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Abstract

We consider the incompressible Navier-Stokes problem with flow rate
boundary conditions. This problem has been investigated in [2] and [12],
following a Lagrange multiplier approach. This approach has the drawback
of high computational costs. In this paper, we propose an approximate for-
mulation of the problem, yielding a strong reduction of the computational
costs. The error analysis shows that the error introduced by this approx-
imate formulation is confined in a small region of the boundary. This is
confirmed by the numerical simulations.

1 Introduction

In many engineering fluid dynamics problem, the computational domain is part
of a system or a network. In this case, a part of the boundary does not corre-
spond to a physical wall, and it is just introduced to limit the domain of interest.
The prescription of realistic boundary conditions on such artificial boundaries
can be source of numerical inaccuracies. The problem has been analyzed at the
mathematical and numerical levels since about ten years [7]. In particular, in
different contexts of internal fluid dynamics there is sometimes the problem of
managing numerically defective boundary data sets, namely data that are not
enough to have a mathematically well posed problem. For instance, it is quite
typical in solving fluid problems in a network of pipes like in haemodynamics
to have at the inlet only the flow rate. At the practical level, in the engineering
literature this problem has been solved by choosing a velocity profile fitting the
given flow rate. Since the numerical solution obtained in this way is strongly
affected by the selected profile, a common approach is to enlarge the computa-
tional domain, in order to reduce the effect of the “arbitrary” profile prescription
in the zone of interest. In [7] a different, more mathematically sound, approach
is proposed. This is based on finding a suitable variational formulation of the
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flow rate problem able to include the given data. The defective data set is com-
pleted by homogeneous natural boundary condition for the selected variational
formulation. This approach can be applied as well to the mean pressure drop
problem. In the latter case, it gives very satisfactory results (see e.g. [11]).
In the case of flow rate problems, the same approach is somehow problematic
at the numerical level, since it requires the definition of non-standard finite di-
mensional subspaces. A different approach has been therefore proposed in [2].
The basic idea is to consider the flow rate boundary conditions as a constraint
for the solution, to be forced through a Lagrange multiplier approach. In this
way, we have the drawback of solving an augmented problem, and however the
finite dimensional environment for the numerical solution refers to standard func-
tional spaces. This approach has been extensively analyzed in [2] and [12]. The
drawback of dealing with an augmented problem is obviously the increment of
computational costs. A possible approach relies on splitting the computation
of velocity/pressure fields and of the Lagrange multipliers, resorting to a pre-
conditioned Schur complement scheme. The solution of the Navier-Stokes step
can be performed with a standard solver [12], however the iterative procedure
could be quite expensive in practical applications. In the sequel, we will refer to
this approach as GMRes-based iterative algorithm, since the solver for the Schur
complement problem relies on the well known GMRes method (see for example
[10]).

In this work we propose an approximate reformulation of the augmented
problem yielding a significant reduction of the computational costs. This refor-
mulation does not imply an iterative approach. The price to pay is the intro-
duction of an error in a small neighborhood of the artificial sections where the
flow rate is prescribed. From the practical viewpoint this means that correct nu-
merical results can be obtained in the region of interest by working in a sightly
extended computational domain. Even when working with a larger domain, in
fact, the computational times of the present method are significantly reduced
with respect to the “exact” Lagrange multiplier approach, yielding comparable
numerical results in the region of interest. The present proposal could therefore
be considered as an intermediate and reliable approach between the engineer-
ing one, requiring a relevant expansion of the domain for loosing the effects
of the velocity profile selection, and the rigorous one based on the augmented
reformulation.

The outline of the work is as follows. We first focus the attention on the linear
Stokes problem, by showing how the augmented flow rate problem could be split
into three substeps (Sect. 2). The splitting highlights the part of the solution
in the augmented problem requiring the highest computational cost. Then, in
Section 3 we introduce the approximate splitting, by suitably approximating
this step. We will discuss the consistency of the approximate formulation with
respect to the exact one and introduce an error analysis of the associated error.
The analysis will outline the reduction of the error in the inner part of the
computational domain, sufficiently far from the boundary where the flow rates
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are prescribed.
In Sect. 4 we present the numerical formulation of the method. In Sect. 5

we consider the possible extensions to the nonlinear Navier-Stokes problem. In
particular, we address the case of an implicit time discretization.

Finally, Sect. 6 is devoted to the illustration of several numerical results both
from 2D academic and more realistic problems, and for 3D cases of real interest.
This research is basically driven by applications in computational haemodynam-
ics (see for example [4]).

2 Different formulations of the flow rate problem

2.1 Basic definitions

Let us consider the domain Ω ⊂ Rd (d = 2, 3) represented in Fig. 1. We assume
that a viscous incompressible fluid flows in Ω. On the boundary denoted by Γwall

we assume that the velocity vanishes (non slip conditions on a rigid boundary).
On Γout we assume homogeneous Neumann conditions, while on Γi we assume
that the flow rates are prescribed. The problem we are going to consider is
therefore (see for example [8]):

{

∂u

∂t
− µ4u + ∇p = f

∇ · u = 0
(1)

for x ∈ Ω and t ∈ (0, T ], together with the initial condition u(x, 0) = u0(x) and
the boundary conditions:























u ≡ 0 on Γwall

pn− µ∇u · n = 0 on Γout
∫

Γi

u · ndγ = Fi(t) for i = 1, 2, . . . ,m.
(2)

In (1), we denote by u(x, t) and p(x, t) the velocity and pressure field re-
spectively, by µ the fluid viscosity, by Fi the prescribed flow rates as function of
time. In particular, in the example of Fig. 1 we have m = 4.

This problem is mathematically underdetermined, since the boundary data
on Γi are not enough to yield well posedness: in fact, three (or two in a
2D problem) scalar data should be prescribed on each point of the boundary,
whereas conditions on the flow rates are integral condition over the boundaries
Γi (i = 1, 2, . . . ,m). Following [2], we resort to a weak formulation, where the
flow rate conditions are considered as a constraint to be imposed with a La-
grange multiplier approach. In particular, problem (1) is weakly formulated
as follows (we adopt the standard notation about functional Sobolev spaces):
find u ∈ L2(0, T,H1

Γwall
(Ω)) ∩ L∞(0, T,L2(Ω)) and p ∈ L2(0, T, L2(Ω)) and
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Figure 1: Domain of interest in the flow rate problem.

λ ∈ (L2(0, T ))m such that for all v ∈ H1
Γwall

(Ω), q ∈ L2(Ω):



































(

∂u

∂t
,v

)

+ a (u,v) + b (v, p) +
m
∑

i=1
λi

∫

Γi

v · ndγ = (f ,v)

b (u, q) = 0
∫

Γi

u · ndγ = Fi i = 1, 2, . . . m.

(3)

where we have set a (w,v) ≡
∫

Ω

µ∇w : ∇vdω, b (v, q) ≡
∫

Ω

∇ · vqdω, and

(·, ·) denotes the inner product in L2(Ω). The analysis of this problem (and
its extension to the nonlinear Navier-Stokes case) has been carried out in [12].
The numerical solution can be achieved by splitting the computation of veloc-
ity/pressure from the one of the Lagrange multipliers (GMRes-based algorithm).
This approach, that at an algebraic level can be regarded as a Schur comple-
ment method, at each time step requires m + 1 solutions of the Stokes problem
having Neumann boundary conditions on Γi (i = 1, 2, . . . ,m). The goal of the
present work is to devise an approximate method for solving the problem with
a significant reduction of the computational costs.

2.2 An exact splitting

In this Section we introduce a splitting of (3) which is a generalization of the
one proposed in [2] for the steady case. More precisely, consider the following
subproblems.

1. Steady Neumann problems. For all v ∈ H1
Γwall

(Ω), q ∈ L2(Ω), j =
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1, 2, . . . ,m find wj ∈ H1
Γwall

(Ω), πj ∈ L2(Ω) s.t.















a (wj,v) + b (v, π) = −
∫

Γj

v · ndγ

b (wj, q) = 0

(4)

These are m steady problems where natural conditions are prescribed on
Γi, namely for the j−th problem we impose pn− µ∇u · n|Γi = δijn (δij is
the Kronecker delta).

2. Unsteady Neumann homogeneous problem. For all v ∈ H1
Γwall

(Ω), q ∈
L2(Ω), j = 1, 2, . . . ,m find s ∈ L2(0, T,H1

Γwall
(Ω)) ∩ L∞(0, T,L2(Ω)) and

ξ ∈ L2(0, T, L2(Ω)) s.t.






(

∂s

∂t
,v

)

+ a (s,v) + b (v, ξ) = (f ,v)

b (s, q) = 0,
(5)

with the initial condition s(x,0) = u0. Note that if f = 0 and u0 = 0 this
problem admits the trivial solution s = 0 and ξ = 0. By exploiting this
circumstance, numerical solution of (5) can be skipped in this case.

3. Linear system. Denote by B, and S the m × m matrix and the vector
respectively with elements

Bij =

∫

Γi

wj · ndγ, Si =

∫

Γi

s · ndγ.

Let us denote with F the vector with components Fi (i = 1, . . . ,m). We
find therefore the vector η(t) by solving

Bη = F− S. (6)

4. Unsteady augmented homogeneous problem. Find e ∈ L2(0, T,H1
Γwall

(Ω))∩
L∞(0, T,L2(Ω)) and ε ∈ L2(0, T, L2(Ω)) and ν ∈ (L2(0, T ))m such that for
all v ∈ H1

Γwall
(Ω), q ∈ L2(Ω):



































(

∂e

∂t
,v

)

+ a (e,v) + b (v, ε) +
m
∑

i=1
νi

∫

Γi

v · ndγ = −
m
∑

j=1

dηj

dt
(wj,v)

b (e, q) = 0
∫

Γi

e · ndγ = 0 i = 1, 2, . . . m

(7)
with the initial condition: e(x, 0) = 0.
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It is possible to verify by linear combination that solution of problem (3) can be
written as:

u = s + e +
m
∑

j=1

ηjwj, p = ξ + ε +
m
∑

j=1

ηjπj , λi = νi + ηi ∀i = 1, 2, . . . m.

It is worth noting that all the subproblems are well posed under suitable
assumptions. Namely, (4) are standard steady Stokes problems, (5) is still a
standard unsteady Stokes problem, (7) is a homogeneous augmented problem,
analyzed in [2] and [12]. Finally, matrix B in (6) is non singular, as it has been
proved in [2]. The steady problems are obviously to be solved once at all at the
beginning of computations.

3 The inexact splitting

In the previous splitting, we compute separately the contributions to the solution
given by the forcing term and the flow rates. The latter still requires the solution
of an augmented (homogeneous) problem, and it is expensive to solve. We
therefore approximate problem (7) with the following one. Let us set Γ̂ ≡ Γwall∪
Γ1 ∪ . . . ∪ Γm ≡ ∂Ω \ Γout. Find ê ∈ L2(0, T,H1

Γ̂
(Ω)) ∩ L∞(0, T,L2(Ω)) and

ε̂ ∈ L2(0, T, L2(Ω)) such that for all v ∈ H1
Γ̂
(Ω), q ∈ L2(Ω):







(

∂ ê

∂t
,v

)

+ a (ê,v) + b (v, ε̂) = −
m
∑

j=1

dηj

dt
(wj,v)

b (ê, q) = 0

(8)

with the initial condition: ê(x, 0) = 0. This is a standard Stokes problem with
homogeneous Dirichlet conditions on Γ̂.

The outline of the scheme is the following:

1. Preliminar computations: Solve the m steady problems (4).

2. Time loop: Solve with some numerical time advancing scheme the sequence
of (standard) problems (5), (6) and (8).

3. Final assembling: Set:

û = s + ê +

m
∑

j=1

ηjwj, p̂ = ξ + ε̂ +

m
∑

j=1

ηjπj. (9)

We point out that in this approximation the Lagrange multipliers λi are not
explicitely computed. Tipically, this is not a problem, since the interest is for
the velocity and pressure fields. However, in the present variational formula-
tion the Lagrangian multiplier has the physical meaning of the normal stresses
(see [11], [2]) and this can be of some interest in the geometrical multiscale
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approach proposed in [1], [3] and [5] for coupling 3D models to 1D or lumped
parameters models in the framework of computational haemodynamics. In the
approximate scheme, the Lagrangian multipliers can be therefore computed as a
post-processing step starting from the approximate velocity and pressure fields.

Remark 3.1 Observe that in the steady case, namely for
dηj

dt
= 0 for each

j = 1, 2, . . . ,m, problem (7) and (8) both have the unique solution e = ê = 0.
In this case, therefore, the splitting yields the exact solution. Actually, this
argument has been exploited in [2], which has inspired the present one, where the
decomposition for the steady solution is adopted as a constructive argument for
proving the well posedness of the augmented problem.

3.1 Error analysis

The inexact splitting introduces an error at the fourth subproblem, in solving
a standard homogeneous Dirichlet problem replacing the augmented one. This
error affects the solution independently of the discretization of the problem:
the aim of this section is to prove that this consistency error is confined in
a boundary layer in the neighborhood of the sections Γj . In fact, since the
difference between the exact and inexact schemes is only in solving the fourth
subproblem, we compare the solutions of these problems, namely e and ê.

In the sequel, the subscript div for a functional space will denote the diver-
gence free subspace of the vectors belonging to that space. Actually, we will
develop our analysis in divergence free subspaces, so that we will not deal with
the pressure field. In paticular, we will set V ≡ H1

Γwall
(Ω) and consequently the

divergence free subspace of V will be denoted by Vdiv . For the sake of simplicity,
we will refer to the case m = 1 and we will denote by Γ the part of the boundary
where the flow rate condition is prescribed.

In the divergence free subspace, the fourth problem to be solved in the exact
splitting reads: find e ∈ L2(0, T, Vdiv) ∩ L∞(0, T,L2(Ω)) and ν ∈ L2(0, T ) such
that for all v ∈ Vdiv:



























(

∂e

∂t
,v

)

+ a (e,v) + ν

∫

Γ

v · ndγ = −dη

dt
(w,v)

∫

Γ

e · ndγ = 0

(10)

with e(x, 0) = 0.
Correspondingly, the fourth subproblem in the inexact splitting scheme can

be reformulated as follows. Find ê ∈ L2(0, T,H1
Γ̂,div

(Ω)) ∩L∞(0, T,L2(Ω)) such

that for all v ∈ H1
Γ̂,div

(Ω):

(

∂ ê

∂t
,v

)

+ a (ê,v) = −dη

dt
(w,v) (11)
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with the initial condition: ê(x, 0) = 0.
In order to compare the two solutions, we reformulate the latter problem in

a different way.

Lemma 3.1 Problem (11) is equivalent to the following “augmented” problem:
find ê ∈ L2(0, T, Vdiv) ∩ L∞(0, T,L2(Ω)) and ζ ∈ L2(0, T,H−1/2(Γ)) such that
for all v ∈ Vdiv and χ ∈ H−1/2(Γ):



























(

∂ ê

∂t
,v

)

+ a (ê,v) +

∫

Γ

ζvdγ = −dη

dt
(w,v)

∫

Γ

χêdγ = 0

(12)

with ê(x, 0) = 0.

Proof

The implication that the solution ê of (12) solves also (11) is trivial, since it is
enough to select in (12) the test functions belonging to H1

Γ̂,div
. The opposite

implication can be proved, referring e.g. to Lemma 4.1 in [6], by showing that the
following inequality holds: there exists a β > 0 such that for each χ ∈ H−1/2(Γ)
there exists a vector v such that

∫

Γ
χvdγ ≥ β||χ||H−1/2(Γ)||v||V .

This inequality holds in consequence of the definition of norm in H−1/2(Γ) and
of the boundness of the lifting operator from H 1/2(Γ) to H1(Ω). �

In the sequel Ck (k = 1, 2, . . .) will denote a generic function of time or
a constant dependent on the data (but independent of the space coordinate).
Observe that as a consequence of the previous Lemma, by standard arguments
we have that for t > 0

t
∫

0

||ζ||2H−1/2(Γ)ds ≤ C1.

The error analysis can be now carried out by considering the field δ = e− ê.
By subtracting (10) and (12) we have that for all v ∈ Vdiv



























(

∂δ

∂t
,v

)

+ a (δ,v) +

∫

Γ

(ν − ζ)v · ndγ −
∫

Γ

ζv × ndγ = 0

∫

Γ

δ · ndγ = 0

(13)

with δ(x, 0) = 0.
We prove the following result.
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Theorem 3.2 Let Ω′ ⊂⊂ Ω be such that dist(Ω′,Γ) ≥ d. If the domain Ω is
smooth enough, the following inequalities hold for t > 0































||δ||2
L2(Ω)(t) + α

t
∫

0

||δ||2V ≤ C2

t
∫

0

||ζ||H−1/2(Γ),

t
∫

0

||δ||2
H1(Ω′) ≤ C(t, ζ,Γ)e−d.

(14)

Proof

Let us set in (13) v = δ. Since ν is constant in space, we obtain

(

∂δ

∂t
, δ

)

+ a (δ, δ) −
∫

Γ

ζδdγ = 0. (15)

From the coercivity of the bilinear form a (·, ·), we have

1

2

d

dt
||δ||2

L2(Ω) + α||δ||2V ≤ |
∫

Γ

ζδdγ|. (16)

Observe that in the special case e = 0 on Γ, we obviously get δ = 0 in the whole
Ω as expected. More in general, from this inequality we obtain the first of (14)
by integrating in time and applying the Young and the trace inequalities in a
standard way.

Let us prove the second (14). The basic approach is similar to the one
followed by Rannacher in the analysis of Chorin-Temam method for Navier-
Stokes equations, presented in [9]. Let us denote by d(x) the distance of the

generic point of the domain Ω from Γ and set σ(x) ≡ min(ed(x), ed). We have:

µ

t
∫

0

∫

Ω′

∇δ : ∇δdωds ≤ e−dµ

t
∫

0

∫

Ω

σ∇δ : ∇δdωds ≤ e−dC4

t
∫

0

||δ
√

σ||2V ds. (17)

Now, choose v = σδ in (13). Since on Γ we have that σ = 1, ν

∫

Γ

σδ = ν

∫

Γ

δ = 0

and we have:

1

2

d

dt
||δ

√
σ||2

L2(Ω) + µ

∫

Ω

∇δ : ∇δ · σdω = −µ

∫

Ω

δ · ∇δ · ∇σdω +

∫

Γ

ζδdγ. (18)

If d is smooth enough, observing that on Ω′ we have ∇σ = 0 and that on Ω \Ω′

we have ∇σ = σ∇d, we obtain from the Young inequality:

|µ
∫

Ω

δ · ∇δ · ∇σdω| ≤ µ||∇d||L∞(Ω)||δ
√

σ||
L2(Ω)||∇δ

√
σ||

L2(Ω) ≤
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≤ C5||δ
√

σ||2
L2(Ω) + µ||∇δ

√
σ||2

L2(Ω).

By time integration of (18) and application of the Gronwall Lemma, we obtain:

||δ
√

σ||2
L2(Ω) ≤

t
∫

0

||ζ||2H−1/2(Γ)dseC5t,

yielding
t
∫

0

||δ
√

σ||2V ≤ C(ζ, |Γ|, t)

where C(ζ, |Γ|, t) =

t
∫

0

||ζ||2H−1/2(Γ)ds +

t
∫

0

τ
∫

0

||ζ||2H−1/2(Γ)dτeC5sds is increasing

with t and |Γ|. From (17) we finally obtain:

µ

t
∫

0

∫

Ω′

∇δ : ∇δdωds ≤ e−dC4C(ζ, |Γ|, t)

yielding the thesis. �
The relevance of the previous result is that at each fixed instant the error in a

domain contained in Ω decreases exponentially with the distance from Γ. From
the practical viewpoint this implies that the domain of interest can be slightly
extended yielding accurate results with a small increase in computational costs.
Numerical results confirim this circumstance. In particular, in computational
haemodynamics, when following the common approach of prescribing an arbi-
trary velocity profile fitting the given flow rates one has to extend the vascular
district at hand for 3 or 4 diameters of the vessel. Conversely, as we will see,
in the present case the expansion of the domain can be limited to a small zone
around Γ.

4 Discretization of the inexact splitting

We consider the numerical discretization of the inexact splitting. In particular,
we refer to a Galerkin finite element discretization for the space variables and
a finite difference time discretization. For the sake of simplicity, we adopt an
implicit Euler scheme. More accurate time discretization methods can be con-
sidered as well. Let us denote by Vh a finite dimensional subspace of H1

Γwall
,

for instance given by the piecewise polynomials on a suitable mesh Th of the
domain. Similarly, let V̂h be a finite dimensional subspace of H1

Γ̂
, given by (the

same) piecewise polynomial functions. Moreover, let Qh be a finite dimensional
subspace of L2(Ω). We suppose that the couples Vh, Qh and V̂h, Qh are LBB
condition compatible. We denote by ∆t a given time step. A possible discrete
formulation of the inexact splitting problem is the following.
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1. For all vh ∈ Vh, qh ∈ Qh, j = 1, 2, . . . ,m find wj,h ∈ Vh, πj,h ∈ Qh s.t.:














a (wj,h,vh) + b (vh, πh) = −
∫

Γj

vh · ndγ

b (wj,h, qh) = 0

(19)

for j = 1, 2, . . . ,m.

2. At each time step, given the solution at time tn = t0 + n∆t, we solve
the following problems. For all vh ∈ Vh, qh ∈ Qh, find sn+1

h ∈ Vh and
ξn+1
h ∈ Qh s.t.










(

sn+1
h − sn

h

∆t
,vh

)

+ a
(

sn+1
h ,vh

)

+ b
(

vh, ξn+1
h

)

=
(

fn+1,vh

)

b
(

sn+1
h , q

)

= 0,

(20)

with the initial condition s0
h = u0,h, suitable approximation of the initial

condition u0 and where fn+1 = f(tn+1).

3. Solve the linear system:

Bηn+1 = Fn+1 − Sn+1. (21)

4. Find ên+1
h ∈ V̂h and ε̂n+1

h ∈ Qh such that for all vh ∈ V̂h, qh ∈ Qh:






























(

ên+1
h − ên

h

∆t
,vh

)

+ a
(

ên+1
h ,vh

)

+ b
(

vh, ε̂n+1
h

)

=

= −
m
∑

j=1

ηn+1
j − ηn

j

∆t
(wj,h,vh)

b
(

ên+1
h , qh

)

= 0

(22)

with the initial condition: ê0
h = 0.

5 Extension to the Navier-Stokes problem

Our proposal is based on a linear combination of different components of the
solution so the linearity of the problem is a key-factor. However, the interest
for this kind of problems comes from fields such as the computational haemo-
dynamics, where the nonlinear convective term of the Navier-Stokes equations
cannot be dropped out. It is therefore worth addressing a possible extensions of
our proposal to the nonlinear case.

Let us start by observing that the extension to the Oseen linear problem:
{

∂u

∂t
+ (β · ∇)u− µ4u + ∇p = f

∇ · u = 0
(23)
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with β assigned convective field, is quite straightforward. As a matter of fact,
observe that the solution of the flow rate Oseen problem can be obtained follow-
ing the splitting proposed for the Stokes problem, where equations (4) and (6)
are unchanged, while (5) and (7) (or (8) in the inexact splitting) are respectively
replaced by:







(

∂s

∂t
,v

)

+ ((β · ∇) s,v) + a (s,v) + b (v, ξ) = (f ,v)

b (s, q) = 0,
(24)

and






















































(

∂e

∂t
,v

)

+ ((β · ∇) e,v) + a (e,v) + b (v, ε) +
m
∑

i=1
νi

∫

Γi

v · ndγ =

= −
m
∑

j=1

dηj

dt
(wj,v) −

m
∑

j=1

ηj ((β · ∇)wj,v)

b (e, q) = 0
∫

Γi

e · ndγ = 0 i = 1, 2, . . . m

, (25)

respectively. Therefore, if the time discretization adopted for solving the Navier-
Stokes problem is carried out in an explicit or semi-implicit way, yielding at each
time step a Stokes or an Oseen problem, in which β is a suitable function of the
velocity computed before the current instant, the inexact splitting approach is
immediately applicable, by replacing (25) with a standard homogeneous Dirichlet
problem.

Let us now consider the case of a genuine Navier-Stokes nonlinear problem
faced with an implicit time discretization. For the sake of clarity, we refer to
the implicit Euler discretization, even if the same approach can be adopted
with every implicit time advancing scheme. In this case, the inexact splitting
can be adopted in a fixed point iterative framework. More precisely, let us set
un+1

(0) = un. Now, we solve the following problems for k = 1, 2, . . ..

1. Steady Neumann problems (4).

2. Unsteady Neumann homogeneous problem: find sn+1
(k+1), ξ

n+1
(k+1) such that



























(

sn+1
(k+1) − sn

∆t
,v

)

+
((

un+1
(k) · ∇

)

sn+1
(k+1),v

)

+ a
(

sn+1
(k+1),v

)

+

+b
(

v, ξn+1
(k+1)

)

=
(

fn+1,v
)

b
(

sn+1
(k+1), q

)

= 0,

(26)

3. Linear system:
Bηn+1

(k+1) = Fn+1 − Sn+1
(k+1) (27)
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4. Homogeneous Dirichlet problem: as for problem (8), solve:



















































(

en+1
(k+1) − en

∆t
,v

)

+
((

un+1
(k) · ∇

)

en+1
(k+1),v

)

+ a
(

en+1
(k+1),v

)

+

+b
(

v, εn+1
(k+1)

)

= −
m
∑

j=1

ηn+1
j,(k+1) − ηn

j

∆t
(wj,v) +

−
m
∑

j=1
ηn+1

j,(k+1)

((

un+1
(k) · ∇

)

wj,v
)

b
(

en+1
(k+1), q

)

= 0

(28)

5. Final assembling: for θ real parameter, set:

un+1
(k+1) = θ



e(k+1) + s(k+1) +

m
∑

j=1

ηj,(k+1)wj



+ (1 − θ)un+1
(k)

The loop continues up to the fulfillment of a given stopping criterion.
Numerical evidence suggests that with an appropriate selection of the re-

laxation parameter θ, this algorithm converges in a few iterations to the fixed
point, yielding the desired approximate solution of the augmented problem with
an implicit time advancing scheme.

6 Numerical results

6.1 2D analytical cases

In the first set of simulations we aim at analizing the algorithm proposed in
Section 5 (with β = u and with a semi-implicit treatment of the convective
term if not specified differently) on analytical test cases. We used the 2D Finite
Elements code Freefem++ (see www.freefem.org). These simulations have got
also the aim of showing that the proposed algorithm could be implemented even
with a standard (even commercial) finite element package.

6.1.1 Poiseuille flow

We simulate a flow in a rectangular domain Ω, whose size is 6 × 1cm, with
a prescribed steady flow rate at the inlet (F = 0.1cm2/s). Moreover, we set
µ = 0.035cm2/s. As expected (see Remark 3.1), we recover the exact Poiseuille
profile up to the discretization errors (see Figure 2).

Then, we solved the Navier-Stokes problem by using the implicit Euler
scheme following the iterative procedure proposed in Section 5 for the treat-
ment of the convective term. In Table 1 the mean number of subiterations per
time step is shown. The convergence of the scheme can be strongly improved by
an appropriate selection of θ.
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Figure 2: Comparison between the Poiseuille analytical solution and the inexact
splitting computation. The solutions coincide up to the discretization error.

θ = 0.1 θ = 0.5 θ = 0.9

# subiterations 70 13 5

Table 1: Mean number of subiterations per time step using the implicit scheme
for the treatment of the convective term for different values of θ

6.1.2 Womersley flow

In Figure 3 we illustrate the results obtained by prescribing a sinusoidal-in-time
flow (F (t) = 0.1 · cos(2πt)cm2/s) at the inlet Γ of Ω. In this case we highlight
the difference between the solutions obtained with the exact and the inexact
splitting. In particular, as expected from the analysis of Section 3.1, we observe
that the error significantly reduces far away from the boundary Γ, as pointed
out also in Figure 5 and 4. Moreover, Figure 4 highlights that the error is
proportional to the measure of Γ, as expected from the error analysis.

In practice, an affordable approach consists of enlarging the computational
domain in order to confine the boundary error induced by the inexact splitting
out of the region of interest. However, we point out that a small increase of the
computational domain is enough. As a matter of fact, in our case it is sufficient
to increase the lenght of the domain of 1cm. Using the inexact splitting scheme
the extension of the domain is smaller than the one required by the engineering
approach (1 cm vs. 3−4 cm). Moreover, Table 2 confirms that the computational
effort of the inexact splitting in the expanded domain is still small in comparision
with the one request by the exact solver on the original domain Ω.

In Figure 6 the error of the inexact splitting for different values of the time
step is shown. We notice that the boundary error does not depend on the time
step. Moreover, in Figure 7 and 8 the dependence of the error on the fluid
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viscosity and on the Womersley number respectively is shown. We notice that
the smaller the viscosity (i.e. the bigger the Womersley number), the bigger is
the error near the boundary. This is confirmed by the fact that increasing the
pulsatility (i.e. the Womersley number) the error in solving equation (8) instead
of (7) should increase.

Figure 9 shows that the boundary error does not depend on the spatial dis-
cretization step, as expected. Finally, in Figure 10 the pressure solution and the
pressure error are shown with ∆t = 0.01s (left) and ∆t = 0.005s (right), point-
ing out that also the pressure error is localized near the boundary, independently
of the discretization.

Figure 3: Womersley test case. Comparison between the solution computed
by the exact Lagragian multiplier solver (blue line) and the inexact splitting
solution (red line) in the Womersley test case. The difference between the two
solutions reduces when the distance from the boundary increases. (Top, left:
distance=0cm; Top, middle: 0.2cm; Top, right: 0.3cm; Bottom, left 0.4cm;
Bottom, middle: 0.5cm; Bottom, right: 1cm).
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Figure 4: Womersley test case. Errors along the axial coordinate at different
instants for different values of the pipe radius.

Figure 5: Womersley test case. Comparison between the velocity fields computed
by the exact (left) and inexact (right) solvers.
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Figure 6: Womersley test case. Errors of the inexact splitting solution for dif-
ferent values of the time steps. On the right a detail of the errors in the centre
of the domain, where the error is essentially due to the time discretization.

Figure 7: Womersley test case. Dependence of the error on the fluid viscosity.
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Figure 8: Womersley test case. Dependence of the error on the Womersley
number.

6.2 2D realistic case

We focus our attention on a more realistic case. In particular, we simulate the
flow of the fluid in an anastomosis of a by-pass (see Figure 12, left), whose
sections have measure equal to 1cm and whose lenght is equal to 10cm. We
prescribed the physiological flux shown in Figure 11 (right) both at the bottom
and at the top inlet (with 50cm2/s and 25cm2/s as peak value respectively).
Figure 11 (left) and Figure 12 show that the error is localized near the bound-
aries. Figure 13 points out again the dependence of the boundary error on the
measure of Γ. Moreover, in Figure 14 the pressure field (left) and the pressure
error (right) are shown.

In order to have a comparision between the computational efforts of the
exact and inexact algorithms, we use again the latter in a domain extended of
0.5cm. Nevertheless, the CPU time (see Table 2) is about one half of the one
requested by the GMRes-based solver when the flow rate is prescribed at one
inlet. The CPU time reduction is even more evident when the flow rates are
prescribed on both the inlets. Therefore, differently from the GMRes algorithm,
the computational effort of the proposed algorithm does not depend on the
number of the section where we prescribe the flow rate.

6.3 3D computations

In the second set of simulations we studied the efficency of the proposed al-
gorithm for 3D simulations, using the 3D Finite Element Library Lifev (see
www.lifev.org).
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Figure 9: Womersley test case. Dependence of the error on the space discretiza-
tion.

6.3.1 An analytical test case

We simulate the flow of the fluid in a cylinder with radius r = 1cm and lenght
l = 5cm by prescribing a sinusoidal-in-time flow (F (t) = 0.1 · cos(2πt)cm3/s)
at the inlet. In Figure 15 the error with the solution obtained with the exact
algorithm is shown for different spatial discretization steps. As for the 2D case,
the error is confined in the neighborhood of the boundary. Figure 16 shows
the axial velocity obtained with the exact (left) and with the inexact (right)
algorithm.

6.3.2 Carotid

Finally, we apply the proposed algorithm in a carotid domain obtained from
real data of a patient through a cast produced by D. Liepsch - FH Munich. We
impose physiological flow rates similar to the one in Figure 11 (right) at both
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Figure 10: Womersley test case. Top: Pressure solution with ∆t = 0.01s (left)
and ∆t = 0.005s (right). Bottom: Pressure splitting error. The time steps is
the same of the pictures at the top.

the outlets of the domain. In Figure 17 the velocity fields obtained with the
inexact (up) and with the exact (bottom) algorithm are shown. Also in this case
it is evident that the error is confined near the boundary.
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Figure 11: Anastomosis solution and physiological flux imposed at the two inlets

Test Case Exact Splitting Inexact Splitting CPU t.in./ CPU t.ex.

Womersley 10min 31s 5min 46s 0.55

Anastomosis
m = 1 7min 58s 4min 27s 0.56

Anastomosis
m = 2 11min 3s 4min 33s 0.41

Table 2: CPU times for the two cases illustrated. In the Womersley test case the
final time was 2s, in the anastomosis one it was 1s, using for both the simulations
∆t = 0.01s. The inexact splitting computations have been performed on a
extended domain, so that the two solutions in the domain of interest covered by
the exact solver coincide up to the discretization errors.
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Figure 12: Solution in the anastomosis case: velocity splitting error. On the
right a zoom of the figure on the upper inlet.

Figure 13: The same as in Figure 12 with an inlet radius one half of the case
plotted above.
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Figure 14: Pressure solution (left) and difference between exact and inexact
splitting solutions (right) for the anastomosis computation.
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Figure 15: Computations in 3D: relative error for the Womersley solutions in
the cylinder for different values of h, ∆t = 0.01s.
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Figure 16: Computations in 3D, Womersley solutions: comparision between
the solutions obtained with the exact (left) and the inexact (right) algorithm,
t=0.9sec
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Figure 17: Computations in 3D: carotid solution. Velocity with inexact (up)
and with exact (bottom) algorithm, t=0.13s
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