
Nested dual–residual a posteriori error estimators for

advection-diffusion-reaction problems ∗

Stefano Micheletti] and Simona Perotto]

30th August 2005

] MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica “F. Brioschi”

Politecnico di Milano
via Bonardi 9, 20133 Milano, Italy

{stefano.micheletti,simona.perotto}@mate.polimi.it

Keywords: Goal oriented a posteriori error analysis, residual based error es-
timators, mesh adaption, advection-diffusion-reaction problems, finite element
method.

AMS Subject Classification: 65N15, 65N30, 65N50

Abstract

In this work we introduce a fully computable dual-based a posteriori
error estimator for standard scalar advection-diffusion-reaction problems.
In particular, such an estimator does not depend on neither the primal nor
the dual exact solution, but only on the corresponding Galerkin finite ele-
ment approximations. This new approach merges the main advantages of
the dual-based and of the residual-based error analysis, being devised as a
residual-based estimator “nested” in a dual-based one. This allows us to
explicitly approximate suitable functionals of the solution, in the spirit of
a classical goal-oriented analysis, at the same cost as a dual-based strat-
egy, the solution of two differential problems being involved. The related
issue of optimal mesh adaptivity is also addressed. Several two-dimensional
numerical test cases validate the proposed theory as well as the employed
adaptive procedure.

∗This work has been supported by the Project COFIN 2003 “Metodi Numerici per Appli-

cazioni Avanzate in Meccanica dei Fluidodinamica ed Elettromagnetismo”.
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1 Introduction and motivations

Nowadays mesh adaptivity finds a large following in many engineering applica-
tions where the numerical solution of partial differential equations is required.
The basic idea is to reduce the computational cost involved in the numerical
approximation of the phenomenon at hand, by suitably distributing the mesh
elements to better capture the nonsmooth behavior and the directional features
(shocks, boundary and internal layers, singularities, etc.) of the exact solution
u. We may distinguish the different approaches employed for mesh adaptivity
in heuristic and theoretically based adaption techniques. In the first class, the
gradient or the Hessian of the numerical solution is typically employed to drive
the mesh adaption procedure. For instance, this is the case of the well-known
Zienkiewicz-Zhu error estimator [33, 34, 35]. The second group consists of more
theoretically sound techniques, moving from suitable a priori or a posteriori es-
timators for the discretization error. In this framework the specific literature
is broad (see, e.g., [1, 5, 6, 8, 13, 19, 28, 32]). Among the approaches based
on a posteriori error estimates, the most known are the so-called residual-based
and dual-based estimators (as reviewing works see, for example, [1, 32] for the
first ones and [8, 19] for the second ones). The residual-based analysis has the
advantage of providing fully computable and easily implementable estimators.
However, only the energy norm of the discretization error can be controlled in
such a case. On the contrary, the dual-based estimators are more flexible, since
linear or nonlinear functionals J(u) of the solution can now be controlled, via
the resolution of a suitable adjoint problem. These functionals are typically as-
sociated with quantities significant in engineering applications, known as goal
or target quantities: meaningful examples are the lift and drag around bod-
ies in external flows or mean and local values in computational fluid dynamics,
the torsion moment, the point-wise stress or the surface tension in structural
mechanics, the total output electrical current in a semiconductor device in mi-
croelectronics. Nevertheless, these estimators suffer the limitation to be not
thoroughly computable. In more detail, let us suppose to have at our disposal
a discrete solution uh to u, for example a Galerkin finite element solution, so
as to approximate the goal quantity J(u) via the value J(uh). In this case, the
well-known Dual Weighted Residual (DWR) theory (see [7, 8]) provides us with
an error estimator η for the functional error J(u)− J(uh) of the form

η =
∑

K∈Th

ρK(uh)ωK(z),

or, more in general,

η =
1

2

∑

K∈Th

ρK(uh)ωK(z) +
1

2

∑

K∈Th

ρK(zh)ωK(u), (1)

ρK(uh), ρK(zh) and ωK(u), ωK(z) being suitable residuals (depending on the
computable numerical solutions uh, zh) and weights (associated with the exact
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primal and dual solutions u and z), respectively. Thus, while the elemental
residuals ρK(uh) and ρK(zh) can be computed explicitly, the weights ωK(u) and
ωK(z) have to be suitably approximated, at the price of increasing the overall
computational burden. Different strategies have been pursued in the literature to
replace the unknown solutions u and z with sufficiently “fine” approximations
[8, 19], the error introduced in this last step remaining however not precisely
assessed.
Aim of this work is the derivation of a fully computable dual-based a posteriori
error estimator, merging the main advantages of both the dual-based and the
residual-based analysis, at the same cost of the most expensive approach, i.e.
the dual-based one. We name this new estimator as nested dual-residual, being
devised, as shown later, as a residual-based estimator “nested” in a dual-based
one.
Let us briefly explain the idea behind such an approach. Assume that the primal
and the dual problems have the following structure

{
Lu = f,
+ b.c. ,

{
L∗z = g,
+ b.c. ,

respectively, where L and L∗ represent the primal operator and its adjoint form,
f and g denote the primal and the dual source term, and b.c. stands for some
prescribed boundary conditions. The goal quantity can thus be written as the
linear functional

J(u) =

∫

Ω

g u dx.

To begin, we derive the functional error representation

J(u− uh) = θ

∫

Ω

f (z − zh) dx + (1− θ)
∫

Ω

g (u− uh) dx, (2)

with 0 ≤ θ ≤ 1 an arbitrary constant, and uh and zh suitable Galerkin ap-
proximations to u and z. The right-hand side of (2) provides us with a quantity
which, though exact, is not computable, due to the presence of the primal and of
the dual discretization errors. To overcome such a limitation, we first exploit the
Cauchy-Schwarz inequality to get a bound for |J(u−uh)| involving the L2-norm
(or the H1-norm) of both (u−uh) and (z− zh). Then, these errors are bounded
in turn, simply by using standard residual-based a posteriori estimators. The
resulting quantity is thus thoroughly computable.
The considered numerical test cases confirm the good quality of this new es-
timator. Moreover the same idea has been generalized to the model adaption
framework, yielding, also in this case, satisfactory results [11].

The outline of the paper is as follows. In § 2, we introduce the basic idea
of the nested dual-residual analysis on the standard Poisson problem. In § 3
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we generalize this framework to a standard scalar advection-diffusion-reaction
equation. The iterative procedure used to drive the mesh adaptivity is discussed
in § 4. The numerical validation is carried out in § 5 for both the Poisson and
the advection-diffusion problems. Some conclusions and perspectives are drawn
in § 6, while in the Appendices A. 1. and A. 2., self-contained results on the a
posteriori analysis and some issues about optimal mesh generation are addressed.

2 The reference problem

To detail the idea behind the a posteriori error analysis proposed in this paper,
let us move from a model problem, namely the standard Poisson problem. In § 3
we generalize this analysis to the more significant advection-diffusion-reaction
framework. In such a case the issue of the stabilization makes the presentation
of our new approach less immediate. Moreover, while for the Poisson problem
two optimal (with respect to the convergence rate) nested a posteriori error
estimators can be derived, according to the regularity of the solution, only an
optimal error estimate has been rigorously proved for the advection-diffusion-
reaction problem.

Thus let us introduce, as primal problem, the standard Poisson equation
provided with homogeneous Dirichlet boundary conditions

{
−∆u = f in Ω,

u = 0 on ∂Ω,
(3)

where Ω is a domain in R
d (with d = 2, 3) with Lipschitz continuous boundary

∂Ω, and f ∈ L2(Ω) is the given source term. In the sequel Ω always coincides
with a polygonal domain.

Throughout, we adopt the standard notation H s(Ω) to denote the Sobolev
spaces of functions with Lebesgue measurable derivatives [22]. In particular,
notice that the space H0(Ω) coincides with the space L2(Ω) of square-integrable
functions, while H1

0 (Ω) stands for the closure in H1(Ω) of the space
�

(Ω) of
infinitely differentiable functions with a compact support in Ω. Moreover, from
the Poincaré-Friedrichs inequality, it follows that the H 1-seminorm is a norm on
H1

0 (Ω), equivalent to the norm of H1(Ω).

In view of a finite element approximation of problem (3), let us introduce
the corresponding weak form which reads as: find u ∈ V ≡ H 1

0 (Ω) such that
∫

Ω

∇u · ∇v dx =

∫

Ω

f v dx, ∀v ∈ V, (4)

with x = (xi)
T ∈ Ω, for i = 1, . . . , d.

Let {Th}h be a family of conforming triangulations of Ω into triangles K
of diameter hK ≤ h, where h = maxK∈Th

hK . Each element K can be viewed
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as the image, via an invertible affine mapping TK , of the reference triangle K̂,
usually chosen as the right triangle (0, 0), (1, 0), (0, 1) or as the equilateral one
(−1/2, 0), (1/2, 0), (0,

√
3/2). Now let Vh ⊂ V denote the finite element space

of continuous affine functions [9]. Then the discrete form associated with (4) is
given by: find uh ∈ Vh such that

∫

Ω

∇uh · ∇vh dx =

∫

Ω

f vh dx, ∀vh ∈ Vh. (5)

Simply by subtracting (5) from (4), for the choice v = vh, we get the so-called
Galerkin orthogonality property

∫

Ω

∇eh · ∇vh dx = 0, ∀vh ∈ Vh, (6)

eh = u − uh being the discretization error associated with the primal problem
(3).

As we are interested in a goal-oriented analysis [7, 8, 18, 19, 24, 28, 29, 31],
let us introduce the linear goal functional J : V → R, identifying the quantity
we aim to control. Such a functional is related to the source term of the dual
problem associated with (3), whose weak form reads as: find z ∈ V such that

∫

Ω

∇ϕ · ∇z dx = J(ϕ), ∀ϕ ∈ V. (7)

According to the theory in [23], let us assume that the representation

J(ϕ) =

∫

Ω

g ϕ dx, (8)

holds for the functional J , g being a suitable function in L2(Ω). Equality (8)
allows us to provide the differential form of the dual problem (7), given by

{ −∆z = g in Ω,

z = 0 on ∂Ω,
(9)

i.e., to rewrite the weak form (7) as

∫

Ω

∇ϕ · ∇z dx =

∫

Ω

g ϕ dx, ∀ϕ ∈ V. (10)

Remark 2.1 The choice (8) for the output functional J makes the choice of the
space V for the adjoint problem (7) consistent with the theory in [18].
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To discretize the dual problem (7), let us exploit the same scheme adopted for
the primal problem. Notice that this choice simplifies the numerical validation,
a single computational mesh being involved. Thus the discrete form of the dual
problem reads as: find zh ∈ Vh ⊂ V , such that

∫

Ω

∇ϕh · ∇zh dx = J(ϕh)

(
=

∫

Ω

g ϕh dx

)
, ∀ϕh ∈ Vh. (11)

Remark 2.2 Moving from the goal functional representation (8), both the weak
and the discrete forms, (10) and (11) can be expressed in terms of the same
function g. Alternatively, some suitable finite dimensional approximation of g
may be employed in (11).

Analogously to (6), by subtracting (11) from (7), for the choice ϕ = ϕh, we
get the Galerkin orthogonality property referred to the dual problem, given by

∫

Ω

∇ϕh · ∇e∗h dx = 0, ∀ϕh ∈ Vh, (12)

where e∗h = z − zh stands for the discretization error associated with the dual
problem (9). In the sequel, we refer to properties (6) and (12) as to the primal
and the dual Galerkin orthogonality, respectively.

2.1 Preliminaries 1: interpolation error estimates

In view of the a posteriori analysis below, let us first recall some classical results
related to the finite element interpolation error theory.

In more detail, let Πh : C0(Ω) → Vh and Ih : L2(Ω) → Vh be the standard
Lagrange and Clément affine interpolants, respectively, ΠK and IK denoting the
corresponding restrictions to the general element K ∈ Th [9, 10]. Moreover, the
definition of the Clément interpolation operator leads us to introduce the patch
∆K = {⋃T∈Th

T : T∩K 6= ∅} of all the elements sharing (at least) a vertex with
K. In the sequel we assume the cardinality of any patch ∆K to be uniformly
bounded, independently of the geometry of the mesh, i.e., there exists a positive
integer N such that, for any K ∈ Th,

card(∆K) ≤ N. (13)

Notice that with this requirement we are essentially avoiding too thin triangles
in the computational mesh Th.

The following local interpolation error estimates represent a significant in-
gredient for the a posteriori analysis of both § 2.3 and § 3.2.
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Lemma 2.1 Let v ∈ H2(K), for any K ∈ Th, with ∂K denoting the boundary
of the element K. Then there exist two positive constants C̃i = C̃i(K̂, d), with
i = 1, 2, such that

‖v −ΠK(v)‖L2(K) ≤ C̃1 h
2
K |v|H2(K),

‖v −ΠK(v)‖L2(∂K) ≤ C̃2 h
3/2
K |v|H2(K).

(14)

Concerning the Clément interpolant, the following inequalities can be proved.

Lemma 2.2 Let v ∈ H1(Ω). Then there exist three positive constants Cj =

Cj(K̂, d,N), with j = 1, 2, 3, such that

‖v − IK(v)‖L2(K) ≤ C1 hK |v|H1(∆K),

‖v − IK(v)‖L2(∂K) ≤ C2 h
1/2
K ‖v‖H1(∆K),

‖∇(v − IK(v))‖L2(K) ≤ C3 |v|H1(∆K),

(15)

N being defined according to (13).

Remark 2.3 Results similar to the ones in Lemma 2.2 hold also for Clément-
like interpolants, whose general expression is given by

Ĩh(v) =
∑

aj∈Nh

(Pjv)(aj)ψj ,

with v ∈ H1(Ω), where Nh = {aj} denotes the set of all the mesh nodes, ψj is the
general nodal basis function, while with Pj we mean suitable local L2-projection
operators over a proper patch of elements ∆aj

associated with the node aj. The
choice of such a patch identifies the different Clément-like interpolation operators
[2, 10, 30].

2.2 Preliminaries 2: residual-based a posteriori analysis

The second essential ingredient for the analysis in § 2.3 is represented by some
standard results of the residual-based a posteriori error analysis for the Poisson
problem (3) [13, 32].
Let us begin by recalling the a posteriori estimate with respect to the H 1-norm.

Lemma 2.3 Let u and uh be the solution of the weak Poisson problem (4) and
of the corresponding discrete formulation (5), respectively, and let eh = u − uh

denote the associated discretization error. Then there exists a positive constant
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C∗∗ = C∗∗(K̂, d,N,CP ), with CP the Poincaré constant and N defined according
to (13), such that the following error estimate holds:

‖eh‖H1(Ω) ≤ C∗∗

( ∑

K∈Th

[ ρK(uh) ]2
)1/2

, (16)

where

ρK(uh) = hK ‖rK(uh)‖L2(K) +
1

2
h

1/2
K

∥∥∥
[∂uh

∂n

]∥∥∥
L2(∂K)

(17)

is the elemental primal residual term, with rK(uh) = f + ∆uh the internal
residual associated with the primal problem (3), and where [∂uh/∂n] stands for
the jump of the normal derivative of uh over the boundary ∂K of the element
K.

For the sake of completeness, we provide the proof of estimate (16) in Ap-
pendix A. 1. Due to the self-adjoint nature of the Laplace operator, a result
similar to (16) can be stated moving from the dual problem (9).

Lemma 2.4 Let z and zh be the solution of the weak Poisson problem (10) and
of the corresponding discrete formulation (11), respectively, and let e∗h = z − zh
denote the associated discretization error. Then there exists a positive constant
C∗∗ = C∗∗(K̂, d,N,CP ), with CP the Poincaré constant and N defined according
to (13), such that the following error estimate holds:

‖e∗h‖H1(Ω) ≤ C∗∗

( ∑

K∈Th

[ ρ∗K(zh) ]2
)1/2

(18)

where

ρ∗K(zh) = hK ‖r∗K(zh)‖L2(K) +
1

2
h

1/2
K

∥∥∥
[∂zh
∂n

]∥∥∥
L2(∂K)

(19)

is the elemental dual residual term, with r∗K(zh) = g+ ∆zh the internal residual
associated with the dual problem (9), and where [∂zh/∂n] stands for the jump of
the normal derivative of zh over the boundary ∂K of the element K.

Via the well-known Aubin-Nitsche trick (see [4, 26]), a residual-based a posteriori
error control can be derived also with respect to the L2-norm.

Lemma 2.5 Let Ω coincide with a convex polygonal domain. Let u and uh be
the solution of the weak Poisson problem (4) and of the corresponding discrete
formulation (5), respectively, and let eh = u − uh denote the associated dis-
cretization error. Then there exists a positive constant C∗∗ = C∗∗(K̂, d), such
that the following error estimate holds:

‖eh‖L2(Ω) ≤ C∗∗

( ∑

K∈Th

[hK ρK(uh) ]2
)1/2

, (20)
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where the elemental primal residual term ρK(uh) is defined according to (17).

As also Lemma 2.5 refers to the well-established a posteriori analysis for the
Poisson problem, we confine the corresponding proof into Appendix A. 1. A
similar result can be stated in the dual framework:

Lemma 2.6 Let Ω coincide with a convex polygonal domain. Let z and zh be
the solution of the weak Poisson problem (10) and of the corresponding discrete
formulation (11), respectively, and let e∗h = z − zh denote the associated dis-

cretization error. Then there exists a positive constant C∗∗ = C∗∗(K̂, d), such
that the following error estimate holds:

‖e∗h‖L2(Ω) ≤ C∗∗

( ∑

K∈Th

[hK ρ∗K(zh) ]2
)1/2

, (21)

where the elemental dual residual term ρ∗K(zh) is defined according to (19).

We have now all the ingredients necessary for the nested a posteriori analysis of
the Poisson problem.

2.3 The a posteriori analysis

Let us recall that our actual goal is to approximate the goal quantity J(u) with
the approximate value J(uh). At the same time, we would like to provide a
fully computable (a posteriori) estimate for the error J(eh) = J(u) − J(uh), so
as to guarantee that the value J(uh) differs from the exact one J(u) within a
prescribed tolerance τ . As stated in § 1, this aim is pursued by introducing a
new kind of a posteriori error estimator, identified as nested dual-residual.
A first example of such an estimator is provided by the result below.

Proposition 2.1 Let u and uh be the solution of the weak Poisson problem
(4) and of the corresponding discrete formulation (5), respectively, eh = u− uh

denoting the associated discretization error. Let J : V → R be the goal linear
functional we are interested in. Then there exists a positive constant C ∗∗ =
C∗∗(K̂, d,N,CP ), with CP the Poincaré constant and N defined according to
(13), such that

|J(eh)| ≤ C∗∗

{
θ ‖f‖L2(Ω)

( ∑

K∈Th

[ ρ∗K(zh) ]2
)1/2

+ (1− θ) ‖g‖L2(Ω)

( ∑

K∈Th

[ ρK(uh) ]2
)1/2 }

, (22)
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where the elemental primal and dual residual terms ρK(uh) and ρ∗K(zh) are de-
fined according to (17) and (19), respectively, while θ ∈ R is a suitable constant,
with 0 ≤ θ ≤ 1.

Proof. Let us suitably rewrite equation (7), after identifying the generic function
ϕ ∈ V with the primal discretization error eh:

J(eh) =

∫

Ω

∇eh · ∇z dx = θ

∫

Ω

∇eh · ∇z dx

︸ ︷︷ ︸
(A)

+(1− θ)
∫

Ω

∇eh · ∇z dx

︸ ︷︷ ︸
(B)

, (23)

with θ to be properly chosen. We analyze separately the two terms (A) and (B) in (23),
starting from (A). By exploiting the primal Galerkin orthogonality (6), we get

(A) =

∫

Ω

∇eh · ∇z dx =

∫

Ω

∇eh · ∇(z − vh) dx

=

∫

Ω

∇u · ∇(z − vh) dx−
∫

Ω

∇uh · ∇(z − vh) dx,

(24)

with vh ∈ Vh. Now, by choosing vh = zh and thanks to the dual Galerkin orthogonality
(12), with ϕh = uh , we have that the last term in (24) is identically equal to zero. We
remark that the choice made above for the functions vh and ϕh is coherent with the
employment of the same discrete space Vh, namely of the same mesh Th, for both the
primal and the dual problems. Thus, via (4), we obtain

(A) =

∫

Ω

∇u · ∇e∗h dx =

∫

Ω

f e∗h dx. (25)

Now let us consider the term (B). The weak form (10) immediately yields

(B) =

∫

Ω

∇eh · ∇z dx =

∫

Ω

g eh dx. (26)

Notice that the approach followed to rewrite terms (A) and (B) is different: no Galerkin
orthogonality is exploited in the second case. By inserting relations (25) and (26) into
(23), we derive

J(eh) = θ

∫

Ω

f e∗h dx + (1− θ)
∫

Ω

g eh dx. (27)

The relation above provides us with an exact representation of the error J(eh). However
it is fully useless as depending on the (unknown) exact primal and dual solutions u and z.
The idea is to make this expression helpful from a computational viewpoint, by suitably
rewriting the right-hand side of (27) in terms of (discrete) computable quantities only.
Thanks to the Cauchy-Schwarz inequality, we immediately get

|J(eh)| ≤ θ ‖f‖L2(Ω) ‖e∗h‖L2(Ω)︸ ︷︷ ︸
(C)

+(1− θ) ‖g‖L2(Ω) ‖eh‖L2(Ω)︸ ︷︷ ︸
(D)

. (28)
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The terms (C) and (D) can now be explicitly computed by means of proper residual based
a posteriori error estimators. In more detail, the (standard) regularity requirements
made in the primal and dual weak formulations (4) and (7), respectively (u, z ∈ H1

0 (Ω)),
lead us to resort to residual based a posteriori error estimates for the norms ‖e∗h‖H1(Ω)

and ‖eh‖H1(Ω) (see Remark 2.5 for more details), as it trivially follows that

|J(eh)| ≤ θ ‖f‖L2(Ω) ‖e∗h‖H1(Ω)︸ ︷︷ ︸
( �C)

+(1− θ) ‖g‖L2(Ω) ‖eh‖H1(Ω)︸ ︷︷ ︸
( �D)

. (29)

Thanks to inequalities (18) and (16), we get result (22), where C∗∗ is defined as in

Lemmas 2.3 and 2.4. �

Remark 2.4 A heuristic recipe to suitably choose a value for the constant θ in
(22) is suggested in the sequel (see § 4.2).

Up to the constant C∗∗, the right-hand side of inequality (22) provides us with
an explicitly evaluable estimator for the functional error J(eh), given by

η1
D,nested = θ ‖f‖L2(Ω)

( ∑

K∈Th

[ ρ∗K(zh) ]2
)1/2

+(1−θ) ‖g‖L2(Ω)

( ∑

K∈Th

[ ρK(uh) ]2
)1/2

.

(30)
As well as for the estimation (1), a balance between the contribution of the
primal and of the dual problem characterizes such an estimator, the primal and
the dual residual terms being weighted by the data (the forcing terms) of the
dual and of the primal problem, respectively. Moreover, notice that the explicitly
computable nature of estimator (30) is obtained without demanding additional
data or the resolution of extra discrete or differential problems.

An alternative nested dual-residual a posteriori estimator for the error J(eh)
can be derived by directly bounding the L2-norms ‖e∗h‖L2(Ω) and ‖eh‖L2(Ω) in
(28). The corresponding result is stated in the following

Proposition 2.2 Let Ω coincide with a convex polygonal domain. Let u and uh

be the solution of the weak Poisson problem (4) and of the corresponding discrete
formulation (5), respectively, eh = u− uh denoting the associated discretization
error. Let J : V → R be the goal linear functional we are interested in. Then
there exists a positive constant C∗∗ = C∗∗(K̂, d), such that

|J(eh)| ≤ C∗∗

{
θ ‖f‖L2(Ω)

( ∑

K∈Th

[hK ρ∗K(zh) ]2
)1/2

+ (1− θ) ‖g‖L2(Ω)

( ∑

K∈Th

[hK ρK(uh) ]2
)1/2}

,

(31)

where the primal and the dual residual terms ρK(uh) and ρ∗K(zh) are defined as
in (17) and (19), respectively, while θ ∈ R is a suitable constant, with 0 ≤ θ ≤ 1.
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Proof. We exactly follow the proof of Proposition 2.1 till inequality (28). Then it

suffices to estimate the terms (C) and (D) via the residual based error estimates (21)

and (20), respectively, the constant C∗∗ being defined as in Lemmas 2.5 and 2.6. �

Moving from inequality (31), we have at our disposal another fully computable
estimator for the functional error J(eh), represented, up to the constant C∗∗, by

η2
D,nested = θ ‖f‖L2(Ω)

( ∑

K∈Th

[hK ρ∗K(zh) ]2
)1/2

+ (1− θ) ‖g‖L2(Ω)

( ∑

K∈Th

[hK ρK(uh) ]2
)1/2

. (32)

A balance between the primal and the dual problems characterizes this estimator
as well as η1

D,nested.

Remark 2.5 Both the choices (30) and (32) for the error estimator of the func-
tional error J(eh) have advantages and drawbacks. Essentially, while with the
estimator (32) we gain an order with respect to the convergence rate, we are im-
plicitly requiring, via the Aubin-Nitsche trick, more regularity on the solutions u
and z of the weak problems (4) and (7) (an H2-regularity instead of the standard
H1, sufficient to derive η1

D,nested). On the other hand, moving from (28) to (29),

we are loosing some information. Thus estimator η1
D,nested is, in some sense,

defective.

Remark 2.6 The dual Galerkin orthogonality (12) plays a two-fold role in the
analysis above. It is essential to suitably rewrite the term (A), when passing from
(24) to (25), while, at the same time, it is used to derive both the residual-based
estimates in Lemmas 2.4 and 2.6 (see Appendix A. 1.).

3 Generalization to an advection-diffusion-reaction

problem

Let us generalize the a posteriori analysis in the previous section to the stan-
dard scalar advection-diffusion-reaction problem, completed with homogeneous
Dirichlet boundary conditions:

{ −µ∆u+ β · ∇u+ αu = f in Ω ,

u = 0 on ∂Ω ,
(33)

where Ω and ∂Ω are defined as in (3), while the source f ∈ L2(Ω), the diffusivity
µ ∈ R

+, the advective field β ∈ (W 1,∞(Ω))2, with ∇·β = 0, and the reaction
coefficient α ∈ L∞(Ω), with α ≥ 0 a.e. in Ω, are given data. What makes

12



this analysis more complex compared with the one of the previous section is
essentially the employment of a stabilized scheme to discretize the problem under
investigation.

The weak form associated with (33) is: find u ∈ V ≡ H 1
0 (Ω) such that, for

any v ∈ V ,
∫

Ω

µ∇u · ∇v dx +

∫

Ω

(β · ∇u+ αu)v dx =

∫

Ω

f v dx . (34)

Remark 3.1 The requests made on the data of problem (33) guarantee both the
continuity and the coercivity of the bilinear form identified by the left-hand side
of (34). In particular, the coercivity property is exploited in the a posteriori
analysis of § 3.1, the corresponding coercivity constant being denoted with cα.

In view of an advection-dominated problem, let us discretize the weak form
(34) by projecting onto the space Vh ⊂ V of continuous piecewise affine finite
elements and by stabilizing through the SUPG method [15]. Notice that, due
to the choice made for the finite elements, all the standard stabilized techniques
actually do coincide with each other. The discrete form thus reads as: find
uh ∈ Vh such that, for any vh ∈ Vh,

∫

Ω

µ∇uh · ∇vh dx +

∫

Ω

(β · ∇uh + αuh)vh dx

+
∑

K∈Th

τK

∫

K

(−µ∆uh + β · ∇uh + αuh) (β · ∇vh) dx

=

∫

Ω

f vh dx +
∑

K∈Th

τK

∫

K

f(β · ∇vh) dx ,

(35)

τK denoting the element-wise stabilization parameters defined according to [15].
To shorten the notations, we introduce in the sequel the stabilized bilinear and
linear forms Aτ : V × V → R and Fτ : V → R, respectively, given by

Aτ (u, v) =

∫

Ω

µ∇u · ∇v dx +

∫

Ω

(β · ∇u+ αu)v dx

+
∑

K∈Th

τK

∫

K

(−µ∆u+ β · ∇u+ αu) (β · ∇v) dx ,

Fτ (v) =

∫

Ω

f v dx +
∑

K∈Th

τK

∫

K

f(β · ∇v) dx ,

(36)

with u and v functions smooth enough. Thus problem (35) can be rewritten as:
find uh ∈ Vh such that, for any vh ∈ Vh,

Aτ (uh, vh) = Fτ (vh) .

13



Notice that the exact solution u to (34) satisfies Aτ (u, v) = Fτ (v), for any v ∈ V ,
provided that u has extra regularity, namely u ∈ V with ∆u|K ∈ L2(K), for
any K ∈ Th. For example, u ∈ H2(Ω) fits this framework. Whenever this
extra regularity is guaranteed, a standard Galerkin orthogonality property (the
analogous of (6)) holds, that is we have

Aτ (eh, vh) = 0 , ∀vh ∈ Vh , (37)

with eh = u − uh the discretization error associated with the primal problem
(33). In general, if no extra regularity is demanded, u satisfies the equality

A0(u, v) = F0(v) , ∀v ∈ V , (38)

A0 and F0 being the non-stabilized bilinear and linear form, respectively, ob-
tained simply by choosing in (36) τK = 0, for any K ∈ Th. In such a case
relation (37) is replaced by the (weaker) Galerkin orthogonality property

A0(eh, vh) =

∫

Ω

µ∇eh · ∇vh dx +

∫

Ω

(β · ∇eh + α eh)vh dx

=
∑

K∈Th

τK

∫

K

(−µ∆uh + β · ∇uh + αuh − f) (β · ∇vh) dx ,

(39)
obtained simply by subtracting (35) from (34), tested against v = vh, for any
vh ∈ Vh. The extra regularity asked for guaranteeing relation (37) is difficult to
obtain in practice. For instance, when mixed boundary conditions complete the
advection-diffusion-reaction equation in (33), no H 2-regularity can be assured
on u.

Remark 3.2 Relation (37) tacitly implies the stabilization of the weak form
(34). This idea may sound a little bit odd, if one is used to associate the con-
cept of stabilization with the discrete setting. However, notice that the extra
regularity demanded to have (37), automatically guarantees Aτ (u, v) = A0(u, v),
for any u, v ∈ V . On the other hand, the stabilization of the weak form is a
rather widespread approach adopted for the a posteriori analysis of an advective
(or, more in general, a hyperbolic) problem, with the aim of deriving estimates
optimal with respect to the convergence rate (see, e.g., [8, 19, 21]).

In view of the a posteriori error analysis of § 3.2, let us introduce the dual
problem associated with the weak form (34), given by: find z ∈ V such that

A∗
0(z, ϕ) = J(ϕ) ∀ϕ ∈ V, (40)

with J : V → R the linear functional defining the target quantity we are in-
terested in, and where A∗

0 : V × V → R denotes the adjoint form to A0, such

14



that A∗
0(u, v) = A0(v, u), for any u and v ∈ V . As in § 2, let us assume that

the quantity J(ϕ) can be represented in the form (8), for a proper choice of the
function g ∈ L2(Ω). The differential form of the dual problem (40) can thus be
stated as { −µ∆z − β · ∇z + α z = g in Ω ,

z = 0 on ∂Ω ,
(41)

as well as the weak form (40) rewritten as: find z ∈ V such that
∫

Ω

µ∇z · ∇ϕdx−
∫

Ω

(β · ∇z − α z)ϕdx =

∫

Ω

g ϕ dx ∀ϕ ∈ V. (42)

The analogue of Remark 2.1 still holds in the advective-diffusive-reactive frame-
work. Notice the reverse direction of the dual advective field with respect to the
primal one. On the other hand, if the primal problem is advection dominated,
the dual problem preserves such a feature. This justifies the employment of the
stabilized SUPG method also to discretize problem (42). We get: find zh ∈ Vh,
such that, for any ϕh ∈ Vh,

∫

Ω

µ∇zh · ∇ϕh dx−
∫

Ω

(β · ∇zh − α zh)ϕh dx

+
∑

K∈Th

τK

∫

K

(−µ∆zh − β · ∇zh + α zh) (−β · ∇ϕh) dx

=

∫

Ω

g ϕh dx +
∑

K∈Th

τK

∫

K

g(−β · ∇ϕh) dx .

(43)

Without requiring extra regularity on the dual solution z, a property similar to
(39) can be stated in the dual framework. Simply by subtracting (43) from (42),
with ϕ = ϕh, for any ϕh ∈ Vh, it follows that

A∗
0(e

∗
h, ϕh) =

∫

Ω

µ∇e∗h · ∇ϕh dx−
∫

Ω

(β · ∇e∗h − α e∗h)ϕh dx

=
∑

K∈Th

τK

∫

K

(−µ∆zh − β · ∇zh + α zh − g) (−β · ∇ϕh) dx ,

(44)
with e∗h = z − zh the discretization error associated with the dual problem
(41). Likewise to relation (37), we can state a standard Galerkin orthogonality
property (A∗

τ (e∗h, ϕh) = 0, for any ϕh ∈ Vh) also for the dual problem, pro-
vided that extra regularity is demanded on the solution z of (42). For the same
reasons furnished in the primal framework, we decide to exploit the (weaker)
Galerkin orthogonality relations (39) and (44) for the primal and the dual prob-
lem, respectively, thus referring to them as to the primal and the dual Galerkin
orthogonality.
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Remark 3.3 The choice of the same discrete space Vh for both the primal and
the dual problems leads to a possible weak point of our analysis, i.e., the employ-
ment of the same computational grid for two problems with advective fields of
opposite direction. However this is not so an unusual approach in the literature
(see, for instance, [8, 19]). From a computational viewpoint, a reasonable choice
is to move from an initial uniform mesh Th, taking into account the directionali-
ties neither of the primal nor of the dual problem. This is the approach followed
in § 5.

3.1 Preliminaries: residual-based a posteriori analysis

In the same fashion as for the Poisson problem, basic ingredients for the a
posteriori analysis in § 3.2 are the interpolation error estimates (14) and (15)
together with suitable a posteriori residual-based error estimators for the primal
and the dual problems (33) and (41), respectively. Since the derivation of these
last estimates is less immediate with respect to the corresponding analysis of
§ 2.2, we provide the corresponding complete proofs just below, without confining
them in the Appendix A. 1.

Lemma 3.1 Let u and uh be the solution of the advection-diffusion-reaction
problem (34) and of the corresponding discrete formulation (35), respectively,
and let eh = u− uh denote the associated discretization error. Then there exists
a positive constant C̃∗∗ = C̃∗∗(K̂, d,N, cα), with cα the coercivity constant asso-
ciated with the bilinear form A0(·, ·) and N defined according to (13), such that
the following error estimate holds:

‖eh‖H1(Ω) ≤ C̃∗∗

( ∑

K∈Th

[ ρ̃K(uh) ]2
)1/2

, (45)

where

ρ̃K(uh) =
(
hK + τK ‖β‖L∞(K)

)
‖r̃K(uh)‖L2(K) +

1

2
h

1/2
K µ

∥∥∥
[∂uh

∂n

]∥∥∥
L2(∂K)

(46)

defines the elemental primal residual term, with r̃K(uh) = f+µ∆uh−β ·∇uh−
αuh the internal residual associated with the primal problem (33), and where
[∂uh/∂n] stands for the jump of the normal derivative of uh over the boundary
∂K of the element K.
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Proof. Let us move from the equalities below:

A0(eh, v) =

∫

Ω

µ∇eh · ∇v dx +

∫

Ω

(β · ∇eh + α eh)v dx

=

∫

Ω

µ∇(u− uh) · ∇(v − vh) dx +

∫

Ω

(
β · ∇(u− uh) + α (u− uh)

)
(v − vh) dx

+
∑

K∈Th

τK

∫

K

(−µ∆uh + β · ∇uh + αuh − f) (β · ∇vh) dx

=

∫

Ω

f (v − vh) dx−
∫

Ω

µ∇uh · ∇(v − vh) dx−
∫

Ω

(β · ∇uh + αuh)(v − vh) dx

+
∑

K∈Th

τK

∫

K

(−µ∆uh + β · ∇uh + αuh − f) (β · ∇vh) dx

=
∑

K∈Th

{ ∫

K

(f + µ∆uh − β · ∇uh − αuh) (v − vh) dx

− τK

∫

K

(f + µ∆uh − β · ∇uh − αuh) (β · ∇vh) dx− 1

2
µ

∫

∂K

[∂uh

∂n

]
(v − vh) dγ

}
,

(47)
with v ∈ V , and where we have essentially exploited the primal Galerkin orthogonality
(39) together with the weak form (34). Via the Cauchy-Schwarz inequality and thanks
to the interpolation error estimates (15)1 and (15)2, we have

|A0(eh, v)| ≤
∑

K∈Th

{
‖r̃K(uh)‖L2(K) ‖v − vh‖L2(K)

+
1

2
µ

∥∥∥
[∂uh

∂n

]∥∥∥
L2(∂K)

‖v − vh‖L2(∂K) + τK ‖r̃K(uh)‖L2(K) ‖β · ∇vh‖L2(K)

}

≤
∑

K∈Th

{
‖r̃K(uh)‖L2(K)C1 hK |v|H1(∆K) +

1

2
µ

∥∥∥
[∂uh

∂n

]∥∥∥
L2(∂K)

C2 h
1/2
K ‖v‖H1(∆K)

+ τK ‖r̃K(uh)‖L2(K) ‖β · ∇Ih(v)‖L2(K)

}
,

after choosing vh = Ih(v) and introducing the definition of the internal residual r̃K(uh).
Let us consider separately the norm ‖β · ∇Ih(v)‖L2(K):

‖β · ∇Ih(v)‖L2(K) ≤ ‖β‖L∞(K)

{
‖∇(Ih(v)− v)‖L2(K) + ‖∇v‖L2(K)

}

≤ ‖β‖L∞(K)

{
C3 |v|H1(∆K) + ‖∇v‖L2(K)

}
≤ (C3 + 1) ‖β‖L∞(K) ‖v‖H1(∆K),

(48)

estimate (15)3 having been used. Thus we get

|A0(eh, v)| ≤ C
∑

K∈Th

ρ̃K(uh) ‖v‖H1(∆K) ≤ C
( ∑

K∈Th

[ρ̃K(uh)]2
)1/2 ( ∑

K∈Th

‖v‖2H1(∆K)

)1/2

,

with C = max(C1, C2, C3+1), ρ̃K(uh) defined as in (46), and where the discrete Cauchy-
Schwarz inequality has been exploited. Now, as

( ∑

K∈Th

‖v‖2H1(∆K)

)1/2

≤
√
N ‖v‖H1(Ω), (49)
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with N defined according to (13), we can state that

|A0(eh, v)| ≤ C̃∗

( ∑

K∈Th

[ρ̃K(uh)]2
)1/2

‖v‖H1(Ω),

with C̃∗ = C
√
N . Taking v = eh, we obtain

|A0(eh, eh)| ≤ C̃∗

( ∑

K∈Th

[ρ̃K(uh)]2
)1/2

‖eh‖H1(Ω).

Thanks to the coercivity of the bilinear form A0(·, ·), we have

cα ‖eh‖2H1(Ω) ≤ |A0(eh, eh)| ≤ C̃∗

( ∑

K∈Th

[ρ̃K(uh)]2
)1/2

‖eh‖H1(Ω)

cα being the coercivity constant, i.e., the desired result (45) after simplifying ‖eh‖H1(Ω)

and by choosing C̃∗∗ = C̃∗/cα. �

Remark 3.4 For both the convective and the diffusive dominant regimes, the
factor

(
hK +τK ‖β‖L∞(K)

)
multiplying in (46) the L2-norm of the internal resid-

ual r̃K(uh) is an O(hK), τK being an O(hK) and an O(h2
K) in the convective

dominant and in the diffusive dominant case, respectively.

A residual based a posteriori error estimator with respect to the H 1-norm
is required also for the dual problem (41). A proof exactly equal to the one of
Lemma 3.1 leads to the following result:

Lemma 3.2 Let z and zh be the solution of the advection-diffusion-reaction
problem (42) and of the corresponding discrete formulation (43), respectively,
and let e∗h = z − zh denote the associated discretization error. Then there exists

a positive constant C̃∗∗ = C̃∗∗(K̂, d,N, cα), with cα the coercivity constant asso-
ciated with the bilinear form A0(·, ·) and N defined according to (13), such that
the following error estimate holds:

‖e∗h‖H1(Ω) ≤ C̃∗∗

( ∑

K∈Th

[ ρ̃ ∗
K(zh) ]2

)1/2

, (50)

where

ρ̃ ∗
K(zh) =

(
hK + τK ‖β‖L∞(K)

)
‖r̃ ∗K(zh)‖L2(K) +

1

2
h

1/2
K µ

∥∥∥
[∂zh
∂n

]∥∥∥
L2(∂K)

(51)

defines the elemental dual residual term, with r̃ ∗
K(zh) = g+µ∆zh+β ·∇zh−α zh

the internal residual associated with the dual problem (41), and where [∂zh/∂n]
stands for the jump of the normal derivative of zh over the boundary ∂K of the
element K.

We are now in a position to supply the nested a posteriori analysis for the
advection-diffusion-reaction problem (33).

18



3.2 The a posteriori analysis

The approach pursued in the sequel to estimate the goal quantity J(u) is different
from that of § 2.3. Following the error correction strategy reviewed in [19],
the value J(u) is no longer approximated by J(uh) but via a new estimator
J̃h = J̃h(uh, zh), obtained by adding a suitable corrective term JC

h (uh, zh) to the

old estimator J(uh), so that the quantity J̃h represents a better approximation
for J(u) with respect to J(uh). The good property of such an approach is that
the corrective term JC

h (uh, zh) is directly yielded by the a posteriori analysis
itself.

In more detail, let us introduce the new estimator

J̃h = J̃h(uh, zh) = J(uh) + JC
h (uh, zh), (52)

with corrective term JC
h (uh, zh) given by

JC
h (uh, zh) = θ

[ ∑

K∈Th

τK

∫

K

r̃K(uh) (−β ·∇zh) dx −
∑

K∈Th

τK

∫

K

r̃ ∗K(zh) (β ·∇uh) dx
]
,

(53)
where θ ∈ R is a suitable constant, with 0 ≤ θ ≤ 1.

With the aim of estimating, within a prescribed tolerance, the goal quantity
J(u) via the new error estimator J̃h, the following result can be stated:

Proposition 3.1 Let u and uh be the solution of the advection-diffusion-reaction
problem (34) and of the corresponding discrete formulation (35), respectively.
Let J : V → R be the goal linear functional we are interested in and let J̃h

denote the estimator of J(u) defined by (52). Then there exists a positive con-
stant C̃∗∗ = C̃∗∗(K̂, d,N, cα), with cα the coercivity constant associated with the
bilinear form A0(·, ·) and N defined according to (13), such that the following
error estimate holds:

|J(u) − J̃h(uh, zh)| ≤ C̃∗∗

{
θ ‖f‖L2(Ω)

( ∑

K∈Th

[ ρ̃ ∗
K(zh) ]2

)1/2

+ (1− θ) ‖g‖L2(Ω)

( ∑

K∈Th

[ ρ̃K(uh) ]2
)1/2}

,

(54)

where ρ̃K(uh) and ρ̃ ∗
K(zh) are defined by (46) and (51), respectively, and θ ∈ R

is a suitable constant, with 0 ≤ θ ≤ 1.

Proof. First let us properly rewrite the value J(eh). Thanks to (40) and to the
standard relation between the bilinear form A0(·, ·) and the corresponding adjoint form
A∗

0(·, ·), we get

J(eh) = A∗
0(z, eh) = θ A∗

0(z, eh)+(1−θ)A∗
0(z, eh) = θ A0(eh, z)︸ ︷︷ ︸

( �A)

+(1−θ) A∗
0(z, eh)︸ ︷︷ ︸

( �B)

, (55)
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with 0 ≤ θ ≤ 1, constant. The terms (Ã) and (B̃) are analyzed following two different

approaches. Let us move from the term (Ã). Thanks to the primal Galerkin orthogonal-
ity (39) and by exploiting the weak form (38) and the definition of the internal residual
r̃K(uh) associated with the primal problem (33), we have

(Ã) = A0(eh, z − vh) +
∑

K∈Th

τK

∫

K

(−µ∆uh + β · ∇uh + αuh − f) (β · ∇vh) dx

= (f, z − vh)−A0(uh, z − vh) −
∑

K∈Th

τK

∫

K

r̃K(uh) (β · ∇vh) dx.

Now, after choosing vh = zh, and by using the dual Galerkin orthogonality (44), the
definition of the internal residual r̃ ∗

K(zh) associated with the dual problem (41) and the
relation between the bilinear form A0(·, ·) and its adjoint A∗

0(·, ·), we derive

(Ã) = (f, e∗h)−A∗
0(e

∗
h, uh) +

∑

K∈Th

τK

∫

K

r̃K(uh) (−β · ∇zh) dx

= (f, e∗h) +
∑

K∈Th

τK

∫

K

(−µ∆zh − β · ∇zh + α zh − g) (β · ∇uh) dx

+
∑

K∈Th

τK

∫

K

r̃K(uh) (−β · ∇zh) dx

= (f, e∗h) −
∑

K∈Th

τK

∫

K

r̃ ∗
K(zh) (β · ∇uh) dx +

∑

K∈Th

τK

∫

K

r̃K(uh) (−β · ∇zh) dx.

(56)

On the term (B̃) we simply exploit relation (42), thus writing

(B̃) = (g, eh). (57)

Coming back to equality (55), thanks to relations (56) and (57) and to definition (53),
we obtain

J(eh) = θ
[
(f, e∗h) −

∑

K∈Th

τK

∫

K

r̃ ∗
K(zh) (β · ∇uh) dx

+
∑

K∈Th

τK

∫

K

r̃K(uh) (−β · ∇zh) dx
]

+ (1− θ) (g, eh)

= θ (f, e∗h) + JC
h (uh, zh) + (1− θ) (g, eh).

Via the Cauchy-Schwarz inequality, we get

|J(u)− J̃h(uh, zh)| ≤ θ ‖f‖L2(Ω) ‖e∗h‖L2(Ω) + (1− θ) ‖g‖L2(Ω) ‖eh‖L2(Ω)

≤ θ ‖f‖L2(Ω) ‖e∗h‖H1(Ω) + (1− θ) ‖g‖L2(Ω) ‖eh‖H1(Ω),

that is result (54) after exploiting the residual based error estimators (50) and (45).

�
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Remark 3.5 The corrective term JC
h (uh, zh) defined in (53) differs with respect

to the error correction introduced in [19], essentially as it depends on both the
primal and the dual residuals r̃K(uh) and r̃ ∗K(zh) rather than only on the primal
one.

Up to the constant C̃∗∗, the right-hand side of inequality (54) provides us with
an explicitly evaluable estimator for the functional error J(u)− J̃h(uh, zh), given
by

η1
ADR,nested = θ ‖f‖L2(Ω)

( ∑

K∈Th

[ ρ̃ ∗
K(zh) ]2

)1/2

+ (1− θ) ‖g‖L2(Ω)

( ∑

K∈Th

[ ρ̃K(uh) ]2
)1/2

. (58)

Analogously to the estimators ηp
D,nested, with p = 1, 2, defined in (30) and (32),

a balance between the contribution of the primal and of the dual problem char-
acterizes η1

ADR,nested. Moreover the quantity now estimated is not the standard
one J(eh), even if this value can be easily recovered via relation (52).

Remark 3.6 Inspired by the error estimators ηp
D,nested, with p = 1, 2, derived

for the Poisson equation, one would expect that the alternative nested error es-
timator

ηADR,nested = θ ‖f‖L2(Ω)

( ∑

K∈Th

[hK ρ̃ ∗
K(zh) ]2

)1/2

+ (1− θ) ‖g‖L2(Ω)

( ∑

K∈Th

[hK ρ̃K(uh) ]2
)1/2 (59)

existed in the advective-diffusive-reactive framework. However, this is not true
as, to our knowledge, it has never been proved for problem (33), discretized as in
(35), a residual-based a posteriori error estimator, with respect to the L2-norm,
of the form

‖eh‖L2(Ω) ≤ C
( ∑

K∈Th

[hK ρ̃K(uh) ]2
)1/2

,

ρ̃K(uh) being defined according to (46). On the other hand, the nonoptimal (with
respect to the convergence rate) estimate

‖eh‖L2(Ω) ≤ C
( ∑

K∈Th

[ ρ̆K(uh) ]2
)1/2

,

can be easily derived, with

ρ̆K(uh) =
(
h2

K+(hK+1) τK ‖β‖L∞(K)

)
‖r̃K(uh)‖L2(K)+

1

2
h

3/2
K µ

∥∥∥
[∂uh

∂n

]∥∥∥
L2(∂K)

.
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This leads to the nonoptimal nested a posteriori estimator for the goal value
J(u)− J̃h(uh, zh)

η2
ADR,nested = θ ‖f‖L2(Ω)

( ∑

K∈Th

[ ρ̆ ∗
K(zh) ]2

)1/2

+ (1− θ) ‖g‖L2(Ω)

( ∑

K∈Th

[ ρ̆K(uh) ]2
)1/2

,

with

ρ̆∗K(zh) =
(
h2

K +(hK +1) τK ‖β‖L∞(K)

)
‖r̃ ∗K(zh)‖L2(K)+

1

2
h

3/2
K µ

∥∥∥
[∂zh
∂n

]∥∥∥
L2(∂K)

.

Estimator η2
ADR,nested preserves the desired optimality only for a diffusion dom-

inant problem, the term
(
h2

K + (hK + 1) τK ‖β‖L∞(K)

)
being an O(h2

K). Thus
the derivation of the optimal estimator (59) represents an open problem in the
advection dominant case.

Remark 3.7 The theory developed above for homogeneous Dirichlet boundary
conditions can be easily carried over to the nonhomogeneous case by using the
standard approach based on the extension of the boundary data into Ω. In this
case, the four estimators ηi

D,nested and ηi
ADR,nested, with i = 1, 2, can be defined

as well.
More interesting is the case when the primal problem is completed with mixed
boundary conditions, i.e., of Dirichlet type on ΓD and of Neumann type on ΓN ,
ΓD and ΓN being two disjoint subsets of ∂Ω, such that ΓD ∪ ΓN = ∂Ω. In this
case, the functional J may assume the more general form

J(u) =

∫

Ω

g u dx +

∫

ΓN

hu dγ,

whereby it is possible to control the value of the solution u also on ΓN via a suit-
able weigh function h. As a consequence, the dual problem enjoys mixed boundary
conditions too, on the same partitions ΓD and ΓN , function h representing the
Neumann data for the dual solution z [18]. While the estimators η1

D,nested and

η1
ADR,nested can be extended to this more general case, it is no longer possible

to build the estimators η2
D,nested and η2

ADR,nested, due to the lack of the elliptic
regularity in the presence of mixed boundary conditions.

4 How to get the new mesh

In this section we discuss the iterative procedure used to drive the mesh adap-
tivity. For the sake of presentation, we describe this procedure for the Poisson
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problem (3) and by choosing a two-dimensional framework. Straightforward
modifications are required in the case of the advection-diffusion-reaction prob-
lem (33) and of higher spatial dimensions. We first note that the estimators (30)
and (32) can be re-written, in compact form, as

ηp
D,nested =

θ ‖f‖L2(Ω)

( ∑

K∈T h

[
hp

K

(
‖r∗K(zh)‖L2(K) +

1

2
h
−1/2
K

∥∥∥
[∂zh
∂n

]∥∥∥
L2(∂K)

)]2)1/2

︸ ︷︷ ︸
(I)

+(1− θ) ‖g‖L2(Ω)

( ∑

K∈T h

[
hp

K

(
‖rK(uh)‖L2(K) +

1

2
h
−1/2
K

∥∥∥
[∂uh

∂n

]∥∥∥
L2(∂K)

)]2)1/2

︸ ︷︷ ︸
(II)

,

(60)
where the internal residuals rK(uh), r∗K(zh), and the jumps [∂uh/∂n], [∂zh/∂n]
are defined as in Lemmas 2.3 and 2.4, while p is set to 1 or 2, according to
whether an H1- or an L2- residual-based estimate has been adopted. To use this
estimator in a predictive fashion, we resort to an isotropic metric based strategy,
discussed in § 4.1, while providing some comments on the choice of θ in § 4.2.

4.1 Metric based mesh adaptivity

The metric is represented by a tensor field M : Ω → R
2×2, such that all the

elements K of a given mesh Th are unit equilateral triangles with respect to such
a tensor, i.e.,

‖e‖M =

∫ |e|

0

√
tTM(s)t dγ = 1,

with e ∈ ∂K any edge of K, |e| its length, and t ∈ e the unit tangent vector.
In the case of an isotropic metric, it holdsM(x) = h(x)−2I, where h = h(x) is
the actual mesh size at point x and I is the unit tensor. Thus the elements are
approximately equilateral also with respect to the Euclidean metric. We provide
the following

Definition 4.1 (Matching Condition) A mesh Th satisfies the matching con-
dition with respect to a given metric field M if ‖e‖M = 1, for any edge e ∈ ∂K,
and for any K ∈ Th.

For practical purposes, the metric is approximated by a piecewise constant
function over a given triangulation Th, i.e., M

∣∣
K

= MK ∈ R
2×2, and, in the

isotropic case, MK = h−2
K I, for any K ∈ Th, so that the triangles can be

thoroughly characterized by their diameter hK only. More general approaches
consider anisotropic meshes, where the elements are no longer restricted to be
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equilateral but may become arbitrarily stretched along some directions (see, e.g.,
[3, 14, 16, 17]).

Concerning the adaptive algorithm used in the numerical test cases, we have
adopted the following

Adaptive Procedure

i) set k = 0 and build the ansatz mesh T (k)
h ;

ii) compute the solutions uh and zh on T (k)
h ;

iii) moving from the estimator ηp
D,nested, derive the mesh size function

h = h(x) and in turn the metricM;

iv) build the new mesh T (k+1)
h satisfying the matching condition (4.1)

with respect toM. If any stopping criterion is met then return,

else set k ← k + 1 and goto ii).

In more detail, the adaptive procedure usually starts from a uniform and

coarse ansatz mesh T (0)
h . Concerning step iv), two alternative approaches are

commonly employed for building each new mesh, either local modification tech-
niques (see, e.g., [12]) or complete remeshing of the domain (see, for example,
[17]). In the following we choose this second one.
Finally, about step iii), for an assigned value of θ, once the numerical approx-

imations uh and zh have been computed on a given mesh T (k)
h :

1. from each of the terms (I) and (II) in (60), via an equidistribution criterion,

we obtain a prediction of the new element size, say h
(k+1)
K,z and h

(k+1)
K,u , where

the subscripts K, z and K,u refer to the local mesh sizes derived from the
dual solution zh (term (I)) and from the primal solution uh (term (II)),
respectively;

2. the mesh size h
(k+1)
K for the new mesh at step (k + 1) is obtained by the

linear combination

h
(k+1)
K = θ h

(k+1)
K,z + (1− θ)h(k+1)

K,u . (61)

Remark 4.1 Alternatively to (61), a metric intersection approach can be used,
i.e.,

h
(k+1)
K = min

{
h

(k+1)
K,z , h

(k+1)
K,u

}
.

This choice generally yields an excessive mesh refinement compared with the
procedure (61), as shown in the numerical results of § 5.
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Let us detail point 1., focusing on the term (I), analogous arguments holding
for the term (II). In particular we show how to get a metric out of this term.
The equidistribution criterion implies that, for each K ∈ Th,

ηp
K = ‖f‖L2(Ω) h

p
K,z

(
‖r∗K(zh)‖L2(K) +

1

2
h
−1/2
K

∥∥∥
[∂zh
∂n

]∥∥∥
L2(∂K)

)
= τ, (62)

τ being a local tolerance. To extract quantitative information from the constraint
above, we first scale the term in brackets by the square root of the area of the
element K. The rationale for this is that, e.g., ‖r∗K(zh)‖L2(K) = O(|K|1/2),

at least for a sufficiently small element, the other term h
−1/2
K ‖[∂zh/∂n]‖L2(∂K)

behaving similarly. Then we recall that, for an isotropic element, it holds |K| =
CKh

2
K , where CK =

√
3/4. After multiplying and dividing by |K|1/2 in (62), we

obtain

C
1/2
K ‖f‖L2(Ω) |K|−1/2 hp+1

K,z

(
‖r∗K(zh)‖L2(K) +

1

2
h
−1/2
K

∥∥∥
[∂zh
∂n

]∥∥∥
L2(∂K)

)
= τ.

This relation, which holds on a given mesh, say on the mesh T (k)
h at step k, can

be used in a predictive fashion by evaluating the term in brackets scaled by the

factor |K|−1/2 on the current mesh T (k)
h , while regarding the term hp+1

K,z as linked

to the unknown mesh size h
(k+1)
K,z of the next mesh T (k+1)

h . Thus we have

h
(k+1)
K,z = τ

1
p+1

[
C

1/2
K ‖f‖L2(Ω)|K|−1/2

(
‖r∗K(zh)‖L2(K)+

1

2
h
−1/2
K

∥∥∥
[∂zh
∂n

]∥∥∥
L2(∂K)

)]− 1
p+1

.

(63)
Analogously, by repeating the same arguments for the term (II), we obtain

h
(k+1)
K,u = τ

1
p+1

[
C

1/2
K ‖g‖L2(Ω)|K|−1/2

(
‖rK(uh)‖L2(K)+

1

2
h
−1/2
K

∥∥∥
[∂uh

∂n

]∥∥∥
L2(∂K)

)]− 1
p+1

.

(64)
Then the actual new mesh size is obtained by the linear combination (61).

We postpone to Appendix A. 2. two further techniques for mesh generation
in the framework of constrained optimization. They can be used alternatively
to the Adaptive Procedure i)-iv) described above.

4.2 The choice of θ

We comment on the choice of the parameter θ, so far being any constant 0 ≤
θ ≤ 1. Since θ weights the dual residual term while 1− θ is related to the primal
one, we would like θ to be close to the value 1 when the dual problem plays a
major role, and, vice-versa, we expect θ to be nearly equal to 0 when the primal
problem is more relevant. A first attempt in this direction leads us to define

θ =
‖g‖H1(Ω)

‖g‖H1(Ω) + ‖f‖H1(Ω)
. (65)
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The idea behind this choice is that the H1-norm measures the “badness“ or
“roughness“ of a function.

For example, we expect the dual problem to be more relevant as far as the
computation of the functional J is concerned, when ‖g‖H1(Ω) � ‖f‖H1(Ω), and
in this case (65) correctly yields θ ' 1. In more detail, let us assume that
the source term f is smooth (the solution u being smooth as well), while the
function g is rough, e.g., localized in a small portion of the domain, say Ωg, the
dual solution z being in turn rough too. In such a case, it is reasonable that
the evaluation of the functional J(u) in (8) is mostly influenced by the behavior
of g in Ωg. Thus, applying the mesh adaptive procedure, we expect the mesh
size hK,u to be larger than hK,z in Ωg, so that, in this region, the optimal mesh
should be dictated by the finer “dual” mesh. This is the case for the metric
intersection procedure, as well as for the linear combination one, as θ ' 1. On
the other hand, following the approach (61), we expect the mesh size to depend,
also outside of Ωg, on the “dual” mesh only, independently of the behavior of
the primal solution u. This is not the case of the approach based on the metric
intersection, the primal solution u being now not completely ignored. A finer
grid will be typically yielded in this second case. Of course, the roles played by
the primal and dual problems swap in the opposite case of ‖f‖H1(Ω) � ‖g‖H1(Ω).

As a second example, let us consider the case where f and g are functions
characterized by a similar roughness but localized in different areas of the domain
Ω, say Ωf and Ωg, respectively, with Ωf∩Ωg = ∅. In this case, (65) yields θ ' 0.5,
so that the primal and dual meshes are weighted alike. With reference to the
representation (8) of the goal quantity J(u), we can argue that now both the
regions Ωg, due to g, and Ωf , via u, influence the value J(u), a balancing between
the two mesh sizes being thus reasonable.
As a final comment, we point out that the recipe (65) for θ is not to be considered
as the “panacea”, even if providing satisfactory results, as shown in the numerical
tests presented below.

5 Numerical test cases

In this section we collect the results of some 2D test problems for both the Pois-
son and the advection-diffusion-reaction problems. We refer to these problems
as Pi and ADRi, respectively, where the integer i counts the progressive num-
ber of the test case. The further specification H1 or L2 is used, essentially in
the captions, to indicate whether the H1- or the L2- residual-based analysis has
been used. In particular, we deal with nontrivial numerical test cases, in the
sense that the data, f and g, for the primal and dual problems may both be
very nonsmooth functions. This is the more interesting and realistic scenario
in view of the applications. For example, a very peaked and narrow function
may reasonably approximate a Dirac distribution, so that we are able, via J , of
controlling point-wise values. The case where all the data are smooth has been
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checked a priori but is not reported in the sequel, as the results are satisfactory
and show that the nested dual-residual estimators work well in practice.
Finally, for all the test cases below, the numerical code is fully based on the
software FreeFem++ [20].

5.1 The Poisson problem

Test case P1 With reference to (3), the domain Ω is chosen as the unit square
(0, 1)2 while the solution u is identified with

u(x1, x2) = 50 exp
(
− 10

[
(x1 − 0.5)2 + (x2 − 0.5)2

])
x1(1− x1)x2(1− x2),

i.e., with a Gaussian centered at (0.5,0.5) modulated by a fourth-order bubble
function. This choice corresponds to the source term

f(x1, x2) = − 100 exp
(
− 10

[
(x1 − 0.5)2 + (x2 − 0.5)2

])
[
x2(x2 − 1) + x1(x1 − 1)

][
200x1x2(x1x2 − x1 − x2 + 1)− 9

]
.

The solution to the dual problem is selected coinciding with the gaussian function

z(x1, x2) = 10 exp
(
− 104

[
(x1 − 0.5)2 + (x2 − 0.5)2

])
,

obtained by setting

g(x1, x2) = 4 · 105
(
1− 104

[
(x1 − 0.5)2 + (x2 − 0.5)2

])

exp
(
− 104

[
(x1 − 0.5)2 + (x2 − 0.5)2

])
.

According to (8), this is equivalent to controlling the goal value J(u) =
∫
Ω g u dx =

5.483363104887761 · 10−1 via a highly nonsmooth term g, localized in a region
Ωg around the center of the domain. Notice that both u and z are “confined”
inside Ωg but z is rougher than u.

We employ the a posteriori error estimator η1
D,nested defined in (30), following

the iterative procedure of § 4.1, and by choosing τ = 1 as local tolerance. Table 1
gathers the main information about such a procedure. In particular, from left to

right, we show the iteration counter k, the cardinality #T (k)
h of the mesh T (k)

h ,
the actual error |J(u) − J(uh)| on the functional, the value of the estimator
η1

D,nested, the value of the estimator

ηBR =
∑

K∈Th

h
−1/2
K ρK(uh)

∥∥∥
[∂zh
∂n

]∥∥∥
L2(∂K)

(66)

proposed in [8], ρK(uh) and [∂zh/∂n] being defined as in Lemmas 2.3 and 2.4, re-
spectively, and the quantity θ defined in (65), computed via a high-order quadra-
ture rule. The estimator (66), introduced for comparison purposes, is the one,
among those proposed in [8], with a structure more similar to η1

D,nested. The
sequence of all the quantities in the table show a very fast saturation trend.
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Table 1: Test case P1-H1: main quantities characterizing the adaptive procedure.

k #T (k)
h |J(u) − J(uh)| η1

D,nested ηBR θ

0 800 4.20821 · 10+1 7.03368 · 10+3 1.38184 · 10+4 0.999519
1 5486 5.96337 · 10−3 1.16667 · 10+3 4.54094 · 10+4 0.999532
2 15460 6.25207 · 10−3 1.34155 · 10+2 4.78638 · 10+4 0.999556
3 25304 7.08442 · 10−3 9.47073 · 10+1 4.74209 · 10+4 0.999557
4 25670 6.73411 · 10−3 9.34529 · 10+1 4.74321 · 10+4 0.999557
5 25742 6.96019 · 10−3 9.30096 · 10+1 4.74585 · 10+4 0.999556
6 25816 6.98817 · 10−3 9.26988 · 10+1 4.74819 · 10+4 0.999556
7 25838 7.10147 · 10−3 9.24959 · 10+1 4.74714 · 10+4 0.999556
8 25872 6.91328 · 10−3 9.23436 · 10+1 4.74750 · 10+4 0.999556
9 25884 7.02271 · 10−3 9.22537 · 10+1 4.74929 · 10+4 0.999556

In particular, the stagnation of the values of the cardinalities proves the effi-
ciency of the adopted iterative procedure. On comparing the values of the third
and of the fourth columns in Table 1, we observe that the estimator η1

D,nested

over-estimates the true error by a large factor. Nevertheless it saturates fast,
thus guaranteeing that the effectivity index η1

D,nested/|J(u) − J(uh)| tends to a
constant value already after few iterations. In this case, a suitable scaling of
η1

D,nested suffices to provide a correct estimate of the actual error. Notice that
the estimator ηBR is even more over-estimating and shows an increasing trend.
Finally, as expected, the values of θ are very close to one, the “badness” of the
dual problem being greater than the one of the primal one.
Figure 1 displays the sequence of the first three meshes, obtained starting from
the initial uniform mesh on the left. The successive meshes are not shown as

Figure 1: Test case P1-H1. Sequence of adapted meshes: initial (on the left),
first adapted (center), and second adapted (on the right).

they actually differ slightly from the second adapted one. The elements of the
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adapted meshes correctly cluster around the center of the domain, in correspon-
dence with the domain Ωg. Figure 2 shows the numerical solutions to the primal
(left) and the dual (right) problems, computed on the ninth adapted mesh. The
different roughness of the two solutions is clearly highlighted.

Figure 2: Test case P1-H1: primal (left) and dual (right) solutions on the ninth
adapted grid.

The same test case has been solved employing the error estimator η2
D,nested

defined in (32). The local tolerance is now chosen as τ = 10−3. Table 2 col-
lects the main quantities related to such a procedure, while Figure 3 shows the
sequence of the first three meshes. Conclusions similar to those of Table 1 and
Figure 1 can be drawn also in this case.

Figure 3: Test case P1-L2. Sequence of adapted meshes: initial (on the left),
first adapted (center), and second adapted (on the right).
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Table 2: Test case P1-L2: main quantities characterizing the adaptive procedure.

k #T (k)
h |J(u) − J(uh)| η2

D,nested ηBR θ

0 800 4.2082 · 10+1 4.97356 · 10+2 1.38184 · 10+4 0.999519
1 43486 1.5095 · 10−2 5.53604 · 10+0 4.52972 · 10+4 0.999533
2 16452 2.1530 · 10−3 3.30031 · 10+0 4.77086 · 10+4 0.999557
3 18800 1.6822 · 10−3 3.70198 · 10+0 4.75192 · 10+4 0.999554
4 18968 1.5797 · 10−3 3.73464 · 10+0 4.75221 · 10+4 0.999555
5 19024 1.6322 · 10−3 3.75909 · 10+0 4.75642 · 10+4 0.999555
6 19060 1.6329 · 10−3 3.75670 · 10+0 4.75787 · 10+4 0.999555
7 19102 1.6979 · 10−3 3.73328 · 10+0 4.76068 · 10+4 0.999556
8 19134 1.6767 · 10−3 3.71768 · 10+0 4.76207 · 10+4 0.999556
9 19180 1.6020 · 10−3 3.71709 · 10+0 4.76450 · 10+4 0.999556

Test case P2 As in the previous test case, and with reference to the Poisson
problem (3), the domain Ω is identified with the unit square (0, 1)2 while the
solution u is picked as

u(x1, x2) = 100 exp
(
− 50

[
(x1 − 0.25)2 + (x2 − 0.5)2

])
x1(1− x1)x2(1− x2),

i.e., as a gaussian centered at (0.25,0.5) and modulated by a fourth-degree bubble
function. On the other hand, the solution z to the dual problem (9) is chosen
so as to have the same structure as u but centered at (0.75,0.5), being given by

z(x1, x2) = 100 exp
(
− 50

[
(x1 − 0.75)2 + (x2 − 0.5)2

])
x1(1− x1)x2(1− x2).

In more detail, we choose the data for this test case to validate our theory on the
interesting case when f and g have equal roughness but localized in two different
sub-domains Ωf and Ωg of Ω, respectively.
We aim to control the value J(u) =

∫
Ω g u dx = −1.130514581510517, by means

of the error estimator η1
D,nested in (30). In particular, we are interested in com-

paring the results provided by the adaptive procedure based on the linear com-
bination (61) and by the metric intersection based approach (see Remark 4.1),
at equal number of mesh elements in the final adapted grid.

Let us start with the adaptive procedure exploiting (61), by choosing τ = 0.54
as the local tolerance. The corresponding main information are summarized in
Table 3, the entries preserving the same meaning as in Table 1 and 2. Remarks
analogous to those made for the test case P1 hold. Notice also that, as expected
from § 4.2, the values of θ are now very close to 0.5. Moreover, in this case, the
estimator ηBR is slightly more over-estimating than η1

D,nested.
Figure 4 displays the initial uniform mesh together with the first two adapted
ones. The grid elements essentially thicken in correspondence with the intersec-
tion of the supports of the two gaussians. The numerical solutions to the primal
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Table 3: Test case P2-H1: main quantities characterizing the adaptive procedure
based on (61).

k #T (k)
h |J(u) − J(uh)| η1

D,nested ηBR θ

0 800 3.36581 · 10−2 1.84141 · 10+3 1.97887 · 10+3 0.500000
1 9057 5.54020 · 10−4 1.62847 · 10+3 1.80163 · 10+3 0.497560
2 8218 8.85588 · 10−4 1.77222 · 10+3 1.79804 · 10+3 0.501040
3 8249 9.12444 · 10−4 1.75479 · 10+3 1.80104 · 10+3 0.501011
4 8246 1.01235 · 10−3 1.76347 · 10+3 1.79955 · 10+3 0.501657
5 8257 8.01808 · 10−4 1.68548 · 10+3 1.80251 · 10+3 0.501319
6 8247 6.63675 · 10−4 1.69885 · 10+3 1.80322 · 10+3 0.501185
7 8242 7.03683 · 10−4 1.71205 · 10+3 1.80465 · 10+3 0.500959
8 8242 7.81432 · 10−4 1.74411 · 10+3 1.80208 · 10+3 0.500738
9 8241 7.69929 · 10−4 1.72267 · 10+3 1.80093 · 10+3 0.500632

(left) and the dual (right) problems, computed on the ninth adapted mesh, are
provided in Figure 5.

Let us move to the metric intersection based adaptive procedure cited in
Remark 4.1. The local tolerance τ is chosen equal to 10 to guarantee, approxi-
mately, the same number of triangles in the final adapted mesh. Table 4 is the
counterpart of Table 3 for this second approach. Notice that the true error is

Table 4: Test case P2-H1: main quantities characterizing the metric intersection
based adaptive procedure.

k #T (k)
h |J(u) − J(uh)| η1

D,nested ηBR θ

0 800 3.36581 · 10−2 1.84141 · 10+3 1.97887 · 10+3 0.500000
1 9342 3.22127 · 10−3 2.81231 · 10+2 1.83311 · 10+3 0.499997
2 8339 3.15491 · 10−3 2.81407 · 10+2 1.84629 · 10+3 0.499992
3 8280 3.16755 · 10−3 2.79663 · 10+2 1.84844 · 10+3 0.499990
4 8264 3.16807 · 10−3 2.78542 · 10+2 1.84759 · 10+3 0.499988
5 8264 3.16085 · 10−3 2.77892 · 10+2 1.85035 · 10+3 0.499990
6 8250 3.17709 · 10−3 2.77580 · 10+2 1.85085 · 10+3 0.499992
7 8243 3.17312 · 10−3 2.77180 · 10+2 1.85070 · 10+3 0.499991
8 8230 3.18087 · 10−3 2.77242 · 10+2 1.85112 · 10+3 0.499991
9 8235 3.17312 · 10−3 2.77015 · 10+2 1.85151 · 10+3 0.499993

larger than the corresponding one in Table 3. On the other hand, the estimator
η1

D,nested, though still over-estimating, turns out to be more accurate when using
the metric intersection based procedure. Finally, the values predicted by the
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Figure 4: Test case P2-H1. Sequence of adapted meshes for the procedure based
on (61): initial (on the left), first adapted (center), and second adapted (on the
right).

estimator ηBR are even larger than in Table 3.
The initial mesh and the first two adapted ones are shown in Figure 6. A com-

parison between these grids and the corresponding ones in Figure 4 highlights
the different elements distribution: now the essential features of both the pri-
mal and dual solutions are captured. Notice that, despite the apparently more
reasonable distribution obtained with the metric intersection based procedure,
the actual error is smaller using the adaptive technique exploiting the linear
combination (61). Finally, in Figure 7 we provide the approximate primal (left)
and dual (right) solutions computed on the ninth adapted grid. The different
distribution of the mesh elements justifies the higher smoothness of the functions
in Figure 7, compared with the corresponding ones in Figure 5. However, this
can be deceptive in view of a reduction of the actual error.

5.2 The advection-diffusion-reaction problem

Test case ADR1 Let us move from the reference problem (33), by setting the
reactive term zero. We take Ω = (0, 1)2\[0.5, 1]2, namely an L-shaped domain,
µ = 10−4, β = [x2,−x1]

T , while the source term f is chosen such that the exact
primal solution is

u(x1, x2) = x1(1− x1)(x1 − 0.5)x2(1− x2)(x2 − 0.5).

On the other hand, the forcing term for the dual problem is identified with the
function g = −∆w, where

w(x1, x2) = 105 exp
(
− 104

[
(x1 − 0.25)2 + (x2 − 0.25)2

])

is a Gaussian function centered at (0.25, 0.25), i.e.,

g(x1, x2) = − 4 · 109 exp
(
− 104

[
(x1 − 0.25)2 + (x2 − 0.25)2

])
[
1249 + 104x2

1 − 5000x1 + 104x2
2 − 5000x2

]
.
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Figure 5: Test case P2-H1. Adaptive procedure based on (61): primal (left) and
dual (right) solutions on the ninth adapted grid.

Due to the reverse direction of the dual convective field and to the localized
source term g, we expect the dual solution z to be localized around the circular
streamlines coming out, in counterclockwise direction, from a neighborhood of
the point (0.25,0.25). The goal value we are interested in is, according to the
representation (8), J(u) =

∫
Ω gu dx = 4.414330377375358. With this aim, we

exploit the error estimator η2
ADR,nested defined in Remark 3.6, employing the

adaptive procedure based on the linear combination (61), with local tolerance
τ = 10−2.
Table 5 collects the main quantities characterizing this procedure. The entries
preserve the same meaning as in § 5.1, except for the new quantity in fourth
column, providing the functional error with respect to the corrected value J̃h

defined in (52). No comparison with the estimators defined in [8] is carried
out in such a case. All the quantities in the table exhibit a stagnation trend,
as in § 5.1. On comparing the values of the third and of the fourth columns,
we remark that the error with respect to the corrected functional J̃h is smaller
than the standard one |J(u) − J(uh)|, even if not appreciably. This underlines
that the corrective term JC

h (uh, zh) in (53) does not play an important role for
this test case. Concerning the error estimator η2

ADR,nested, it under-estimates
the true error by about an order of magnitude. Nevertheless, the corresponding
fast saturation trend assures that the effectivity index η2

ADR,nested/|J(u)−J(uh)|
tends quickly to a constant value. Finally, notice that, as the term g is extremely
rough, the values of θ are, in practice, identically equal to one.
Figure 8 displays the initial mesh (left) and the first two adapted ones (center

and right), the following grids being nearly identical to the second adapted one.
As expected, the mesh elements cluster along the circular streamlines with origin
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Figure 6: Test case P2-H1. Sequence of adapted meshes for the metric intersec-
tion based adaptive procedure: initial (on the left), first adapted (center), and
second adapted (on the right).

about the point (0.5,0.5). The solutions to the primal (left) and dual (right)
problems, evaluated on the ninth adapted grid, are represented in Figure 9.
Notice that, while the main features of the dual solution are very well captured,
the accuracy characterizing the approximate primal solution is, undoubtedly,
poorer.

For the sake of comparison, we gather in Table 6 the results obtained on a
uniform mesh with, approximately, the same number of elements as the ninth
adapted grid. Notice that both the functional errors |J(u)− J(uh)| and |J(u)−
J̃h|, as well as the estimate furnished by η2

ADR,nested, are larger than the corre-
sponding values in Table 5. We show in Figure 10 the solutions to the primal
(left) and dual (right) problems on the uniform mesh. It is not surprising that
the approximate dual solution is less accurate compared with the one in Fig-
ure 9, a uniform mesh being not able to detect any significant feature of the
considered solution.

Finally, we compare, at equal local tolerance (τ = 10−2), the results in Ta-
ble 5 and Figure 8 with those yielded by η2

ADR,nested when the metric intersection
based adaptive procedure is adopted. Table 7 is the counterpart of Table 5: if
the values of the functional errors |J(u)− J(uh)| and |J(u)− J̃h| and of the er-
ror estimator η2

ADR,nested are similar, the number of the mesh elements is about
three times as large when the metric intersection based adaptive algorithm is
employed. Also in this case, a non-significant reduction of the error is provided
by the corrected functional J̃h.

The three grids corresponding to the ones in Figure 8 are gathered in Fig-
ure 11: the large number of mesh elements is confirmed by the widespread
over-refinement of the adapted grids.

Test case ADR2 We consider the stationary version of a test case in [27],
obtained following the procedure below. The full time dependent solution, say
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Figure 7: Test case P2-H1. Metric intersection based adaptive procedure: primal
(left) and dual (right) solutions on the ninth adapted grid.

uNT, is

uNT(x1, x2, t) =
1

4t+ 1
exp

(
− (x1 − β1t− x0)

2

k1(4t+ 1)
− (x2 − β2t− y0)

2

k2(4t+ 1)

)

and solves the equation

∂uNT

∂t
− k1

∂2uNT

∂x2
1

− k2
∂2uNT

∂x2
2

+ β1
∂uNT

∂x1
+ β2

∂uNT

∂x2
= 0,

on the domain Ω = (0, 2)2, the initial condition being given by uNT(x1, x2, 0) =
exp(−(x1 − x0)

2/k1 − (x2 − y0)
2/k2), i.e., a gaussian centered at (x0, y0). This

Figure 8: Test case ADR1-L2. Sequence of adapted meshes: initial (on the left),
first adapted (center), and second adapted (on the right).
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Table 5: Test case ADR1-L2: main quantities characterizing the adaptive pro-
cedure.

k #T (k)
h |J(u) − J(uh)| |J(u) − J̃h| η2

ADR,nested θ

0 724 3.61179 · 10+2 2.47725 · 10+2 1.62522 · 10+2 1
1 7962 2.03342 · 10+0 2.19336 · 10+0 2.26353 · 10+0 1
2 6436 2.09627 · 10+0 1.85854 · 10+0 3.42932 · 10−1 1
3 6210 2.11235 · 10+0 1.82676 · 10+0 3.09424 · 10−1 1
4 6314 2.08382 · 10+0 1.91844 · 10+0 3.01776 · 10−1 1
5 6325 2.07586 · 10+0 1.91160 · 10+0 2.77325 · 10−1 1
6 6225 2.08385 · 10+0 2.02936 · 10+0 2.95370 · 10−1 1
7 6322 2.08841 · 10+0 2.04413 · 10+0 2.88449 · 10−1 1
8 6318 2.08101 · 10+0 2.01486 · 10+0 2.86172 · 10−1 1
9 6378 2.07900 · 10+0 2.01578 · 10+0 2.68347 · 10−1 1

Table 6: Test case ADR1-L2: main quantities characterizing the uniform mesh
case.

#Th |J(u)− J(uh)| |J(u)− J̃h| η2
ADR,nested θ

6594 2.46529 · 10+2 2.45826 · 10+2 4.07048 · 10+1 1

function is then advected along the 45◦ diagonal with speed β = [β1, β2]
T , while

it diffuses with coefficients k1 and k2 in the x1 and x2 direction, respectively, the
time interval being 0 < t < 1.25. To set our problem, we assume β1 = β2 = 0.8,
k1 = k2 = µ = 10−2, x0 = y0 = 0.5, and we fix t = t̄ = 0.625, corresponding
to the time when the top of uNT reaches the center (1, 1) of the domain. Then
we identify the solution of problem (33) with u(x1, x2) = uNT(x1, x2, t̄), the
right-hand side being computed as

f(x1, x2) = −∂uNT

∂t

∣∣∣∣
t=t̄

= − 16

343
exp

(
− 200

7

[
(x1 − 1)2 + (x2 − 1)2

])

(
200

[
(x1 − 0.3)2 + (x2 − 0.3)2

]
− 203

)
.

On the other hand, the source term g for the dual problem (41) is chosen co-
inciding with the characteristic function of the square S = (0.5, 1.5)2, so that
we aim at controlling the mean value of u over S, the goal value J(u) being
represented by

∫
Ω gu dx =

∫
S u = 3.140605942473758 · 10−2.

The adaptive procedure is first driven by the error estimator η2
ADR,nested intro-

duced in Remark 3.6, employing the linear combination strategy (61), and with
a local tolerance τ = 10−7. The main quantities related to this process are col-
lected in Table 8, the meaning of the corresponding entries being preserved with
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Figure 9: Test case ADR1-L2: primal (left) and dual (right) solutions on the
ninth adapted grid.

respect to the previous test case. All the values in the table exhibit a stagnation
trend. In particular, we remark that the corrected functional J̃h now provides a
reasonably better approximation for the goal quantity J(u), the error |J(u)− J̃h|
being about a factor five lower than the standard one |J(u) − J(uh)|. On the
other hand, the values yielded by the error estimator η2

ADR,nested are of about
three orders of magnitude larger compared with the errors |J(u) − J(uh)| and
|J(u) − J̃h|, thus over-estimating the considered goal quantity. However, as in
the previous test cases, a suitable scaling of η2

ADR,nested guarantees a correct
prediction for the actual error. Finally, the parameter θ tends to the value 0.82.
If, a priori, it is not easy to establish which solution, between u and z, is the
roughest, this trend seems to suggest, a posteriori, the greater roughness of the
dual solution (in agreement with Figure 13 too).
Figure 12 displays the initial mesh (left) together with the first two adapted
ones (center and right). Notice how the elements highlight the boundary of the
square S, as a consequence of the choice for g, and the 45◦ diagonal inside of
S, the main transport phenomena, due to both the primal and dual problems,
being drawn along this direction. The adapted meshes successive to the second
one are not included in Figure 12, being, actually, slightly different.
Figure 13 shows the solutions to the primal (left) and dual (right) problems,
computed of the ninth adapted grid. While the primal solution is mostly lo-
calized at the center of the domain, the dual solution has a pyramidal structure
inside S, because of the source term g and of the downward advection along the
45◦ diagonal.

The same test case is now solved using the error estimator η1
ADR,nested de-

fined in (58), using again the linear combination technique (61), and with a local
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Figure 10: Test case ADR1-L2: primal (left) and dual (right) solutions on a
uniform mesh.

tolerance τ now set to 10−5. The corresponding results are summarized in Ta-
ble 9. Comments analogous to those made for Table 8 hold. In particular, we
underline the good quality of the corrected functional J̃h, the error |J(u) − J̃h|
being now one order of magnitude smaller than the standard one |J(u)−J(uh)|.

Also the mesh elements distribution characterizing the initial mesh and the
first two adapted grids in Figure 14 is very similar to the one in Figure 12.

For comparison purposes, we have also validated the adaptive procedure
based on the metric intersection approach, still moving from the estimator
η1

ADR,nested, and at equal local tolerance τ = 10−5. However, after comput-
ing the second adapted grid, the program runs out of memory, because of the
large number of mesh elements (see Table 10 for the few data collected).
Finally, Figure 15 shows the initial mesh together with the first two adapted

ones: the elements gather at the boundary of the square S, at the center of
the domain, along three diagonals and, mostly, along the lower part of the in-
flow boundaries stemming from the bottom-left corner of the domain. These
zones take into account simultaneously the effects of both the primal and dual
problems.

6 Conclusions and future developments

An account of facts In this paper, we have introduced a fully computable
dual-based a posteriori error estimator in the framework of a standard elliptic
second-order advection-diffusion-reaction problem. However, more complex lin-
ear differential problems can be easily taken into account. In contrast with the
standard dual-based approach, this estimator does not depend any more on the
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Table 7: Test case ADR1-L2: main quantities characterizing the metric inter-
section based adaptive procedure.

k #T (k)
h |J(u) − J(uh)| |J(u) − J̃h| η2

ADR,nested θ

0 724 3.61179 · 10+2 2.47725 · 10+2 1.62522 · 10+2 1
1 24683 1.92316 · 10+0 2.05020 · 10+0 2.33526 · 10+0 1
2 18850 2.11551 · 10+0 1.85814 · 10+0 3.12239 · 10−1 1
3 19041 2.09626 · 10+0 1.81105 · 10+0 2.84783 · 10−1 1
4 18840 2.10890 · 10+0 1.94381 · 10+0 2.82432 · 10−1 1
5 18810 2.10232 · 10+0 1.81713 · 10+0 2.81132 · 10−1 1
6 18924 2.09329 · 10+0 1.88339 · 10+0 2.68156 · 10−1 1
7 18676 2.09209 · 10+0 1.96082 · 10+0 2.81861 · 10−1 1
8 18577 2.10036 · 10+0 2.01276 · 10+0 2.82031 · 10−1 1
9 18608 2.08934 · 10+0 2.02379 · 10+0 2.80160 · 10−1 1

exact primal and/or dual solutions, as only their Galerkin finite element approx-
imations now play a role. This new estimator joins the main advantages of the
dual-based and of the residual-based a posteriori error analysis, being obtained
by “nesting” a residual-based estimator into a dual-based one. Thus, accord-
ing to a classical goal-oriented strategy, suitable functionals of the solution can
be, now explicitly, evaluated, at the same cost as the standard dual-based ap-
proach, the solution of two differential problems being required. The proposed
two-dimensional numerical test cases have validated positively the estimator and
the associated adaptive procedure. The mesh adaptivity process, founded on an
isotropic metric-based remeshing of the domain, proves to be very effective in
all cases, as all the quantities under control show a saturation trend just after
few (three/four) iterations. On the other hand, the estimator generally over-
estimates the goal quantity. Nevertheless, as also the effectivity index of the
nested estimator saturates fast, a suitable scaling suffices to guarantee a correct
estimate of the quantity of interest.

A look towards the 3D case One possible future development of the issues
addressed in this paper consists of extending the nested a posteriori error analysis
of § 2 and § 3, together with the corresponding adaptive procedure, to the 3D
case. Here we report only on a very preliminary result. The reference problem,
denoted as P3D-L2, is the Poisson problem (3) defined on the unit cube domain
Ω = (0, 1)3, with source term

f(x1, x2, x3) =
√

246960
{
− 6x3

1x
3
2x

3
3(1− x1)(1− x2)(1− x3)

(x2
1x

2
2 + x2

2x
2
3 + x2

3x
2
1) + 6x2

1x
2
2x

2
3

[
x1x2(1− x1)(1 − x2)

+ x2x3(1− x2)(1 − x3) + x3x1(1− x3)(1 − x1)
]}
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Figure 11: Test case ADR1-L2. Sequence of adapted meshes: initial (left), first
adapted (center), and second adapted (right), for the metric intersection based
adaptive procedure.

Figure 12: Test case ADR2-L2. Sequence of adapted meshes: initial (left), first
adapted (center), and second adapted (right).

so that the exact solution is given by

u(x1, x2, x3) =
√

246960 x3
1 x

3
2 x

3
3(1− x1)(1− x2)(1− x3).

The solution to the dual problem is chosen coinciding with the primal solution
u, so that it holds z = u and g = f . This data allow us to control the energy
norm of the primal solution since, from the weak form (4) of the primal problem
and from the definition (8) of the functional J , it follows

J(u) =

∫

Ω

g u dx =

∫

Ω

f u dx =

∫

Ω

|∇u|2 dx.

In this case we obtain J(u) = 1. Moreover, since the exploited adaptive proce-
dure uses the same computational mesh for both the primal and dual problems,
it follows that uh = zh, that is only one problem, say the primal one, needs
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Table 8: Test case ADR2-L2: main quantities characterizing the adaptive pro-
cedure.

k #T (k)
h |J(u) − J(uh)| |J(u) − J̃h| η2

ADR,nested θ

0 200 2.85778 · 10−4 2.55089 · 10−4 4.17099 · 10−2 0.587253
1 18067 5.66531 · 10−6 4.15210 · 10−6 1.26022 · 10−3 0.791472
2 15576 8.17383 · 10−5 1.24872 · 10−5 6.00322 · 10−2 0.816543
3 15822 7.97920 · 10−5 1.59511 · 10−5 3.84169 · 10−2 0.819435
4 15728 8.14190 · 10−5 2.22639 · 10−5 5.00908 · 10−2 0.820639
5 15734 8.12009 · 10−5 1.56315 · 10−5 5.04778 · 10−2 0.821605
6 15692 8.16338 · 10−5 1.10712 · 10−5 5.28990 · 10−2 0.822241
7 15740 8.18816 · 10−5 1.24143 · 10−5 5.25231 · 10−2 0.821633
8 15672 8.16624 · 10−5 1.56772 · 10−5 4.76920 · 10−2 0.820837
9 15654 8.03826 · 10−5 1.60333 · 10−5 5.09971 · 10−2 0.820209

to be solved at each iteration. The equivalence between uh and zh also implies

that the parameter θ in (65) is always 0.5, while the local mesh sizes h
(k+1)
K,u and

h
(k+1)
K,z computed in (63) and (64), respectively, do coincide, for any k ≥ 0. This

suggests that the two adaptive procedures, the one based on the linear combina-
tion (61) and that addressed in Remark 4.1, relying on the metric intersection,
yield the same results.
The 3D counterpart of the error estimator η2

D,nested defined in (32) has been
adopted to drive the adaptive procedure, the local tolerance being set as τ =
10−2. Table 11 collects some quantities related to this adaptive process. From

left to right the table shows the iteration counter k, the cardinality #T (k)
h of

the k-th mesh, the actual functional error |J(u) − J(uh)|, and the value of the
estimator η2

D,nested. Notice that the actual error is over-estimated by a factor
of about 30. Finally, Figure 16 displays, in the top row, the initial uniform
mesh (left), consisting of 6 · 323 tetrahedra, together with the first adapted grid
from two opposite viewpoints (center and right). In the bottom row, the mesh
size distribution computed on the initial grid (left) and on the first adapted one
(right) is shown. The elements are more refined in correspondence with the cor-
ner of coordinates (1,1,1), where the solutions displays the largest curvature.
A more thorough investigation will be the subject of a paper in preparation [25].

Appendix A. 1.

Proof of Lemma 2.3. Let us move from the following chain of equalities

41



Figure 13: Test case ADR2-L2: primal (left) and dual (right) solutions on the
ninth adapted grid.

∫

Ω

∇(u− uh) · ∇v dx =

∫

Ω

∇(u− uh) · ∇(v − vh) dx

=

∫

Ω

f (v − vh) dx−
∫

Ω

∇uh · ∇(v − vh) dx

=
∑

K∈Th

{∫

K

(f + ∆uh) (v − vh) dx − 1

2

∫

∂K

[∂uh

∂n

]
(v − vh) dγ

}
,

(67)

Figure 14: Test case ADR2-H1. Sequence of adapted meshes: initial (left), first
adapted (center), and second adapted (right).
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Table 9: Test case ADR2-H1: main quantities characterizing the adaptive pro-
cedure.

k #T (k)
h |J(u) − J(uh)| |J(u) − J̃h| η1

ADR,nested θ

0 200 2.85778 · 10−4 2.55089 · 10−4 1.47467 · 10−1 0.587253
1 10056 1.68397 · 10−5 5.69512 · 10−7 7.83522 · 10−2 0.766018
2 6786 1.49120 · 10−4 2.70413 · 10−5 1.85350 · 10−1 0.760064
3 6888 1.51209 · 10−4 2.80378 · 10−5 1.73055 · 10−1 0.763476
4 6948 1.52768 · 10−4 3.31795 · 10−5 1.74590 · 10−1 0.763804
5 6912 1.53964 · 10−4 3.49269 · 10−5 1.73883 · 10−1 0.760653
6 6948 1.52886 · 10−4 3.09147 · 10−5 1.72371 · 10−1 0.763004
7 6924 1.55948 · 10−4 2.78691 · 10−5 1.72781 · 10−1 0.762574
8 6900 1.52257 · 10−4 2.50379 · 10−5 1.73106 · 10−1 0.762149
9 6908 1.49186 · 10−4 1.78508 · 10−5 1.73456 · 10−1 0.761349

Table 10: Test case ADR2-H1: main quantities characterizing the metric inter-
section based adaptive procedure.

k #T (k)
h |J(u)− J(uh)| |J(u)− J̃h| η1

ADR,nested θ

0 200 2.85778 · 10−4 2.55089 · 10−4 1.47467 · 10−1 0.587253
1 20185 1.23210 · 10−7 9.02067 · 10−6 3.35886 · 10−2 0.797567
2 116955 — — — —

with v ∈ V , vh ∈ Vh, and where the primal Galerkin orthogonality (6) together
with the weak form (4) have been essentially exploited. Then thanks to the
Cauchy-Schwarz inequality and to the interpolation estimates (15)1 and (15)2,
we get

∣∣∣
∫

Ω

∇(u− uh) · ∇v dx
∣∣∣

≤
∑

K∈Th

{
‖f + ∆uh‖L2(K) ‖v − vh‖L2(K) +

1

2

∥∥∥
[∂uh

∂n

]∥∥∥
L2(∂K)

‖v − vh‖L2(∂K)

}

≤
∑

K∈Th

{
‖f + ∆uh‖L2(K)C1 hK |v|H1(∆K) +

1

2

∥∥∥
[∂uh

∂n

]∥∥∥
L2(∂K)

C2 h
1/2
K ‖v‖H1(∆K)

}

≤ C
∑

K∈Th

ρK(uh) ‖v‖H1(∆K) ≤ C
( ∑

K∈Th

[ρK(uh)]2
)1/2 ( ∑

K∈Th

‖v‖2H1(∆K)

)1/2
,

with C = max(C1, C2), ρK(uh) defined as in (17), and where the choice vh =
Ih(v) is done. Moreover the last quantity is yielded via the discrete Cauchy-
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Figure 15: Test case ADR2-H1. Sequence of adapted meshes for the metric
intersection based adaptive procedure: initial (left), first adapted (center), and
second adapted (right).

Table 11: Test case P3D-L2: main quantities characterizing the adaptive proce-
dure.

k #T (k)
h |J(u)− J(uh)| η2

D,nested

0 196608 1.30770 · 10−2 4.19245 · 10−1

1 138212 7.99201 · 10−3 2.35281 · 10−1

2 141088 7.61104 · 10−3 2.39810 · 10−1

Schwarz inequality. Now, thanks to relation (49), we can state that

∣∣∣
∫

Ω

∇(u− uh) · ∇v dx
∣∣∣ ≤ C∗

( ∑

K∈Th

[ρK(uh)]2
)1/2
‖v‖H1(Ω), (68)

where C∗ = C
√
N . Then let us choose in (68) v = eh ∈ V . Thanks to the

Poincaré-Friedrichs inequality, we obtain

( 1

1 + C2
P

)
‖eh‖2H1(Ω) ≤ |||eh|||2 ≤ C∗

( ∑

K∈Th

[ρK(uh)]2
)1/2
‖eh‖H1(Ω)

with ||| · ||| ≡ | · |H1(Ω) the energy norm and CP the Poincaré constant. After
simplifying ‖eh‖H1(Ω) and by identifying C∗∗ = C∗ (1 + C2

P ), we recognize the
desired result (16).

Lemma 2.4 can be proved in an identical way.

Proof of Lemma 2.5. By resorting to the Aubin-Nitsche trick, let us introduce
the auxiliary problem: { −∆ξ = eh in Ω,

ξ = 0 on ∂Ω.
(69)
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Figure 16: Test case P3D-L2. Top row: initial mesh (on the left) and first
adapted grid (center and right) from two different viewpoints. Bottom row:
mesh size distribution on the initial grid (left) and on the first adapted one
(right).

As Ω is identified with a convex polygonal domain and since eh ∈ L2(Ω), an
elliptic regularity property can be stated for problem (69), namely we have that
ξ ∈ H2(Ω) and there exists a constant CAN > 0, such that

‖ξ‖H2(Ω) ≤ CAN ‖eh‖L2(Ω). (70)

Now let us multiply the differential equation in (69) by eh, while integrating over
Ω. We get
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‖eh‖2L2(Ω) = −
∫

Ω

∆ξ eh dx =

∫

Ω

∇ξ · ∇eh dx =

∫

Ω

∇(ξ − ξh) · ∇eh dx

=

∫

Ω

f (ξ − ξh) dx−
∫

Ω

∇(ξ − ξh) · ∇uh dx

=
∑

K∈Th

{∫

K

(f + ∆uh) (ξ − ξh) dx− 1

2

∫

∂K

[∂uh

∂n

]
(ξ − ξh) dγ

}
,

(71)
with ξh ∈ Vh, and where integration by parts, together with the primal Galerkin
orthogonality (6) and the weak form (4), have been suitably employed. Let us
choose ξh = Πh(ξ). Notice that the H2-regularity, guaranteed to the function ξ
by the elliptic regularity property, allows us to uniquely define the interpolant
Πh(ξ) either in the 2D case or in the 3D one. Via the Cauchy-Schwarz inequality
and by exploiting the interpolation estimates (14), we obtain

‖eh‖2L2(Ω)

≤
∑

K∈Th

{
‖f + ∆uh‖L2(K) ‖ξ −ΠK(ξ)‖L2(K) +

1

2

∥∥∥
[∂uh

∂n

]∥∥∥
L2(∂K)

‖ξ −ΠK(ξ)‖L2(∂K)

}

≤
∑

K∈Th

{
‖f + ∆uh‖L2(K) C̃1 h

2
K |ξ|H2(K) +

1

2

∥∥∥
[∂uh

∂n

]∥∥∥
L2(∂K)

C̃2 h
3/2
K |ξ|H2(K)

}

≤ C̃
∑

K∈Th

hK ρK(uh) |ξ|H2(K) ≤ C̃
( ∑

K∈Th

[hK ρK(uh)]2
)1/2 ( ∑

K∈Th

|ξ|2H2(K)

)1/2
,

with C̃ = max(C̃1, C̃2), ρK(uh) defined as in (17), and where the discrete Cauchy-
Schwarz inequality has been used to get the last term. Finally, thanks to relation
(70), we derive that

‖eh‖2L2(Ω) ≤ C̃
( ∑

K∈Th

[hK ρK(uh)]2
)1/2
|ξ|H2(Ω)

≤ C̃
( ∑

K∈Th

[hK ρK(uh)]2
)1/2
‖ξ‖H2(Ω)

≤ C∗∗

( ∑

K∈Th

[hK ρK(uh)]2
)1/2
‖eh‖L2(Ω),

namely the desired estimate (20), with C∗∗ = C̃ CAN .

We remark that the auxiliary problem (69) is a mere trick to get the desired
estimate for the L2-norm ‖eh‖L2(Ω), the corresponding solution ξ being never
computed.

Lemma 2.6 can be proved in a similar way, moving from another suitable auxil-
iary problem.
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Appendix A. 2.

For optimal mesh generation, the following two criteria are widely used in the
literature (see, e.g., [8, 19]): i) for a given number of mesh elements, maximize
the accuracy of the approximation; ii) for a given accuracy, minimize the number
of mesh elements. Let us detail both these procedures moving from the estimator
corresponding to the term (I) in (60), analogous conclusions holding for the
estimator associated with the term (II).

Let us move from the local error estimator defined in (62)

ηK = ‖f‖L2(Ω) h
p
K

(
‖r∗K(zh)‖L2(K) +

1

2
h
−1/2
K ‖RK(zh)‖L2(∂K)

)

where, to simplify the notation throughout this section, ηp
K is denoted by ηK ,

hp
K,z by hp

K , and RK(zh) stands for the jump [∂zh/∂n] of the normal derivative of

zh across ∂K. Moreover, we recall that it holds |K| = CKh
2
K , with CK =

√
3/4.

The issue is to compute, over the domain Ω, the optimal mesh size distribution
represented by the piecewise constant function h = h(x), with h(x)

∣∣
K

= hK .

Criterion i) The optimal mesh size distribution is given by the solution of the
following minimization problem:

find h = h(x) such that

ε2 =
∑

K∈Th

η2
K is minimized, subject to the constraint

[ ∫

Ω

1

CK

1

h2
dx

]
= N, (72)

N being the desired number of elements, and [ · ] denoting the integer part.

In the following, we compute the solution to this minimization problem, by first
re-writing the objective function in a continuous form. With this aim, let us
remark that

ε2 =
∑

K∈Th

η2
K = ‖f‖2L2(Ω)

∑

K∈Th

h2p
K

(
‖r∗K(zh)‖L2(K) +

1

2
h
−1/2
K ‖RK(zh)‖L2(∂K)

)2

≤ 2 ‖f‖2L2(Ω)

∑

K∈Th

h2p
K

(
‖r∗K(zh)‖2L2(K) +

1

2
h−1

K ‖RK(zh)‖2L2(∂K)

)

= 2 ‖f‖2L2(Ω)

∑

K∈Th

∫

K

h2p
K

{(
r∗K(zh)

)2
+

1

2
h−1

K |K|−1
( ∑

e∈∂K

(
Re(zh)

)2 |e|
)}

dx,

where Re(zh) = [∂zh/∂n]
∣∣
e
, that is coincides with the restriction of the piecewise

constant jump term on the edge e of K, for any e ∩ Ω 6= ∅, while |e| stands for
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the length of the edge e. Let us define the weighted average

(
RK(zh)

)2
=

∑

e∈∂K

(
Re(zh)

)2 |e|

∑

e∈∂K

|e|
=

1

|∂K|
∑

e∈∂K

(
Re(zh)

)2 |e|,

with |∂K| = 3hK the measure of the boundary of K, since all the triangles
are supposed to be equilateral (see § 4.1). Thus the objective function can be
bounded as

ε2 ≤ 2 ‖f‖2L2(Ω)

∑

K∈Th

∫

K

h2p
K

{(
r∗K(zh)

)2
+

1

2
h−1

K |K|−1 |∂K|
(
RK(zh)

)2
}
dx

= 2 ‖f‖2L2(Ω)

∑

K∈Th

∫

K

h2p
K

{(
r∗K(zh)

)2
+

1

2
C̃K

(
h−1

K RK(zh)
)2

}
dx,

where the geometrical relations among hK , |K| and |∂K| are exploited, with
C̃K = 3/CK = 4

√
3. We notice that the term h−1

K RK(zh) can be considered as
a difference quotient for the second order derivative (across the normal direction
to the edge) of the exact dual solution z computed on zh, so that the above
bound for ε2 can be re-written in a continuous form as

η(h) = 2 ‖f‖2L2(Ω)

∫

Ω

h2p
((
r∗

)2
+

1

2
C̃K

(
D2zh

)2
)
dx = 2 ‖f‖2L2(Ω)

∫

Ω

h2p ρ2 dx,

(73)
where r∗ = r∗(x) and D2zh = D2zh(x) are such that r∗

∣∣
K

= r∗K(zh), D2zh
∣∣
K

=

h−1
K RK(zh), respectively, while ρ = ρ(x) is defined via the relation ρ2 =

(
r∗

)2
+

1
2 C̃K

(
D2zh

)2
and can be considered independent of h.

Going back to the minimization problem (72), we are thus led to minimize
η(h) such that the constraint in (72) is guaranteed.

Proposition 6.1 The constrained minimization problem (72) admits as possible
solution the mesh size distribution h = h(x) such that

h
∣∣
K

= hK =

(
1

CK N

) 1
2
( ∑

K∈Th

∫

K

((
r∗K(zh)

)2
+

1

2
C̃K

(
h−1

K RK(zh)
)2

) 1
p+1

dx

) 1
2

((
r∗K(zh)

)2
+ 1

2 C̃K

(
h−1

K RK(zh)
)2

)− 1
2(p+1)

.

(74)
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Proof. The stationarity of η(h) yields

∫

Ω

h2p−1 ρ2 δh dx = 0,

for any admissible variation δh such that

δN = − 2

CK

∫

Ω

h−3 δh dx = 0.

A solution of this constrained minimization problem is

h = h(x) = CN ρ(x)−
1

p+1 ,

for a suitable constant CN to be determined by the satisfaction of the constraint in (72).
This yields

1

CK C2
N

∫

Ω

ρ(x)
2

p+1 dx = N,

from which we obtain

CN =

(
1

CK N

) 1
2

( ∫

Ω

ρ(x)
2

p+1 dx

) 1
2

.

Going back to the elementwise notation, the optimal mesh size can thus be written as

h
∣∣
K

= hK =

(
1

CK N

) 1
2

( ∫

Ω

ρ(x)
2

p+1 dx

) 1
2

ρ
∣∣− 1

p+1

K

=

(
1

CK N

) 1
2

( ∫

Ω

((
r∗

)2
+

1

2
C̃K

(
D2zh

)2
) 1

p+1

dx

) 1
2

(((
r∗

)2
+

1

2
C̃K

(
D2zh

)2
)∣∣∣

K

)− 1
2(p+1)

=

(
1

CK N

) 1
2

( ∑

K∈Th

∫

K

((
r∗K(zh)

)2
+

1

2
C̃K

(
h−1

K RK(zh)
)2

) 1
p+1

dx

) 1
2

((
r∗K(zh)

)2
+

1

2
C̃K

(
h−1

K RK(zh)
)2

)− 1
2(p+1)

.

This relation identifies the desired mesh size distribution. �

Criterion ii) In this case the optimization problem reads as:

find h = h(x) such that

N =

[ ∫

Ω

1

CK

1

h2
dx

]
is minimized, subject to the constraint

∑

K∈Th

η2
K = ε2, (75)
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ε being the desired tolerance.

The same notation and arguments as in the previous case hold, provided that
the quantity defining the objective function and the constraint are exchanged.

Proposition 6.2 The constrained minimization problem (75) admits as possible
solution the mesh size distribution h = h(x) such that

h
∣∣
K

= hK =

(
ε

2
1
2 ‖f‖L2(Ω)

) 1
p

((
r∗K(zh)

)2
+

1

2
C̃K

(
h−1

K RK(zh)
)2

)− 1
2(p+1)

( ∑

K∈Th

∫

K

((
r∗K(zh)

)2
+

1

2
C̃K

(
h−1

K RK(zh)
)2

) 1
p+1

dx

)− 1
2p

.

(76)

Proof. The stationarity of the number of elements N yields

∫

Ω

h−3 δh dx = 0

for any admissible variation δh such that

δε2 = 4 p ‖f‖2L2(Ω)

∫

Ω

h2p−1 ρ2 δh dx = 0,

after replacing
∑

K∈Th

η2
K by the continuous quantity η(h) defined in (73). A solution to

this constrained minimization problem is

h = h(x) = Cε ρ(x)−
1

p+1 ,

for a suitable constant Cε to be determined by satisfying the constraint in (75). We
obtain

2 ‖f‖2L2(Ω) C
2p
ε

∫

Ω

ρ(x)
2

p+1 dx = ε2,

from which we get

Cε =

(
ε

2
1
2 ‖f‖L2(Ω)

) 1
p

( ∫

Ω

ρ(x)
2

p+1 dx

)− 1
2p

.
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Using the elementwise notation, the optimal mesh size can thus be written as

h
∣∣
K

= hK =

(
ε

2
1
2 ‖f‖L2(Ω)

) 1
p

( ∫

Ω

ρ(x)
2

p+1 dx

)− 1
2p

ρ
∣∣− 1

p+1

K

=

(
ε

2
1
2 ‖f‖L2(Ω)

) 1
p

( ∫

Ω

((
r∗

)2
+

1

2
C̃K

(
D2zh

)2
) 1

p+1

dx

)− 1
2p

(((
r∗

)2
+

1

2
C̃K

(
D2zh

)2
)∣∣∣

K

)− 1
2(p+1)

=

(
ε

2
1
2 ‖f‖L2(Ω)

) 1
p

( ∑

K∈Th

∫

K

((
r∗K(zh)

)2
+

1

2
C̃K

(
h−1

K RK(zh)
)2

) 1
p+1

dx

)− 1
2p

((
r∗K(zh)

)2
+

1

2
C̃K

(
h−1

K RK(zh)
)2

)− 1
2(p+1)

.

The desired mesh size distribution is thus identified. �

Remark 6.1 A procedure related to criterion ii), and known as the optimized
mesh strategy, is considered, for instance, in [8] (see Section 5.2) and [19] (see
pp. 197–199). In such a case, the optimal mesh size distribution is computed via
a different approach (a Lagrangian technique) but coincides with (76).

Remark 6.2 Except for the different constants, the dependence on the residual
terms of the optimal mesh size distributions (74) and (76) is the same as the
one obtained in § 4.1, moving from the equidistribution criterion. This seems
to be a feature of the isotropic mesh adaption and may not hold in the case of
anisotropic mesh adaptivity.

Remark 6.3 The analysis of Propositions 6.1 and 6.2 can be extended, in a
straightforward way, to the 3D case, though the corresponding implementation
is more demanding ([25]).
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for stabilised finite element approximations of transport problems, Comput.
Methods Appl. Mech. Engrg., 190 (2000), pp. 1483-1508.

[22] J.L. Lions and E. Magenes, Non-Homogeneous boundary value problem
and application, Volume I, Springer-Verlag, Berlin, 1972.

[23] L. Machiels, Y. Maday and A.T. Patera, Output bounds for reduced-
order approximations of elliptic partial differential equations, Comput.
Methods Appl. Mech. Engrg., 190 (2001), pp. 3413–3426.

[24] Y. Maday and A.T. Patera, Numerical analysis of a posteriori finite
element bounds for linear functional outputs, M3AS Math. Models Methods
Appl. Sci., 10 (2000), pp. 785–799.

[25] S. Micheletti, S. Perotto and M. Prosi, in preparation.

[26] J.A. Nitsche, Ein kriterium für die quasi-optimalitat des Ritzchen Ver-
fahrens, Numer. Math., 11 (1968), pp. 346–348.

[27] B.J. Noye and H.H. Tan, Finite difference methods for solving the two
dimensional advection-diffusion equation, Int. J. Numer. Meth. Fl., 9 (1989),
pp. 75–98.

[28] J.T. Oden and S. Prudhomme, Goal-oriented error estimation and adap-
tivity for the finite element method, Comput. Math. Appl., 41 (2001),
pp. 735–756.

[29] M. Paraschivoiu, J. Peraire and A.T. Patera, A posteriori finite
element bounds for linear-functional outputs of elliptic partial differential
equations, Comput. Methods Appl. Mech. Engrg., 150 (1997), pp. 289–312.

53



[30] L.R. Scott and S. Zhang, Finite element interpolation of non-smooth
functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483–
493.

[31] D.A. Venditti and D.L. Darmofal, Adjoint error estimation and grid
adaptation for functional outputs: application to quasi-one-dimensional
flow, J. Comput. Phys., 164 (2000), pp. 204–227.

[32] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-
refinement techniques, Wiley - Teubner, New York, 1996.

[33] O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive
procedure for practical engineering analysis, Int. J. Numer. Methods Eng.,
24 (1987), pp. 337–357.

[34] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and
a posteriori error estimates, Part 1: the recovery technique, Int. J. Numer.
Methods Eng., 33 (1992), pp. 1331–1364.

[35] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and
a posteriori error estimates, Part 2: error estimates and adaptivity, Int. J.
Numer. Methods Eng., 33 (1992), pp. 1365–1382.

54


