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Abstract

Two different approaches are proposed to enhance the efficiency of the nu-
merical resolution of optimal control problems governed by a linear advection–
diffusion equation. In the framework of the Galerkin–Finite Element (FE)
method, we adopt a novel a posteriori error estimate of the discretization
error on the cost functional; this estimate is used in the course of a numer-
ical adaptive strategy for the generation of efficient grids for the resolution
of the optimal control problem. Moreover, we propose to solve the control
problem by adopting a reduced basis (RB) technique, hence ensuring rapid,
reliable and repeated evaluations of input–output relationship. Our numer-
ical tests show that by this technique a substantial saving of computational
costs can be achieved.

Keywords: optimal control problems; partial differential equations; finite el-
ement approximation; reduced basis techniques; advection–diffusion equations;
stabilized Lagrangian; numerical adaptivity.
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1 Introduction

Many physical processes, which involve diffusion and transport of scalar quanti-
ties, can be modelled by linear advection–diffusion partial differential equations.
These phenomena are studied, e.g., in Environmental Sciences, to investigate the
distribution forecast of pollutants in water or in atmosphere. In this context it
might be of interest to regulate the source term of the advection–diffusion equa-
tion so that the solution is as near as possible to a desired one, e.g., to operate
the emission rates of industrial plants to keep the concentration of pollutants
near (or below) a desired level.

This problem can be conveniently accommodated in the optimal control
framework for PDEs, where we consider the Lagrangian functional formulation
[3], as complementary to the classical approach of J.L. Lions [6].

To avoid numerical instabilities that arise in a transport dominating regime,
we propose a stabilization on the Lagrangian functional [5]. We consider two
numerical approaches that allow an efficient resolution of the optimal control
problem, in the context of an iterative optimization procedure. In the first
case we solve the equations governing the control problem by means of the
Galerkin–FE method. Grid adaptivity is driven by a posteriori error estimate
on the cost functional, which we assume as an indicator of the whole error on
the control problem [3]. Moreover, we propose a separation of the iteration
and discretization error [5], for which we define a posteriori error estimate. As
soon as the iteration error is brought below a desired threshold by means of the
iterative optimization method, we operate the adaptive strategy to reduce the
discretization error [5]. Then we solve numerically the equations governing the
control problem by means of the reduced basis (RB) method [8], which leads to
a large saving of computational costs. In fact the RB method permits a rapid,
reliable and repeated evaluation of the input–output relationship [7]; in the case
of the control problem the inputs are the control function for the state equation,
and the observation for the adjoint one, while the outputs are respectively the
state variable and the adjoint one.

At the end we report some numerical tests to validate the methods here
presented, referring in particular to a pollution control problem in atmosphere.

2 Mathematical Model of the Control Problem

In this section we recall the Lagrangian functional approach for optimal control
problems and the associated iterative optimization method, in a general setting
[3]; then we specialize it to an advection–diffusion control problem.
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2.1 The general setting

Let us consider the following control problem:

find u ∈ U : J(w, u) minimum, with Aw = f +Bu, (1)

where w ∈ V is the state variable, u the control function, A is an elliptic operator
defined on V with values in V ′, B is an operator defined on U and valued in V ′,
f is a source term, V and U are two Hilbert spaces. We write the state equation
Aw = f +Bu in weak form: find w ∈ V : a(w,ϕ) = (f, ϕ) + b(u, ϕ), ∀ϕ ∈ V.
The associated Lagrangian functional reads:

L(w, p, u) := J(w, u) + b(u, p) + (f, p)− a(w, p), (2)

where a(·, ·) and b(·, ·) are the bilinear forms associated with A and B, respec-
tively, (·, ·) is the L2–inner product, while p ∈ V is the adjoint variable. Should
there exist, the solution of the control problem (w∗, p∗, u∗) is the stationary
point of L(w, p, u). By differentiating the Lagrangian functional, we obtain the
Euler–Lagrange system governing the optimal control problem:







L,w [φ] = 0 −→ find p ∈ V : a(φ, p) = J,w (w, u)[φ], ∀φ ∈ V,
L,p [ϕ] = 0 −→ find w ∈ V : a(w,ϕ) = (f, ϕ) + b(u, ϕ), ∀ϕ ∈ V,
L,u [ψ] = 0 −→ J,u (w, u)[ψ] + b(ψ, p) = 0, ∀ψ ∈ U .

(3)
The first equation in (3) is the adjoint equation, the second one is the state
equation, while, by the Riesz theorem, from the third one we can extract the
sensitivity of the cost functional δu with respect to the control function u
(L,u [ψ] = (δu(p, u), ψ)). The control problem can be solved by means of an
iterative method [1]. At each step j we solve sequentially the state and the
adjoint equation and we compute the sensitivity δu(pj , uj); then we evaluate the
latter in an appropriate norm, which we compare with a prescribed tolerance. If
this stopping criterium is not fulfilled, we adopt an optimization iteration on the
control function u, such as the steepest–descent method, uj+1 = uj−τ jδu(pj , uj),
where τ j is a relaxation parameter.

2.2 The case of an advection–diffusion problem

Let us consider now the specific case of a linear advection–diffusion state equa-
tion, referring to a 2D–domain Ω:







L(w) := −∇ · (ν∇w) + V · ∇w = u, in Ω,
w = 0, on ΓD,

ν ∂w
∂n

= 0, on ΓN ,

(4)

ΓD and ΓN are two disjoint portions of the domain boundary ∂Ω such that
ΓD ∪ ΓN = ∂Ω, u ∈ L2(Ω) is the control variable, while ν and V are given
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functions. We assume homogeneous Dirichlet condition on the inflow boundary
ΓD := {x ∈ ∂Ω : V(x) · n(x) < 0}, being n(x) the unit vector directed outward,
and homogeneous Neumann condition on the outflow boundary ΓN := ∂Ω \ΓD.
We consider the observation on a part D ⊆ Ω of the domain, for which the
control problem reads:

find u : J(w, u) :=
1

2

∫

D

(g w(u)− zd)
2 dD minimum, (5)

where g ∈ C∞(Ω) projects w in the observation space and zd is the desired obser-
vation function. Adopting the formalism of the previous section and assuming
V = H1

ΓD
:= {v ∈ H1(Ω) : v|ΓD

= 0} and U = L2(Ω), the Lagrangian functional
becomes:

L(w, p, u) := J(w, u) + F (p;u)− a(w, p). (6)

where:

a(w,ϕ) :=

∫

Ω
ν∇w · ∇ϕ dΩ+

∫

Ω
V · ∇w ϕ dΩ, (7)

F (ϕ;u) :=

∫

Ω
uϕ dΩ. (8)

By differentiating L with respect to the state variable, we obtain the adjoint
equation in weak form:

find p ∈ V : aad(p, φ) = F ad(φ;w), ∀φ ∈ V, (9)

with:

aad(p, φ) :=

∫

Ω
ν∇p · ∇φ dΩ+

∫

Ω
V · ∇φ p dΩ, (10)

F ad(φ;w) =

∫

D

(g w − zd) g φ dD. (11)

In the distributional sense this yields:






Lad(p) := −∇ · (ν∇p+ Vp) = χDg (g w − zd), in Ω,
p = 0, on ΓD,

ν ∂p
∂n

+ V · n p = 0, on ΓN ,

(12)

being χD the characteristic function of the subdomain D. Finally, by differen-
tiating L with respect to the control function u, we have the optimal control
constraint, from which we define the cost functional sensitivity: δu(p) = p.

3 Numerical Approximation and Stabilization

For the numerical resolution of both the state and adjoint equations, we adopt
the Galerkin–FE method with linear elements on unstructured triangular meshes.
Both equations are of advection–diffusion type with a transport term that can
dominate the diffusive one; when it happens an appropriate stabilization is
mandatory to avoid numerical instabilities and their propagation in the course
of the optimization iterative procedure ([9]).
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3.1 “Optimize–then–discretize” and “discretize–then–optimize”
approaches

From a numerical point of view, the algorithm outlined in Sec.2.1 (or in Sec.2.2
for the specific advection–diffusion case) requires, at each iterative step, the
approximation of the state and adjoint equations. This approximation can be
based, e.g., on a suitable FE subspace Xh ⊂ V and the GLS (Galerkin–Least–
Squares) method [9], obtaining respectively:

find wh ∈ Xh : a(wh, ϕh) + sh(wh, ϕh) = F (ϕh;uh), ∀ϕh ∈ Xh, (13)

sh(wh, ϕh) :=
∑

K∈Th

δK

∫

K

R(wh;uh) L(ϕh) dK, (14)

find ph ∈ Xh : aad(ph, φh) + sadh (ph, φh) = F ad(φh;wh), ∀φh ∈ Xh, (15)

sadh (ph, φh) :=
∑

K∈Th

δK

∫

K

Rad(ph;wh) L
ad(φh) dK, (16)

where δK is a stabilization parameter, R(w;u) := L(w)−u, Rad(p;w) := Lad(p)−
G(w), with G(w) := χDg (g w − zd). This paradigm is resumed in the slogan
“optimize–then–discretize” [2, 4]. An alternative approach is “discretize–then–
optimize”, for which first we discretize and stabilize the state equation, e.g. still
by the GLS method (Eq.(13) and (14)), then we define the discrete Lagrangian
functional:

Lh(wh, ph, uh) := J(wh, uh) + F (ph;uh)− a(wh, ph)− sh(wh, ph), (17)

from which, by differentiation with respect to wh, we obtain the discrete adjoint
equation (15), however with the following stabilization term:

sadh (ph, φh) = s
ad
h (ph, φh) :=

∑

K∈Th

δK

∫

K

L(φh) L(ph) dK. (18)

Differentiating Lh with respect to uh and applying the Riesz theorem, being
uh ∈ Xh, we obtain: δuh = ph +

∑

K∈Th
δK

∫

K
L(ph) dK.

3.2 The stabilized Lagrangian approach

We consider a stabilization on the Lagrangian functional itself [5], for which our
stabilized Lagrangian functional is:

Lsh(wh, ph, uh) := L(wh, ph, uh) + Sh(wh, ph, uh), (19)

with:

Sh(w, p, u) :=
∑

K∈Th

δK

∫

K

R(w;u) Rad(p;w) dK. (20)
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This approach can be regarded as a particular case of the “discretize–then–
optimize” one if we identify sh(wh, ph) with −Sh(wh, ph, uh). By differentiating
Lsh we obtain the (stabilized) approximate state and adjoint equations (13) and
(15), assuming s(wh, ϕh) = sh(wh, ϕh;uh) and sad(ph, φh) = sadh (ph, φh;wh),
where:

sh(wh, ϕh;uh) := −
∑

K∈Th

δK

∫

K

R(wh;uh) L
ad(ϕh) dK, (21)

sadh (ph, φh;wh) := −
∑

K∈Th

δK

∫

K

(

Rad(ph;wh) L(φh)−R(wh;uh) G
′(φh)

)

dK,

(22)
having set G′(w) := χDg

2w. Finally, the cost functional sensitivity reads:

δuh(ph, wh) = ph −
∑

K∈Th

δK Rad(ph;wh). (23)

4 A Posteriori Error Estimate

For the definition of an appropriate error estimate for the optimal control prob-
lem, we identify the error on the control problem as being the error on the cost
functional, as proposed in [3]. Moreover, we propose to separate this error in
two parts: the iteration and the discretization error. For the latter we define a
suitable estimate according with the duality principles [3], adopted in the course
of mesh adaptive strategy.

4.1 Iteration and discretization errors

At each iterative step j of the optimization procedure we consider the following
error:

|ε(j)| = |J(w∗, u∗)− J(wj
h, u

j
h)|, (24)

where ∗ indicates optimal variables, while wj
h stands for the discrete variable

evaluated at the step j. If we refine the mesh, according with an adaptive proce-
dure, we certainly reduce the component of the full error ε(j) (Eq.(24)) related to
the numerical approximation at the step j, which we call the discretization error

ε
(j)
D . On the other hand, the part of ε(j) expressing the difference between the
cost functional computed on continuous variables at the step j and the optimal

cost functional, which we call the iteration error ε
(j)
IT , can generally increase [5].

From Eq.(24):

ε(j) =
(

J(w∗, u∗)− J(wj , uj)
)

+
(

J(wj , uj)− J(wj
h, u

j
h)
)

= ε
(j)
IT + ε

(j)
D ; (25)

then we will define a posteriori error estimate only for ε
(j)
D , the only part of

ε(j) which can be reduced by mesh refinement. Since ∇L(x) is linear in x, the
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iteration error ε
(j)
IT becomes ε

(j)
IT = 1

2 ( δu(pj , uj) , u∗ − uj ), which, in the case
of our advection–diffusion control problem (see Sec.2.2 and [5]), can be written
as:

ε
(j)
IT = −

1

2
τ‖pj‖2L2(Ω) −

1

2
τ

∞
∑

r=j+1

( pj , pr )L2(Ω). (26)

Since the iteration error can not be correctly evaluated by means of this expres-

sion, we can assume that |ε
(j)
IT | ≈

1
2τ‖p

j‖2
L2(Ω), or, more simply |ε

(j)
IT | ≈ ‖p

j‖2
L2(Ω),

which leads to the usual criterium |ε
(j)
IT | ≈ ‖δu(p

j)‖ (L2–norm).

4.2 A posteriori error estimate and adaptive strategy

We define the a posteriori error estimate for the discretization error only, based
on the following theorem ([5]).

Theorem 4.1 For a linear control problem with the stabilized Lagrangian Lsh
(Eq.(19) and Eq.(20)), the discretization error at the j–th iteration reads:

ε
(j)
D =

1

2
( δu(pj , uj), uj − ujh ) +

1

2
∇Lsh(x

j
h) · (x

j − x
j
h) + Λh(x

j
h), (27)

where x
j
h := (wj

h, p
j
h, u

j
h) is the Galerkin–FE approximation and Λh(x

j
h) :=

Sh(x
j
h) + sh(w

j
h, p

j
h;u

j
h), being sh(w

j
h, p

j
h;u

j
h) the stabilization term (21).

Applying (27) to our advection–diffusion control problem and highlighting the
contributions on the elements of the mesh K ∈ Th ([3]), we obtain the following
estimate:

|ε
(j)
D | ≤ η

(j)
D :=

1

2

∑

K∈Th

{ (

ωpKρ
w
K + ωwKρ

p
K + ωuKρ

u
K

)

+ λK
}

, (28)

where, according with the symbol definitions given in Sec.3:

ρw
K := ‖R(wj

h;u
j
h)‖K + h

−
1
2

K ‖r(wj
h)‖∂K ,

ωp
K := ‖(pj − pj

h) − δKLad(pj − pj
h) + δKG′(wj − wj

h)‖K + h
1
2

K‖pj − pj
h‖∂K ,

ρp
K := ‖Rad(pj

h;w
j
h)‖K + h

−
1
2

K ‖rad(pj
h)‖∂K ,

ωw
K := ‖(wj − wj

h) − δKL(wj − wj
h)‖K + h

1
2

K‖wj − wj
h‖∂K ,

ρu
K := ‖δuh(p

j
h, w

j
h) + δu(pj)‖K = ‖pj + pj

h − δKRad(pj
h;w

j
h)‖K ,

ωu
K := ‖uj − uj

h‖K ,

λK := 2δK‖R(wj
h;u

j
h)‖K ‖G(wj

h)‖K ,

r(wj
h) :=







− 1

2

[

ν
∂w

j

h

∂n

]

, on ∂K\∂Ω,

−ν
∂w

j

h

∂n
, on ∂K ∈ ΓN ,

rad(pj
h) :=







− 1

2

[

ν
∂p

j

h

∂n
+ V · n pj

h

]

, on ∂K\∂Ω,

−
(

ν
∂p

j

h

∂n
+ V · n pj

h

)

, on ∂K ∈ ΓN ;

(29)
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Figure 1: Domain for the pollution problem.

∂K indicates the boundary of K ∈ Th, while [·] stands for the jump of the
embraced quantity across ∂K.

To use the estimate (28), we need to evaluate wj , pj and uj . Indeed, we
replace wj and pj by the respective quadratic reconstructions, (wj

h)
q and (pjh)

q,

and uj by (ujh)
q := ujh − τ(δuh((p

j
h)
q, (wj

h)
q) − δuh(p

j
h, w

j
h)), according to the

steepest-descent iterative method with τ j = τ . The following adaptive strategy
is then adopted to allow an efficient generation of adapted meshes:

1. we adopt the optimization iterative method till convergence to the iteration
error tolerance TolIT , assuming an initial coarse mesh;

2. we adapt the mesh, balancing the error on the elements K ∈ Th, according

with the error estimate η
(j)
D (28), till convergence to the discretization error

tolerance TolD;

3. we re-evaluate the variables and ε
(j)
IT on the adapted mesh: if ε

(j)
IT ≥ TolIT ,

we return to point 1 and we repeat the procedure, while if ε
(j)
IT is inferior

to TolIT , we stop.

5 A Numerical Test: Pollution Control Problem

We apply the a posteriori error estimates η
(j)
D (28) for the discretization error

and the strategy presented in Sec.4.2 to a numerical test, which can be regarded
as a pollution control problem in atmosphere. Our goal consists in regulating
the emissions of industrial chimneys to keep the pollutant concentration below
a desired threshold in an observation area (a town).

To this aim we consider a simple advection–diffusion model [5, 8], which
can be regarded as a quasi–3D model: the pollutant concentration w at the
emissive height H is described by the advection–diffusion equation introduced
in Sec.2.2, while the concentration at soil is obtained by projection by means
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Figure 2: Pollutant concentration [µg/m3] at the ground before (a) and after
(b) the regulation of the sources.

of the function g(x, y) described in Sec.2.2. The values assumed by the diffu-
sion coefficient ν(x, y) and the function g(x, y) depend on the distance from the
emission sources and the atmospherical stability class (stable, neutral or un-
stable). In particular, we consider the case of neutral atmospherical conditions
and, referring to the domain reported in Fig.1, we assume V = Vxx̂ + Vyŷ, with
Vx = V cos( π30) and Vy = V sin( π30), being V = 2.5 m/s. Moreover we consider
that the chimneys maximum rate of emission is umax = 800 g/s at the emission
height H = 100 m, for which the pollutant concentration (we consider SO2) is
higher than the desired level zd = 100 µg/m3. In Sec.2.2 we have considered the
case of u distributed over all the domain Ω, while here we deal with a particular
case which can be accommodated in the general case assuming u =

∑N
i=1 uiχi,

where χi is the characteristic function of the chimney Ui.
In Fig.2a we report the pollutant concentration at the ground corresponding

to the maximum emission rates; in Fig.2b we plot the concentration at ground
at the completion of the optimization strategy; we observe that the “optimal”
emission rates become u1 = 0.0837·umax, u2 = 0.0908·umax and u3 = 1.00·umax.
In Fig.3 we report a comparison among adapted meshes; in Fig.3a that obtained

by our estimator η
(j)
D and in Fig.3b by the following estimators [5] (which lead

to analogous results):

1. the energy norm indicator (ηwE)
(j) :=

∑

K∈Th
hK ρwK ;

2. the indicator (ηwpuE )(j) :=
∑

K∈Th
hK

{

(ρwK)2 + (ρpK)2 + (ρuK)2
}

1
2 .

For symbols definitions see Eq.(29); the results are compared with those obtained
with a fine mesh with about 80000 elements. The adaptivity driven by the error

indicator η
(j)
D leads to concentrate elements in those areas that are more relevant
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(a) (b)

Figure 3: Adapted meshes (about 14000 elements) obtained by η
(j)
D Eq.(28) (a)

and (ηwpuE )(j) (b) (and similarly (ηE)
(j)).

for the optimal control problem. This fact is underlined by comparing the errors
on the cost functional and other interesting quantities for the meshes obtained
with the different error indicators, but with the same number of elements. E.g.,

the indicator η
(j)
D provides an error on the optimal cost functional J of about

20% against the 55% obtained by (ηwE)
(j) and (ηwpuE )(j) with meshes with about

4000 elements, and of 6% vs. 15% with about 14000 elements. We see that the

adaptivity driven by the error indicator η
(j)
D permits large savings of number of

mesh elements, allowing more efficient resolution of the optimal control problem.

6 A Reduced Basis Approach to Control Problems

As a second approach to improve efficiency, we consider the RB method to solve
the optimal control problem, by applying the approach to the state and adjoint
equations. For a review on the use of the RB method and for optimal control
problems, see [7, 8, 10].

6.1 Reduced basis: abstract formulation

The RB method allows the evaluation of input–output relationships by means
of a precise and efficient procedure. The goal consists in calculating a quan-
tity (the output) s(µ) = l(w(µ);µ) depending on the solution of the following
parametrized equation:

find w(µ) ∈ X : a(w(µ), v;µ) = f(v;µ), ∀v ∈ X , (30)

where µ ∈ D and D is a set of parameters, X is a Hilbert space, the form a(·, ·;µ)
is bilinear, continuous and coercive and the forms f(·;µ) and l(·;µ) are linear
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and continuous, for all µ. Moreover, we assume that the form a(·, ·;µ) is affine
parameter dependent, that is:

a(w(µ), v;µ) =

Q
∑

q=1

σq(µ)aq(w, v), ∀w, v ∈ X , ∀µ ∈ D, q = 1, . . . , Q, (31)

where σq : D → R are parameter–dependent functions, while aq : X × X → R
are parameter–independent forms; affine parameter dependence is required also
for f(·;µ) and l(·;µ). To build the RB space we need to introduce a finite di-
mensional subspace Xh of X , which we identify with a Galerkin–FE space asso-
ciated with a very fine triangulation of the domain Ω. The Galerkin–FE element
method consists in solving the following N–dimensional problem find wh(µ) ∈
Xh : a(wh(µ), v;µ) = f(v), ∀v ∈ Xh, which, if N is large, leads to computa-
tional expensive evaluations of the output sh(µ) = l(wh(µ);µ) for several values
of the input µ. We consider a set of samples SµN = {µi ∈ D, i = 1, . . . , N} and
we define the N–dimensional RB space as WN = span{ζi, i = 1, . . . , N}, where
ζn = wh(µ

n), with n = 1, . . . , N . The RB method consists in evaluating the
output sN (µ) = l(wN (µ);µ), where wN (µ) is given by the following problem (of
dimension N):

find wN (µ) ∈WN : a(wN (µ), v;µ) = f(v), ∀v ∈WN . (32)

Then we write wN (µ) as wN (µ) =
∑N

j=1wNj
(µ)ζj , being wN (µ) = {wN1(µ),

. . . , wNN
(µ)}T the solution of the following linear system of order N :

AN (µ)wN (µ) = FN (µ), (33)

where ANi,j
(µ) = a(ζj , ζi;µ) and FNi

(µ) = f(ζi, µ), with i, j = 1, . . . , N ; the
output sN (µ) is calculated as sN (µ) = LN (µ)TwN (µ), where LNi

(µ) = l(ζi;µ).
From the affine dependence property, we can split the matrix AN (µ) and the
vectors FN (µ) and LN (µ) into a parameter–dependent part and a parameter–
independent part. In the case of matrix AN (µ), this means that AN (µ) =
∑Q

q=1 σ
q(µ)Aq

N , where Aq
Ni,j

= aq(ζj , ζi) is a parameter–independent matrix.

Similar expressions hold for FN (µ) and LN (µ). These decompositions allow
a very convenient computational procedure composed by off–line and on–line
stages. In the off–line stage we afford the larger computational costs, computing
the basis ζn of WN and assembling the matrices Aq

N and the vectors F q
N and

LqN , which require N FE solutions and inner products. In the on–line stage,
given µ, we assemble AN (µ), FN (µ) and LN (µ), we solve the system (33) and
we compute sN (µ). Let us notice that N is usually very low with respect to N
according to the precision required on sN (µ); this leads to large computational
costs savings in case of recursive evaluation of sN (µ) for different parameters µ.

6.2 The reduced basis method applied to control problems

The resolution of optimal control problems by an iterative method leads to a
recursive resolution of the state and adjoint equations. The computational cost
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of the whole procedure can therefore be quite relevant, especially if great pre-
cision is required. In this context, see Sec.2.1, the input of the state equation
can be regarded as the control function u, while the output as the state vari-
able w. Similarly, the adjoint equation input is the observation on the system,
related to w, while the output is the adjoint variable p itself, which, by means
of the iterative method adopted (e.g., the steepest–descent method), becomes
the input for the state equation. The iterative optimization method can be
seen as a recursive evaluation of an input–output relationship. Moreover, it can
be interesting to perform an optimization for different values of some physical
or geometrical parameters [8]: e.g., referring to the pollution control problem
introduced in Sec.5, the diffusivity, the velocity of the wind, or the reciprocal
distance among the chimneys. The main idea consists in parametrizing both the
state and adjoint equations by the parameters of interest and the source terms
(related respectively to u and w); then we solve these equations by means of the
RB method in the course of the optimization iterative procedure. The strategy
allows large savings of computational costs with respect to the conventional FE
iterative optimization method. The RB space for the adjoint equation does not
need to be coherent with that for the state equation.

6.3 Numerical tests

We report two numerical tests, which refer to the pollution control problem
considered in Sec.5.
In the first case we assume that at the initial step the emissions of the chimneys
are respectively the 45%, 0% and 55% of the total emission utot = 2700 g/s.
The optimization procedure leads to the following distribution of emissions on
the three chimneys: 3.49%, 0% and 55.02% of utot. The saving in computational
costs with respect to the resolution by the FE method is about the 73%, having
chosen τ = 800 and an error tolerance on J of 10−8.
The second test considers as parameters the emissions of the chimneys and the
wind velocity field, i.e. µ = {u1, u2, u3, Vx, Vy}, where V = Vxx̂ + Vyŷ, with
√

V 2x + V 2y = 1. We assume Vx = cos(π4 ) and Vy = sin(π4 ) and we start with

the following initial emissions 30%, 40% and 30% of utot. The optimization
procedure provides the following optimal emissions, respectively for the three
chimneys, the 30%, 38.8% and 7.3% of utot. The RB strategy, with τ = 800 and
the RB dimension N = 81, allows a 55% time saving with respect to the FE
method, with a final error on J and u respectively about 3.9 ·10−9 and 1.1 ·10−6.
The original grid is made of 1700 nodes.

7 Conclusions

We have proposed two strategies to improve the efficiency of the numerical reso-
lution of optimal control problems governed by linear advection–diffusion equa-
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tions, in the context of an iterative optimization procedure. In particular, having
identified the error on the control problem as error on the cost functional, we
have separated it into the iteration and discretization errors. For the latter we
have proposed an a posteriori error estimate, which is adopted in a strategy of
grid adaptivity. Then we have considered the RB method, applied to the equa-
tions governing the control problem itself, in order to save computational costs
by adopting a reliable method. The efficiency of these approaches is proved by
numerical tests, that are concerned with a pollution control problem in atmo-
sphere.
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