

vkHk(t), where vk ∈ V , vk =

∫

R

ṽ(t)Hk(t)e−t2 dt. (25)

We set, now, f(z) = ṽ(z)e−
z2

2 . Observe that the Hermite expansion of f as
defined in (22) has the same Fourier coefficients as the expansion of ṽ defined
in (25). Indeed

fk =

∫

R

f(t)hk(t) dt =

∫

R

ṽ(t)Hk(t)e−t2 dt = vk.

Clearly, f(z) is analytic in the strip Σ(R; τδ√
2
), being the product of analytic

functions. Moreover,

‖f(y + iw)‖
V

= |e−
(y+iw)2

2 |‖ṽ(z)‖
V
≤ e−

y2−w2

2 e
√

2 α
δ
|y|Cv(τ).

Setting

C(β) = max
−∞<y<∞

−β≤w≤β

exp{−y
2 − w2

2
+

√
2
α

δ
|y| + |y|

√

β2 − w2}

which is bounded for all − τδ√
2
≤ β ≤ τδ√

2
, the function f(z) satisfies the hy-

potheses of Lemma 9. Hence the Hermite series converges in Σ(R; τδ√
2
) and the

Fourier coefficients vk behave as in (24). We chose w ∈ Pp ⊗V as the truncated
Hermite expansion of v, up to degree p: w̃(t) = Πpṽ(t) =

∑p
k=0 vkHk(t). We

have

Ep(v) = min
w∈Pp⊗V

max
y∈R

∣
∣
∣
∣
‖v(y) − w(y)‖

V
e−

(δy)2

4

∣
∣
∣
∣

≤ max
t∈R

∣
∣
∣‖ṽ(t) − Πpṽ(t)‖V

e−
t2

2

∣
∣
∣ ≤ max

t∈R

‖
∞∑

k=p+1

vkhk(t)‖
V
.
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It is well known (see e.g. [8]) that the Hermite functions hk(t) satisfy |hk(t)| < 1
for all t ∈ R and all k = 0, 1, . . .. Hence, the previous series can be bound as

Ep(v) ≤
∞∑

k=p+1

‖vk‖V
≤ C

∞∑

k=p+1

e
− τδ√

2

√
2k+1

.

Lemma 14 in Appendix provides a bound for such a series and this concludes
the proof. ¤

We are now ready to prove Theorem 1.

Proof. [of Theorem 1] The error naturally splits into ε = (u−uh)+ (uh −uh,p).
The first term depends on the space discretization only and can be estimated
easily; indeed the function uh is the orthogonal projection of u onto the subspace
L2

ρ(Γ) ⊗H1
0 (D) with respect to the inner product

∫

Γ×D
ρa|∇ · |2. Hence

‖u− uh‖L2
ρ(Γ)⊗H1

0 (D) ≤
1√
amin

(∫

Γ×D

ρa|∇(u− uh)|2
) 1

2

≤ 1√
amin

inf
v∈L2

ρ(Γ)⊗Hh(D)

(∫

Γ×D

ρa|∇(u− v)|2
) 1

2

The second term uh − uh,p is an interpolation error. We recall, indeed, that
uh,p = Ipuh. To lighten the notation, we will drop the subscript h, being
understood that we work on the semidiscrete solution. We recall, moreover,
that uh has the same regularity as the exact solution u w.r.t y.

To analyze this term we employ a one-dimensional argument. We first pass
from the norm L2

ρ to L2
ρ̂:

‖u− Ipu‖L2
ρ⊗H1

0
≤
∥
∥
∥
∥

ρ

ρ̂

∥
∥
∥
∥

1
2

L∞(Γ)

‖u− Ipu‖L2
ρ̂
⊗H1

0

Here we adopt the same notation as in Section 3, namely we indicate with •n a
quantity relative to the direction yn and •∗n the analogous quantity relative to
all other directions yj , j 6= n. We focus on the first direction y1 and define an
interpolation operator I1 : C0

σ1
(Γ1;L

2
ρ̂∗
1
⊗H1

0 ) → L2
ρ̂1

(Γ1;L
2
ρ̂∗
1
⊗H1

0 ),

Ip1
v(y1, y

∗
1 , x) =

p1+1
∑

k=1

v(y1,k, y
∗
1 , x)l1,k(y1).

Then, the global interpolant Ip can be written as the composition of two in-

terpolation operators Ip = I1 ◦ I(1)
p where I(1)

p is the interpolation operator in

all directions y2, y3, . . . , yN except y1: I(1)
p : C0

σ∗
1
(Γ∗

1;H
1
0 ) → L2

ρ̂∗
1
(Γ∗

1;H
1
0 ). We

have, then

‖u− Ipu‖L2
ρ̂
×H1

0
≤ ‖u− I1u‖L2

ρ̂
×H1

0
︸ ︷︷ ︸

I

+ ‖I1(u− I(1)
p u)‖L2

ρ̂
×H1

0
︸ ︷︷ ︸

II
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Let us bound the first term. We think of u as a function of y1 with values
in a Banach space V , u ∈ L2

ρ̂1
(Γ1;V ), where V = L2

ρ̂∗
1
(Γ∗

1) ⊗ H1
0 (D). Under

Assumption 2, in Section 3, and the choice of ρ̂ given in (16), the following
inclusions hold true

C0
σ1

(Γ1;V ) ⊂ C0
G1

(Γ1;V ) ⊂ L2
ρ̂1

(Γ1;V )

with σ1 = G1 = 1 if Γ1 is bounded and σ1 = e−α1|y1|, G1 = e−
(δ1y1)2

4 if Γ1 is
unbounded. We know also from Lemma 6 that the interpolation operator I1 is
continuous both as an operator from C0

σ1
(Γ1;V ) with values in L2

ρ̂1
(Γ1;V ) and

from C0
G1

(Γ1;V ) in L2
ρ̂1

(Γ1;V ). In particular, we can estimate

I = ‖u− I1u‖L2
ρ̂1

(Γ1;V ) ≤ C2 inf
w∈Pp1

⊗V
‖u− w‖C0

G1
(Γ;V ).

To bound the best approximation error in C0
G1

(Γ;V ), in the case Γ1 bounded
we use Lemma 8 whereas if Γ1 is unbounded we employ Lemma 10 and the
fact that u ∈ C0

σ1
(Γ1;V ) (see Lemma 4). In both cases, we need the analyticity

result, for the solution u, stated in Lemma 5. Putting everything together, we
can say that

I ≤
{

Ce−r1p1 , Γ1 bounded

CΘ(p1)e
−r1

√
p1 , Γ1 unbounded

the value of r1 being specified in Lemmas 8 and 10. To bound the term II, we
use Lemma 6:

II ≤ C1‖u− I(1)
p u‖C0

σ1
(Γ1;V ).

The term on the right hand side is again an interpolation error. So we have to
bound the interpolation error in all the other N − 1 directions, uniformly with
respect to y1 (in the weighted norm C0

σ1
). We can proceed iteratively, defining

an interpolation I2, bounding the resulting error in the direction y2 and so on.
¤

4.1 Convergence of moments

In some cases one might be interested only in computing the first few moments
of the solution, namely E[um], m = 1, 2, . . .. We show in the next two lemmas
that the error in the first two moments, measured in a suitable spatial norm, is
bounded by the mean square error ‖u−uh,p‖L2

ρ⊗H1
0
, which, upon Theorem 1, is

exponentially convergent with respect to the polynomial degree p employed in
the probability directions. In particular, without extra regularity assumptions
on the solution u of the problem, we have optimal convergence for the error in
the mean value (first moment) measured in L2(D) or H1(D) and for the error
in the second moment measures in L1(D).

Lemma 11 (approximation of mean value)

‖E[u− uh,p]‖V (D) ≤ ‖u− uh,p‖L2
ρ(Γ)⊗V (D), with V (D) = L2(D) or H1(D).
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The proof is immediate and omitted. Although the previous estimate implies
exponential convergence with respect to p, under the assumptions of Theorem
1, the above estimate is suboptimal and can be improved by a duality argument
(see [4] and Remark 5.2 from [5]).

Lemma 12 (approximation of the second moment)

‖E[u2 − u2
h,p]‖L1(D) ≤ C‖u− uh,p‖L2

ρ(Γ)⊗L2(D) ‖u‖C0
σ(Γ;H1(D))

with C independent of the discretization parameters h and p.

Proof. We have

‖E[u2 − u2
h,p]‖L1(D) ≤ ‖E[(u− uh,p)(u+ uh,p)]‖L1(D)

≤ ‖u− uh,p‖L2
ρ(Γ)⊗L2(D)‖u+ uh,p‖L2

ρ(Γ)⊗L2(D)

≤ ‖u− uh,p‖L2
ρ(Γ)⊗L2(D)

(

‖u‖L2
ρ(Γ)⊗L2(D) + ‖uh,p‖L2

ρ(Γ)⊗L2(D)

)

.

The term ‖uh,p‖L2
ρ⊗L2 can be bounded as

‖uh,p‖L2
ρ(Γ)⊗L2(D) = ‖Ipuh‖L2

ρ(Γ)⊗L2(D) ≤ C1‖uh‖C0
σ(Γ;L2(D)) ≤ C‖u‖C0

σ(Γ;H1(D))

where we have used the boundedness of the interpolation operator Ip stated in
Lemma 6. The last inequality follows from the fact that the semidiscrete solution
uh is the orthogonal projection of the exact solution u onto the subspace Hh

with respect to the energy inner product, hence

‖
√

a(y)∇uh(y)‖L2(D) ≤ ‖
√

a(y)∇u(y)‖L2(D), ∀y ∈ Γ

and the energy norm is equivalent to the H1 norm. ¤

Similarly, it is possible to estimate the approximation error in the covariance
function of the solution u.

On the other hand, to estimate the convergence rate of the error in higher
order moments, or of the second moment in higher norms, we need extra reg-
ularity assumptions on the solution to ensure proper integrability and then be
able to use analyticity.

5 Numerical Examples

This section illustrates the convergence of the collocation method for a stochastic
elliptic problem in two dimensions. The computational results are in accordance
with the convergence rate predicted by the theory.

The problem to solve is

−∇ · (a∇u) =0, onΩ ×D,

u =0, onΩ × ∂DD,

−a∂nu =1, onΩ × ∂DN

∂nu =0, onΩ × (∂D − (∂DD ∪ ∂DN )),
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with
D = {(x, z) ∈ R

2 : −1.5 ≤ x ≤ 0, −0.4 ≤ z ≤ 0.8},
∂DD = {(x, z) ∈ R

2 : −1 ≤ x ≤ −0.5, z = 0.8},
∂DN = {(x, z) ∈ R

2 : −1.5 ≤ x ≤ 0, z = −0.4},
cf. Figure 1.

−∇ · (a∇u) = 0∂nu = 0 ∂nu = 0

∂nu = 0 ∂nu = 0u = 0

−a ∂nu = 1

Figure 1: Geometry and boundary conditions for the numerical example.

The random diffusivity coefficient is a nonlinear function of the random
vector Y , namely

a(ω, x) =amin+

exp
{

[Y1(ω) cos(πz) + Y3(ω) sin(πz)] e−
1
8 +

[Y2(ω) cos(πx) + Y4(ω) sin(πx)] e−
1
8

}

.

(26)

Here amin = 1/100 and the real random variables Yn, n = 1, . . . , 4 are inde-
pendent and identically distributed with mean value zero and unit variance. To
illustrate on the behavior of the collocation method with either unbounded or
bounded random variables Yn, this section presents two different cases, corre-
sponding to either Gaussian or Uniform densities. The corresponding collocation
points are then cartesian products determined by the roots of either Hermite or
Legendre polynomials.

Observe that the collocation method only requires the solution of uncoupled
deterministic problems in the collocation points, also in presence of a diffusivity
coefficient which depends non-linearly on the random variables as in (26). This is
a great advantage with respect to the classical Stochastic-Galerkin finite element
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method as considered in [4] or [29] (see also the considerations given in Section
2.1). Observe, moreover, how easily the Collocation method can deal with
random variables with unbounded support.

Figure 2 shows some realizations of the logarithm of the diffusivity coefficient
while Figures 3 and 4 show the mean and variance of the corresponding solutions.

The finite element space for spatial discretization is the span of continuous
functions that are piecewise polynomials with degree five over a triangulation
with 1178 triangles and 642 vertices, see Figure 5. This triangulation has been
adaptively graded to control the singularities at the boundary points (−1, 0.8)
and (−0.5, 0.8). These singularities occur where the Dirichlet and Neumann
boundaries meet and they essentially behave like

√
r, with r being the distance

to the closest singularity point.
To study the convergence of the tensor product collocation method we in-

crease the order p for the approximating polynomial spaces, Pp(Γ), following
the adaptive algorithm described on page 1287 of the work [5]. This adaptive
algorithm increases the tensor polynomial degree with an anisotropic strategy:
it increases the order of approximation in one direction as much as possible
before considering the next direction.

The computational results for the H1
0 (D) approximation error in the ex-

pected value, E[u], are shown on Figure 6 while those corresponding to the
approximation of the second moment, E[u2], are shown on Figure 7. To esti-
mate the computational error in the i-th direction, corresponding to a multi
index p = (p1, . . . , pi, . . . , pN ), we approximate it by E[e] ≈ E[uh,p − uh,p̃],
with p̃ = (p1, . . . , pi + 1, . . . , pN ). We proceed similarly for the error in the
approximation of the second moment.

As expected, the estimated approximation error decreases exponentially fast
as the polynomial order increases, for both the computation of E[u] and E[u2],
with either Gaussian or Uniform probability densities.

6 Conclusions

In this work we have proposed a Collocation method for the solution of elliptic
partial differential equations with random coefficients and forcing terms. This
method has the advantages of: leading to uncoupled deterministic problems
also in case of input data which depend non-linearly on the random variables;
treating efficiently the case of non independent random variables with the in-
troduction of an auxiliary density ρ̂; dealing easily with random variables with
unbounded support, such as Gaussian or exponential ones; dealing with no dif-
ficulty with a diffusivity coefficient a with unbounded second moment.

We have provided a full convergence analysis and proved exponential con-
vergence “in probability” for a broad range of situations. The theoretical result
is given in Theorem 1 and confirmed numerically by the tests presented in Sec-
tion 5.

The method is very versatile and very accurate for the class of problems
considered (as accurate as the Stochastic Galerkin approach). It leads to the

27



Figure 2: Some realizations of log(a).
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Figure 3: Results for the computation of the expected value for the solution,
E[u].

Figure 4: Results for the computation of the variance of the solution, V ar[u].
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Figure 5: Top: Unstructured grid for the spatial discretization. The correspond-
ing finite element spaces are the span of continuous functions that are piecewise
polynomials with degree five. Bottom: Detail of the mesh refinement near the
left singularity.
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Figure 6: Convergence results for the approximation of the expected value, E[u].
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Figure 7: Convergence results for the approximation of the second moment,
E[u2].
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solution of uncoupled deterministic problems and, as such, is fully parallelizable
like a Monte Carlo method. The extension of the analysis to other classes of
linear and non-linear problems is an ongoing research.

The use of tensor product polynomials suffers from the curse of dimensional-
ity. Hence, this method is efficient only for a small number of random variables.
For a moderate or large dimensionality of the probability space one should rather
turn to sparse tensor product spaces. This aspect will be investigated in a future
work.
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Appendix

Lemma 13 Let r ∈ R
+, r < 1. Then

•
n∑

k=0

(2k + 1)rk =
1

(1 − r)2
{
1 + r − rn+1 [(2n+ 1)(1 − r) + 2]

}

•
∞∑

k=n+1

(2k + 1)rk = rn+1 (2n+ 1)(1 − r) + 2

(1 − r)2

Proof. We use the summation by part formula

n∑

k=0

fkgk = fnGn −
n−1∑

k=0

Gk(fk+1 − fk), Gk =

k∑

j=0

gj .
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with fk = (2k + 1), gk = rk and Gk = (1 − rk+1)/(1 − r). Then

n∑

k=0

(2k + 1)rk = (2n+ 1)
1 − rn+1

1 − r
−

n−1∑

k=0

2
1 − rk+1

1 − r

= (2n+ 1)
1 − rn+1

1 − r
− 2

1 − r

[

n− r
1 − rn

1 − r

]

=
1

1 − r

[

(2n+ 1) − (2n+ 1)rn+1 − 2n+ 2r
1 − rn

1 − r

]

=
1

1 − r

{

1 +
2r

1 − r
− rn+1

[

(2n+ 1) +
2

1 − r

]}

which gives the first result. Clearly,

∞∑

k=0

(2k + 1)rk =
1 + r

(1 − r)2
.

Then, computing the tail series as

∞∑

k=n+1

(2k + 1)rk =
∞∑

k=0

(2k + 1)rk −
n∑

k=0

(2k + 1)rk

we obtain easily the second result as well. ¤

Lemma 14 Let r ∈ R
+, r < 1. Then

∞∑

k=n+1

r
√

2k+1 ≤
[
2
√
n+ 1

a(1 − a)
+O(1)

]

a
√

n, a = r
√

2.

Proof. We start bounding

∞∑

k=n+1

r
√

2k+1 ≤
∞∑

k=n+1

r
√

2k =
∞∑

k=n+1

a
√

k.

Let us observe, now, that

∞∑

k=n+1

a
√

k ≤
∞∑

k=[
√

n+1]

(2k + 1)ak

where we have denoted by [v] the integer part of a real number v. Then, using
the result from Lemma 13, we have

∞∑

k=[
√

n+1]

(2k + 1)ak ≤ a[
√

n+1] (2[
√
n+ 1] − 1)(1 − a) + 2

(1 − a)2
.
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Observing, now, that
√
n+ 1 − 1 ≤ [

√
n+ 1] ≤

√
n+ 1 + 1, we obtain

∞∑

k=n+1

a
√

k ≤ a
√

n+1 (2
√
n+ 1 + 1)(1 − a) + 2

a(1 − a)2
,

which leads immediately to the final result. ¤
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