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Abstract

In this article we deal with the numerical simulation of the dynamics of a tethered buoy,
which is a mechanical system for marine applications consisting of a rigid floating body
(buoy) connected by an elastic cable to the bottom of the fluid environment. A novel mixed
finite element formulation is proposed for the spatial numerical approximation of the equa-
tions governing the dynamics of the elastic cable. This is done to allow a robust modeling
of the cable, even in the limit of an infinite value of the Young modulus, in a way that is
similar to mixed formulations for incompressible fluid–mechanics. The dynamics of the
floating body is described by the classical Euler equations of motion, written using quater-
nion variables to end up with a numerically robust algorithm in presence of large rotations.
For the time discretization of the resulting coupled system of nonlinear differential equa-
tions, the Backward Euler implicit method is adopted due to the stability requirements of
the problem at hand, while a damped Newton method is used for linearization. Finally, the
accuracy and robustness of the proposed numerical procedure are validated in the simula-
tion of the tethered buoy system under various static and dynamic working conditions.
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1 Introduction

In this article we address the study of the dynamics of a tethered buoy, which is
a mechanical system consisting of a rigid floating body (buoy) connected by an
elastic cable to the bottom of the fluid environment. As an example of typical ap-
plication, tethered buoy systems are developed to acquire and telemeter real-time
data in atmospheric and oceanographic measurements during all seasons. Other rel-
evant (and more conventional) uses of tethered buoys can be found in the design of
signaling systems for navigation, or in station–keeping of large vessels (see Fig. 1).
The problem under investigation has a highly complex fluid–structure interaction
nature, so that it is expected that an accurate design of tethered buoys, for a wide
range of applications as mentioned above, can benefit from a numerical simulation
tool of the system under the action of several environmental loads.

Figure 1. An example of tethered buoy.

Let us give a brief summary of the contents of the article.

Section 2 deals with the main physical assumptions underlying the mathematical
model of the two subsytems, the submerged cable and the floating body, and of
the fluid environment (air and water) in which the moored system is moving. The
second-order hyperbolic initial-boundary value problem for the submerged cable
is presented in Sect. 2.2, while the classical Euler equations of motion for the dy-
namics of the floating body are discussed in Sect. 2.3. Quaternions are used as
dependent variables because, unlike standard Euler angles, they do not exhibit sin-
gularities and are therefore well suited for a robust numerical solution of problems
with large rotations, as the one considered in the present article (see [29,10,15]).

Section 3 deals with the discretization of the cable differential model. Concern-
ing with spatial discretization, a novel mixed formulation of the cable differential
model is proposed in Sects. 3.1-3.2 through the use of a Lagrangian multiplier
which enforces in weak form the kynematical relation between displacement and
strain. By doing so, the resulting weak model turns out to be robust and stable
irrespectively of the value of the Young modulus � . In particular, the case of an
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exactly inextensible cable is recovered by formally setting ��� ��� in the con-
strained Hooke’s law, in a completely analogous manner as is done to enforce the
incompressibility constraint in mixed formulations for fluid–mechanical problems
(see [12,9,4,5]). The accuracy and stability of the novel Galerkin mixed finite el-
ement approximation of the cable equation are then numerically demonstrated in
Sect. 3.3.

The time discretization, the treatment of the coupling between the cable and buoy
subsystems and the linearization of the whole coupled problem are the object of
Section 4. Concerning with time discretization, the linear stability analysis carried
out in Sect. 4.1 shows the practical impossibility of using an explicit time advanc-
ing method, due to an excessively small value of the resulting admissible time step.
The full system of nonlinear ordinary differential algebraic equations describing
the dynamics of the cable and of the floating body is summarized in Sect. 4.2.1 and
advanced in time in Sect. 4.2.2 using the Backward Euler (BE) implicit scheme
The BE method is adopted due the ease of implementation and the reduced compu-
tational effort required to deal with long–time simulations, as is typically required
in the industrial application at hand. The resulting nonlinear algebraic system of
equations to be solved at each time step is then numerically solved using a damped
Newton’s method in Sect. 4.2.3.

The physical and numerical validation of the mathematical model and of the dis-
cretization algorithms discussed above are then carried out in Sect. 5, where the
results obtained in the simulation of a tethered buoy under various static and dy-
namic working conditions are presented and discussed.

Finally, some concluding remarks and possible future extensions to the model and
algorithms discussed in the article are addressed in Sect. 6.

2 Mathematical Model for the Dynamics of a Tethered Buoy

In this section, we describe the differential equations that constitute the mathemat-
ical model of a tethered buoy. This latter is a mechanical system composed by two
coupled subsystems, an elastic cable representing the mooring device and a float-
ing body (a buoy). The dynamics of the whole system is determined by the action
of environmental loads, namely, forces due to surface waves, currents and wind
[30,19,20,18], and of given external loads. In Sect. 2.1 we describe the above men-
tioned environmental loads; then, in the subsequent Sects. 2.2 and 2.3 we apply
the model considered in Sect. 2.1 to the description of the dynamics of the cable
and the buoy, respectively. The coupling between the two subsystems is deferred to
Sect. 4.
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2.1 Environmental Loads

In this section, we first address the mathematical model of fluid–structure interac-
tion between water and an immersed body, and then we describe the drag forces
due to the wind action.

Hydrodynamical loads acting on a body immersed in a marine environment consist
of two terms, namely, added mass forces known from inviscid flow theory, and vis-
cous drag forces produced by separation and boundary layer friction. The resulting
force is a slight generalization of the so–called Morison’s equation [6], that is as-
sumed to be valid when the body, or better its submerged part, is slender, i.e. when
the diffraction parameter ���������
	 is less than ���� , where 	 and ������� denote the
water wavelength and the maximum diameter of the body, respectively (see [27]).
As for the contribution to hydrodynamical inertial forces due to surface waves,
the slenderness assumption greatly simplifies the derivation of the Froude-Krilov
force, due to the ambient and time-dependent pressure gradient, and of the distur-
bance force stemming from the interaction between waves and the solid body (see
[19,30]). No contribution to inertial forces is instead accounted for by the action
of the current, because the Keulegan–Carpenter number (which is a characteristic
engineering parameter in marine applications) is very large in the case of a slender
body [27].

Let ��� and ��� be the wave and current velocities, respectively, and � denote the
velocity of any point of the immersed body. Define also the ambient fluid velocity��� ����� � ��� and the relative velocity ������� ��� �!��� . Moreover, let " indicate
the acceleration of any point of the immersed body and "#� the acceleration of the
fluid particles due to surface waves. Finally, let $ be the unit tangent vector of the
slenderness axis of the body, and

%
�
"�&�(')"*�&+,$.-�$/ "*�0�(')"*�&+,$.-�$ /

be the unit normal vector which lies on the plane univocally identified by $ and "1� .
Then, the added mass force per unit length 2���� and the normal and tangential drag
forces per unit length 2�3�4 and 253�6 can be expressed by the following generalized
Morison’s equation

25��� �87
��9;:=<?> / "�&+ % / �@'�<?>A�CBD- / "�+ % / E %
253�6 �F� B� <G3�6H7
�I�

/ �����J�*+,$ / 'K�L���J�M+N$.-�$
253�4 �F� B� <G3�4O7
���

/ �����J�M�('H�L�5�J�+,$D-�$ / 'H�L�����P�('H�L�����+N$D-�$.-RQ
(1)

where <S> , <G3�6 and <G3�4 are added mass and drag coefficients. The quantities 7M� , 9
and � denote the fluid density, and a characteristic cross-section and diameter of
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the body, respectively.

Wind effect is given through its velocity profile. Denoting by � � � 4N3 the wind ve-
locity vector and by ����� the wind speed at B ��� above the sea surface, the strength
of the local wind velocity at 	 meters above the sea surface can be expressed by/ �L� � 4,3 / �
�����.'�	 �*B �
- ���� , so that the wind force acting on the floating body is� � � 4N3

�
B
� < � � 4,3#7 � � �#9�� / ��� � 4N3 / �L� � 4N3,Q (2)

where 7P� � � is the air density, 9�� is the floating body cross-section along the wind
direction and <G� � 4,3 is a suitable coefficient derived from experiments [7].

2.2 Cable Model

In this section, we describe the mathematical model governing the dynamics of the
submerged cable under the assumption of negligible bending and torsional stiffness.
This is a reasonable approximation of the behaviour of a long steel-made cable for
marine offshore applications [1]. Let � and � be the tension and displacement of
any point of an extensible cable of unstretched length � , cross-section 9�� and linear
density 7�� . We also indicate by � the curvilinear abscissa along the unstreched cable
and let �

�

����� � �� � ����� �CB (3)

denote the strain of the cable itself. The cable dynamics is expressed by the follow-
ing second-order hyperbolic equation

7�� ��� �� � � � �� � ! �
B � � � �� �#" � 2P'�B � � -RQ (4)

where � and � are functions of � and
�
, with �%$'& �Q(�*) and

� $,+ 6.-�/1032 ')�Q �54 � 46) ,�54 � 4 being the final time of integration, while 2 is the sum of all external forces
per unit stretched length. To complete the mathematical model (4), a constitutive
relation for � and an explicit expression of the force term must be provided. As for
the tension � , Hooke’s law is assumed to hold� � � 9�� � Q (5)

relating strain and tension through the Young modulus � . As for the external hy-
drodynamical forces, a submerged cable is subject to:

- gravity and hydrostatic forces 2�798 �87��.'H7 �
� 7
��- � ' '�B � � -�7 ��-;: , where : is gravity
acceleration and 7P� , 7
� are cable and water densities, respectively;
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- hydrodynamic inertia force 2���� given by equation (1) � , which physically corre-
sponds to an increased mass effect for cable dynamics;

- normal and tangential hydrodynamic drag forces 2�3�4 and 253�6 , that can be prop-
erly computed by considering normal and tangential directions in the generalized
Morison’s equation (1) � and (1) � .

The above contributions are to be intended as forces per unit stretched length, and
must be summed up to give

2 �(2 7 8 � 25��� � 253�4 � 253�6�� (6)

Substituting (5) and (6) into (4), yields the following second-order hyperbolic initial-
boundary value problem: find � � �*' � Q �D- such that

������������� ������������

7�� � � ���� � � �� � !
� 9 � �

B � � � �� � " � '�B � � -N')2 7 8 � 2J��� � 253�4 � 253�6�- Q� $ '��*Q9� - Q � $ +L6 -�/ 0�' � Q � - ����Q �*' � Q9� - � ��� 4,3�' � - Q 	 � $ + 6.-;/ 0�')�Q �D- � � �D'�.-RQ 
�*')�Q �D- �(� �D'�D- Q
(7)

where � � & �Q#�Q#�6) � , and for any time level
�
, the vector quantity ��� 4,3.' � - is a

Dirichlet boundary datum provided by the coupling between cable and floating
body, while �6� and � � are suitable initial conditions.

2.3 Floating Body Model

In this section, we describe the Euler equations governing the motion of the buoy.
As anticipated in the Introduction, quaternions are used as rotational degrees of
freedom because they do not exhibit singularities in presence of large rotations.
Sect. 2.3.1 illustrates the Euler equations for the buoy dynamics while in Sect. 2.3.2
the loads acting on the buoy itself are derived from the general framework discussed
in Sect. 2.1.

2.3.1 Motion equations of the floating buoy

Let ��� � �� ' � - , ��� and +�� denote the position of the center of mass < , the mass
and inertia tensor about the center of mass of the buoy, respectively. Moreover, let���
�
��� ' � - � &�� �NQ � ) � $�� � , with � � $�� and � $�� � , be the unit quaternion

representing the orientation of the buoy with respect to a fixed reference configu-
ration (see [10] and [15]). Finally, in order to write the Euler equations of motion
as a first-order system of ordinary differential equations (ODE) we also introduce
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the state variables � and � � , representing the linear momentum and the angular
momentum about < , respectively. Then, the Euler equations of motion read

����������� ����������


��� � ��� �� �

� � �

��� � B�

� ' +�� �� � � -�� ���

� � �	� ��Q

(8)

where
�

and � � are forces and torques acting on the rigid-body,
�

is a prolongation
operator defined as ��
 � �� � �

� �� & �Q � ) � 28� �
and the product between the quaternions � � and � � is defined as

� � ��� � �
��
� �6��� � � � +���6��� � � � � � �����

���
� Q

where the symbols + and � denote the usual scalar and vector products in � � , re-
spectively. System (8), supplemented by suitable initial conditions, can in principle
be integrated in the time interval +�6.-�/10 , to compute the dynamics of the rigid body.
Still, when considering the dynamics of the coupled system composed by the buoy
and the mooring cable, it is necessary to track the position of the mooring point,
which leads to introducing further variables and corresponding kinematical con-
straints. Thus, let � and � be the Euler parameters associated with � � such that� � �! #"%$D'&���
�
- and � �'�($*),+ '&���
�
- and let

- ' ��� - � :  #".$D'/��-10 � '�B?�� 2".$D'&��- -*�3� � � $4)5+ '/��-*6S'7� - E $ � �98 � Q
be the corresponding rotation matrix, where 6S'7� - $ � �98 � denotes the skew-sym-
metric tensor associated with � . Denoting by �.: the unknown position of the moor-
ing point and by � � �;: the vector �<: ')� - � �� '�� - , which connects points < and = in
the reference configuration, the rigid body constraint provides�>:&� - ' ��� -#� � �;: � �� � � 	 � $ +L6.-�/ 0*� (9)

2.3.2 Forces and torques acting on the floating buoy

In this section, we describe the forces
�

and torques � � (these latter being evaluated
with respect to the center of mass < ) introduced in (8). We distinguish among the
following contributions:

7



- restoring force (Archimede’s force),
� � ;

- additional forces due to marine environment,
� 7�� 3 ;

- wind effect,
� � � 4,3 ;

- force exerted by the cable,
� � ;

- given external forces (station keeping traction),
� ��� 6 ,

and obtain the resulting force
�

as the sum of these contributions. Clearly, a similar
classification applies also to the corresponding torques. In the following, we indi-
cate by ��� � � ��� � ' � - and ��� � ���S' � - the position of the buoyancy center and
the fluid displaced mass by the floating body at time

�
, respectively. Kinematical

components ��� � and "�� � at the buoyancy center (considered as a point belonging
to the solid buoy) can be computed via standard rigid body kinematical relations.
The mathematical expressions of the forces then read

���������������������� ���������������������

� �
�F' ��� � ��� -;:� 7�� 3
� �	�%& <?> "� '���� ��-��(')<?> � BD-�"�� � )
� B� <G3�4�7
�


��� ���J� �� ��� / �L�����*�('K�L�����+,$.-�$ / 'K�L���J�P�('K�L���J�*+N$.-�$.-� � � 4,3
�
B
� < � � 4,3#7 � � �19�� / �L� � 4,3 / ��� � 4N3� �

��� :� �)� 6
�
� 6=� �

(10)

In (10) � , : � & �Q �Q,������B ) � � � � � is the gravity acceleration. Eq. (10) � is obtained
integrating (1) along the axis of the buoy, setting � ���J� �(��� � � ���O'���� � - and denot-
ing by


��� � and �J� �� ��� the height and a representative diameter of the submerged
portion of the buoy, respectively. Eq. (10) � is nothing but (2). Finally, � : in (10) �
is the traction exerted by the cable and

� 6=� in (10) � is a known datum. The mathe-
matical expressions of the torques corresponding to (10) read

�������������� �������������

� � � � ' ��� � � ���- � '�� ��� :L-
� 7�� 3� � ' ��� �&� ���- � � 7�� 3
� � � 4,3� � '�� � � 4,3 � ���- � � � � 4,3
� � � � ' �<: � ���- ��� :
� �)� 6� �F'��D��� 61� ���- � � �)� 6

where �D� � 4,3 and �D��� 6 are the position vectors of the points of application of
� � � 4,3

and
� �)� 6 , respectively. Concerning the expression of � 7�� 3� , we observe that this

quantity is computed using a suitable extension of the classical theory that is rig-
orously valid for cylindrical bodies (see [17,30]). In particular, since no explicit
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(or easily computable) relation is available for the point of application of
� 7�� 3 , we

assume for simplicity that it coincides with the buoyancy center.

3 Numerical Approximation of the Cable Dynamics Problem

In this section, we deal with the spatial numerical approximation of the cable initial-
boundary value system (7). With this aim, a novel mixed formulation of the differ-
ential model is introduced in Sect. 3.1 through the use of a Lagrange multiplier (ten-
sion) which enforces in weak form the kynematical relation between displacement
and strain. This provides a robust modeling of the cable, because no singularity
arises in the displacement–strain relation even in the limit of an infinite value of the
Young modulus. Moreover, the introduction of the above mixed variable avoids the
onset of possible numerical instabilities in the computation of the tension along the
cable length. This approach is analogous to mixed formulations for incompressibile
fluid–mechanics where the incompressibility constraint is enforced through the use
of the pressure parameter (see [12,9,4,5]). The Galerkin finite element spatial dis-
cretization of the mixed weak formulation of (7) is addressed in Sect. 3.2, while
in Sect. 3.3 an extensive validation of the stability and accuracy of the method are
carried out in the numerical simulation of a stationary test case for which an exact
solution is available.

3.1 Mixed Weak Formulation for Cable Dynamics

In this section, we introduce a novel mixed weak formulation for the cable dynam-
ics system (7). For ease of presentation, we assume that the source term 2 and the
boundary tension � � 4N3 are given functions. Let�

�

� � $ ' 
 � '��*Q9� - - � / ��')� - �8���SQ � � � � '��Q(� -RQ
and denote by '��#Q��- �
	��� ���� � the standard � � inner product for every �1Q�� $� � '��Q9� - . Then, the mixed weak formulation of (7) reads:

for every
� $ +L6.-�/10 , find � $ �

and � $�� such that

�������� �������
7�� ! ��� �� � � Q � " � ! �

B � � � �� � Q � �� � " � ' '�B � � -2
Q ��- � � � 4,3 +,� '� - 	1� $ �
�� B
B � � ����� � �� � ����� � Q ���� � ' '�B � � - Q �
- 	�� $���Q

(11)
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where, according to (5), we have�
�
� ' � - � �

� 9 � � (12)

Problem (11) is a weak formulation subject to the extensibility constraint for the
cable, that can be conveniently treated with a mixed approach, i.e., a method where
two independent variables, � and � , are simultaneously present. Precisely, (11) �
is Newton’s law in weak form (i.e., after integration by parts of (7) � ), (11) � is the
weak form of the kinematical relation (3) and (12) is just Hooke’s law.

It is interesting to notice that when � � ��� there is a strong analogy between the
mixed formulation (11) and mixed formulations for incompressible fluid-mechanics
(see [12,9,4,5]). As a matter of fact, letting 	 � � 9 � , Hooke’s law can be writ-
ten as � � �?�
	 , and the case of an inextensible cable can be obtained by setting	 � ��� . In the same manner, denoting again by 	 the second Lamè coefficient
for an elastic material, and by � the pressure parameter, the case of an incompress-
ible material (which corresponds to the case of an incompressible fluid in creeping
flow problems, Stokes problem) can be obtained by setting 	 � ��� in the relation
�1�
	 � ��� )��;� , � being the displacement (velocity) vector field.

3.2 Mixed Finite Element Approximation for Cable Dynamics

In this section, we construct the finite element approximation of (11) using the
Galerkin method. Let � 7 be a given partition of & �Q9� ) into � 7 subintervals � of
uniform length



� � ��� 7 . Let 	 and 
 be given integers, with 	��AB and ���
��

	 . We introduce the following finite element spaces defined over � 7� 7 ��� � 7 $ � / � 7 $ '���� '�� - - � 	�� $��#7�� Q��7 ����� 7 $�� / � 7 $�� � '�� - 	�� $!�#7�� � (13)

Then, the Galerkin finite element approximation of (11) reads:

for every
� $ +L6 -�/10 , find � 7 $ � 7 and � 7 $ ��7 such that

������������� ������������

7�� ! ��� � 7� � � Q � 7 " � ! � 7
B � � 7 � � 7� � Q � � 7� � "

� ' '�B � � 7.-2
Q � 7.- � � � 4N3#" 7 +,� 7M'�� - 	1� 7 $ � 7�� B
B � � 7 ����� � � 7� � ����� � Q � 7 �� � ' '�B � � 7.-RQ � 7.- 	�� 7 $ ��7

(14)

with � 7 �
� 7.� ' � 9��R- .
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Different choices of the polynomial degrees for
� 7 and ��7 in (13) and the cor-

responding impact on the accuracy of the approximation will be extensively ad-
dressed in the numerical experiments shown in Sect. 3.3. In order to construct
explicit expressions for the finite element equation to be solved numerically, we
denote by � � ' � - and ����' � - the degrees of freedom for � 7 and � 7 , respectively, with�
� B
Q,�N�,�LQ ��7�� and � � B
Q,�,�N�LQ � 7�� . Moreover, for any vector � $ � � we let

��� indicate its � -th cartesian component. Then, we obtain the following system of
ordinary differential algebraic equations (ODAE), for

� Q
	
Q � � BOQ,�,�,�LQ#� 7�� , ��Q � �B
Q,�,�N�LQ � 7 � and � � B
Q �*Q��
���� ���
B 7�� 
 � � ������ �� � � � ����� � � � �� � 
 � �� 4N3�� � '� - � 
 � � ��

� � � B� � � � � � �� � �� � B�

 � � �)Q (15)

where summation over repeated indices is understood and� ��� � 

 ' � � Q � � -IQ � ����� � 
 ! � � �� � � � �� � Q � �

B � � 7 " Q���� � B
 � '�B � � 7.-�� � Q � ��� Q � � � B
 ' '�B � � 7.- Q � � -IQ (16)

having denoted by � � $ ��� and
� � $ � � the scalar basis functions for

� 7 and ��7 ,
respectively. We notice that the factor BD�
� in the right–hand side of (15) � has been
added to end up with a symmetric formulation after linearization of system (15). In
view of the time discretization of (15), it is convenient to rewrite the problem as a
first-order ordinary differential system by introducing an auxiliary velocity variable� . This yields the following system, for

� Q
	
Q9� Q � � B
Q,�,�N��Q � 7�� , ��Q � � B
Q,�,�,��Q � 7��
and � � B
Q �*Q��

��������� ��������


� �� � ����
B 7�� 
 � � ��� 
� �� � ��� ����� � � � �� � 
 � �� 4,3 � � '�� - � 
 � � ��

� � � B� � � � � � �� � �� � B�

 � � �H� (17)

Time integration of the ODAE system (17) and linearization of the resulting non-
linear system of algebraic equations will be discussed in Sect. 4.

3.3 The mixed formulation in the stationary case

In this section, we first carry out the linearization of the mixed formulation (11) in
the stationary case. This case, besides being of interest by its own, is also a crucial
step within the discretization of the complete time–dependent problem. Then, we
perform extensive numerical experiments to validate the accuracy and stability of
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the corresponding Galerkin approximation using the finite element spaces (13), in
the simulation of a test problem for which an analytical solution is available.

3.3.1 Linearization using the Newton method

For ease of presentation, we study the case of a mooring system composed by an
inexstensible cable ( � � ��� in (11), which implies � �(� ), subject to a prescribed
position at the end points and to a given force term 2 �F2 ' �D- . When considering a
real cable, with a large but finite value of � , we expect that ��� B , which allows us
to assume � to be constant in the linearization of (11), in such a way that the treat-
ment of this section still applies. The nonlinear boundary value problem modeling
the tension and the position vector of any point of the system reads

����������� ����������

�
�� � ! � � �� � " �(2

B
�
�� ����� � �� � ����� � �CB �� �(� in � � � '��Q9� -

�*'�� - �(�Q �*'� - � :��
(18)

The Newton linearization of (18) in the neighbourhood of a given cable configura-
tion ' �PQ � - is

����������� ����������

�
�� � ! � ���� ��" � �� � ! � � �� �#" �F� !

�
�� � ! � � �� ��" � 2 "� �� � + ���� � �F� B� �� ����� � �� � ����� � � B �� in � �

� ')� - � � '� - � ��Q
(19)

where
�
�

� ' �D- and � ����'�.- are the Newton variations associated with � and� , respectively. Letting
�
� ' 
 �� '�� � - - � , the weak form of system (19) is readily

obtained as: find
� $ �

, � $�� such that, for all �,$ �
and � $�� , we have�������� �������

! � ���� � Q � �� � " � ! � Q � �� � + � �� � " � � �6! � Q � �� � + � �� � " �@'H2
Q ��-	�!
�MQ
� �� � + ���� � " � � B�

�� �� �MQ ����� � �� � ����� � ��@�@' �MQ,BD- �� � (20)

The linearized system (20) can be written in the form of a saddle–point problem as�
� 9 � �� �
��� �
� �

� ��� � �
���� ��� Q (21)
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where, denoting by
���

and � � the dual spaces of
�

and � , respectively, we have
introduced the operators 9 $ � ' ��� � � - , � $ � ' ��� � � - and its adjoint operator� � $ � ' � � � � - , and the right hand sides

� $ � �
,

� $ � � , � '�� �	� - being the
space of linear and continuous functionals from � into

�
(see [2,23]). Notice that

the discrete counterparts of the operators 9 and � in (21) can be readily obtained
from the quantities � ����� in (16). The analysis of well-posedness for the linearized
saddle–point problem (20), as well as the convergence analysis of the correspond-
ing Galerkin finite element approximation, will be the object of a subsequent arti-
cle. In the nextcoming section, we provide an extensive numerical validation of the
method, using the finite element spaces (13).

3.3.2 Numerical validation of the mixed formulation

In this section, we illustrate the results obtained in the simulation of a three-di-
mensional mooring system for which a closed–form solution for the cable point
position and tension is available [13]. We refer to [1,24] for further comparison
with different discretization approaches. In all numerical experiments, we assume
that the cable has unit length � and density 7 � , and that the external force 2 acting
on the cable is its weight. As for the boundary conditions, we consider the cases
where Dirichlet or Neumann data are imposed at � � � , while we always assume�*'�� - � � . Finally, we point out that in all the computations the strain � is replaced
by the piecewise constant function over ��7 defined as 
� � � � � �' � 9 � - , where � �
is the average tension on the

�
-th mesh element, which considerably simplifies the

evaluation of the quantities in (16). As will be shown below, this does not sensibly
affect the accuracy of the scheme in the case of near-inextensible cable materials
(for which the assumption ��� � is reasonable), while it produces a significant
spoiling of the performance of the method if the cable extensibility is large.

The first two examples are concerning with optimal combinations of the polynomial
degrees 	 and 
 in (13), with � � BOQ,�,�,�LQ� . In the first numerical experiment, we
assume a Neumann boundary condition for the tension at � � � and we consider an
inextensible cable ( � 9 � � ��� ). The results of the simulation are summarized in
Fig. 2, which shows the � � (left) and


 � (right) norms of the error associated with
the position vector, as a function of � and for the several values of � . Completely
similar results are obtained for the error on the tension variable. The resulting con-
vergence rates for both variables agree with the optimal theoretical estimates for
primal mixed formulations which predict �&'�� � - convergence in


 � for the posi-
tion variable and �&'�� � - convergence in � � for the stress variable, corresponding to
the cable tension variable in the problem at hand (see [26], Chapt.IV).

The same problem as before is solved assuming to deal with an extensible cable,
where � 9 � is such that the stretching of the cable is of the order of 50 percent
of its length. The results of the simulation are summarized in Fig. 3. On the left–
hand side of the figure, the error curves (in the � � and


 � norms) associated with
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Figure 2. Error curves for the position vector. Left: �
�

norm. Right: � � norm. The value
of ��� � is ��� .

the position variable are plotted as a function of the mesh size � for the various
values of � . It is clearly visible that the accuracy of the method is spoiled by the
approximate treatment of the extensibility. On the right–hand side, the error curves
(in the � � norm) associated with the tension variable are plotted as a function of
the mesh size � for the various values of � . In this case, the computed convergence
rates agree with the optimal theoretical estimates.
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Figure 3. Left: error curves for the position vector ( �
�

and � � norms). Right: error curves
for the tension ( �

�
norm).

The next two examples are concerning with non–optimal combinations of the poly-
nomial degrees 	 and 
 . In the first test case, we assume � 9 � � � � and set 	 �  ,

 �8�Q,�,�,��Q�� . Fig. 4 shows the error curves associated with the position variable, in� � norm (left) and


 � norm (right), as a function of � and for the various values of

 . It is clearly seen that the convergence rates maintain their optimality, according
with the polynomial degree chosen for the tension variable (i.e., �&'�� �	� � - for the
 � norm of the error, and �&'�� �
� � - for the � � norm of the error). Similar results
are obtained for the error on the tension variable.

In spite of the degradation of the order of the scheme shown in the previous case,
the use of non–optimal combinations of the polynomial degrees can be actractive
when coarse discretization are considered, as demonstrated by the next test case.
Here, we consider the “rising” of the end point of the cable from the position
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�

norm. Right: � � norm. The value
of � is � � , while ����� and ���
	 ������ .:#� � & �*���BOQ �Q ���� ) to the final position : � � & �� �B
Q �Q ���� � ) and we compare two
spatial discretizations: the first one consists of 10 elements with 	 �FB , 
 � � (op-
timal combination), while the second one consists of 5 elements with 	 � � , 
 � �
(non–optimal combination). In both cases we have the same number of degrees of
freedom for the position variable. Results are shown in Fig.5. The � ��� � � elements
behave as rigid beams, thus causing large non–physical horizontal position vec-
tors and negative tensions. On the other hand, the more flexible � � � � � elements
can capture the correct profile of the cable. In particular, we notice the extremely
varying horizontal scales in the two figures and also the fact that the semi–circular
bending of the cable around � � � is resolved within one mesh element when the
space � � � � � is used (Fig. 5, right).
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Figure 5. The “rising” of the end point of the cable from � � � 	 ������������������ to
� ����	 ���������������� ��� . Left: ten � �"! � � elements, behaving as rigid beams. Right: five � � ! � �
elements.

4 Time Discretization, Coupling Algorithm and Linearization

In this section, we address in detail the main issues in the numerical modeling of
the dynamics of the tethered buoy system, viz, its time discretization, the procedure
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to couple the two subsystems (cable and floating body) and the linearization of the
resulting nonlinear algebraic system through a properly damped Newton’s method.

Concerning with the time discretization of the problem, the linear stability analysis
of Sect. 4.1 for the equations describing the cable dynamics shows the practical im-
possibility of using an explicit time advancing method. The admissible time step,
in fact, would be excessively small when dealing with long–time simulations, as is
typically required in the industrial application at hand. As a consequence, the adop-
tion of an implicit scheme is necessary. Our choice falls on the implicit Backward
Euler (BE) scheme (see Sect. 4.2.2) because of the robustness and ease of imple-
mentation of the method, and its ability to handle in a straightforward manner the
differential–algebraic equations governing the coupled system. For a different dis-
cretization strategy, using piecewise linear continuous finite elements for the spatial
approximation of position and velocity, and a Runge–Kutta explicit fourth–order
scheme for time advancing, we refer to [1].

Concerning with the coupling between the two subsystems, two main strategies
can be employed, namely, a staggered (or decoupled) approach or a fully coupled
approach. In the first case, a suitable numerical splitting of the two subsystems is
carried out in order to end up with efficient algorithms in presence of a high number
of degrees of freedom. In the second case, on the contrary, the complete system is
treated within a monolytic framework, this of course being more computationally
demanding but with the advantage of providing a more robust and stable treatment
of the nonlinearity. In our specific context, the number of degrees of freedom as-
sociated with the buoy is negligibile with respect to those of the cable, so that no
appreciable efficiency gain is expected in using a staggered algorithm. Therefore, a
fully coupled approach is adopted, as explained in Sect. 4.2.1, and the linearization
of the nonlinear algebraic system of equations resulting from time advancing with
the BE scheme is numerically carried out at each time step using a properly damped
Newton’s method as described in Sect. 4.2.3.

4.1 Linear stability analysis

In this section we carry out a stability analysis for a simple linear differential model
problem associated with the cable equation (22), following the classical guideline
of [28,12,31]. With this aim, let us consider the dynamics of a cable with no ap-
plied loads and assume a rectilinear initial configuration. It is easy to see that the
cable remains rectilinear during its motion, so that we can set � � & � � Q#�SQ#�6) � .
Moreover, equation (4) turns out to be linear and, denoting by � � � � � � the (one–
dimensional) displacement with respect to the unstretched configuration, we get the
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following model

7�� ��� �� � � � �� � !
� 9 � � �� � " � (22)

Assuming to employ a uniform partition of the interval � � into elements �?� of
width



�'� � � 7 , the standard � � -finite element semi–discretization of (22) leads

to solving the following system of second–order ordinary differential equations

� � � �� � � � � � Q (23)

where � and � are the mass matrix and stiffness matrix, respectively. Denoting
by ��� ��� and ��� ��� the element matrices associated with the discrete scheme, the
eigenvalues of � � ��� are 	 � " � � 'H7�� 
 - �  � �Q�B � and the eigenvalues of � � ��� are	 � " � � �.�Q1� ' � 9 - � 
 � , from which it can be shown that each eigenvalue of the
equation ��� � 	 ��� satisfies the following bound (see [31])

	 8	 � �������� � � ' � 9 - � 

'H7�� 
 - �  � B � � 9

7�� 
 � � (24)

Letting � � �������� �
	
	 � �������� , it can be checked that the following stability requirement

on the time step 
 � is obtained for an explicit time advancing scheme to be used to
approximate (23)


 �  <
� � �������� �

<
��� �

 7��
� 9




where < � �&'�BD- is a positive constant depending on the adopted method. Using
real–life data in tethered buoy marine simulations [1], we have, in International Sys-
tem units, 7�� � ���*�  and � 9 � �*� �S+DB ��� , from which we obtain 
 � AB � � � � ��� 7 .
Assuming a cable (unstretched) length � �FB �O�
� and � 7��FB �
� , the resulting lim-
itation on the time step is 
 � � � '�B � � � - , which shows the practical impossibility
of using an explicit time advancing method for a long–time simulation. Therefore,
an implicit method must be adopted, and the choice considered in the present re-
search activity is to use the Backward Euler implicit scheme, because of its ease of
implementation and the reduced computational effort.

4.2 Solving the Full Model of a Tethered Buoy System

In this section, we first describe the coupling algorithm between the two subprob-
lems which separately describe the dynamics of the elastic cable and the float-
ing body, then we address the time discretization of the whole coupled system of
ODAEs using the implicit Backward Euler (BE) scheme and finally we solve the
resulting nonlinear algebraic system using a damped Newton’s method.
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4.2.1 Coupled System

In this section we provide a coupled formulation for the dynamics of the tethered
buoy system. With this aim, we identify by the subscript � all the quantities asso-
ciated with the cable equations, and with the subscript

�
the quantities associated

with the buoy equations. We indicate by �� �  ��7 " � � ��7 " � � � and � � � B � the
total number of degrees of freedom associated with the cable and buoy equations,
respectively, and we set � ���M� � � � . The vector � $ ��� of the discrete unknowns
can be subdivided into two distinct parts

� � : � �� Q�� �� E �
where

��� � : � � Q � � Q � � Q � � � 4N3 E � $ � �	�
� � ��: � � � Q;� � Q � � � Q � � � Q�� � : Q � � : E � $ ����
 (25)

and all the symbols defined in (25) have been previously introduced in Sects. 3.2
and 2.3.1. Then, it is convenient to cast the equations for the two separate subsys-
tems within the following unified framework

����� ����
� ' � Q� ' � - - 
� ' � - � : ' � Q� ' � - - Q in +L6 -�/ 0
� '��
- ��� � Q (26)

where � ��$ ��� is a given initial condition, the generalized mass matrix is given by

�
�

�







�
� � � � �
� �K� � �
� ���  � � " �
�#���  � � " �

���������� $ ��� 8 � (27)

and the source term is: � : : �� Q : �� Q�'���� 4,3 � �>:�- � Q '�� � 4N3 � � :�- � E � $ ���D� (28)

The mass matrices
� � and

� � have dimension equal to '��*� � �
-<���M� and '�� � � � -<��� � ,
respectively, while the source terms :I� and : � have dimension equal to '��M�� � - and'�� � � � - , respectively. The explicit expressions of

� � Q � � Q�:#� and : � can be re-
covered starting from equations (8), (9) and (17).

The reason for the mass matrices
� � and

� � to be of non–square size is due to
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the presence of the two algebraic coupling equations

��� �� � � ��� 4,3 � �>:
� � � � 4N3 � � : � (29)

Equation (29) � expresses the fact that the end point of the cable � � 4,3 materially
coincides with the mooring point of the buoy �.: , while equation (29) � expresses
the action–reaction principle for the forces exchanged between the two subsystems
at the mooring point. Equations (29) have their matrix counterparts in the last two
rows of (27) where �#���  � � " � and � ���  � � " � are null matrices of dimension equal to�(� � .

4.2.2 Time Advancing

Assume to divide the time interval +�6.-�/10 into � 6 � � B subintervals of equal length

 � � �54 � 4
��� 6 � , such that

� � � � 
 � is the � -th time level, � � � . Then, time
integration of system (26) with the Backward Euler (BE) Implicit Method, which
is unconditionally stable and first-order accurate, reads

��������� ��������

� ' ��- � � ' � 4 � � Q��-�'��;� � � 4 � -�� 
 � : ' � 4 � � Q � - �8�Q
�
�8�*Q,�,�,�LQ#� 6 � �!B

� '�� - � � � �
(30)

For each time step, the above problem is a square system of nonlinear algebraic
equations of dimension � . In the next subsection we address the linearization of
(30) using a suitable damped version of the Newton method.

4.2.3 Linearization

Given � � 4 � , � � � , the computation of � � 4 � � � requires solving a nonlinear system
at each time step. This is dealt with the Newton method for linearization, and reads:
given � � ��� � 4 � , solve

���� ���
� � ' � � -�� � � �F� � ' � � -RQ � � �Q,B
QN�,�,�
� � � � ��� � � � � � Q

(31)

until convergence is achieved to a limiting value ��� , and set � � 4 � � � � ��� . In (31),
we have denoted by

� � $ � � 8 � the Jacobian matrix associated with the nonlinear
function

�
. Solving (31) has some drawbacks:
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- the computational effort can be very expensive because of the cost required to
update the Jacobian matrix at each iteration;

- the explicit evaluation of the Jacobian matrix entries can be quite awkward to
perform, in particular, the partial derivatives of the displaced fluid mass � �
with respect to the dependent variables, which can only be done via numerical
differentiation.

To overcome these difficulties, we modify the Newton iteration (31) as follows

���� ���
� � � ' � � -�� � � �F� � ' � � -RQ � � �Q,B
QN�,�,�
� � � � ��� � ��� � � � � Q

(32)

where
� � $�')�Q,B ) is a (dynamically computed) damping parameter (see [16,3])

and
� � �

represents an approximation to
� �

. In particular, the computation of the
contributions to

� � �
proceeds differently in the case of the buoy and cable equations.

In the case of the buoy equations, we resort to the following approximate evaluation

� � � � '�� � - � � �R' � 4 � � Q� � -�� 
 � : �R' � 4 � � Q� �� -�� : � ' � 4 � � Q� � -� �
where � �� � � � � � � and

� � $ � � 
 is a suitably chosen increment vector. In
the case of the cable equations, the exact jacobian

� � � � is computed following the
guideline indicated in Sect. 3.3.1. The resulting approximate Newton iteration (32)
does not enjoy, in general, quadratic convergence as in exact case (31); however,
the robustness and efficiency of the modified procedure, compared to the standard
iteration, more than compensates the (theoretical) loss in convergence rate. The
numerical performance of the method will be validated in Sect. 5.

5 Numerical Results

In this section we carry out the numerical validation of the coupled algorithm dis-
cussed in Sect. 4 on the simulation of a tethered buoy under real–life working con-
ditions. The mechanical structure of the buoy and the corresponding technical data
used in the computations is consistent with that typically used in marine applica-
tions by industrial manifacturers [25]. Two system configurations are considered,
namely, the case of a short and long cable, with 	 � B and 
 � � in the choice of
the finite element approximation spaces.
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5.1 Simulation of a tethered buoy with short cable

In this first numerical test case, we study the dynamics of a tethered buoy with a
short–length cable. The geometrical and mechanical data of the cable are as fol-
lows: � � �
� � (unstretched cable length), 7�� ��� �*�  � � � � � (linear cable den-
sity), � � ���� � � (cable diameter), � 9 � � �*� � +1B ��� � (product of the Young
modulus and the cable cross–section), < > � �� � , <G3�4 � �� � and <G3�6 � �� B .
The mechanical data of the buoy are as follows: the mass of the floating body is��� �  �
� � � , with an external applied load

� ��� 6
� & B,�
�
�Q �*Q � ) � � . Moreover, two

point masses of B���� � � are added over the buoy and along the slenderness axis (to
account for the presence of a communication antenna and a signaling tower). As
for the fluid environmental data, wind and water current effects have been included,
with a sea depth of ��� � , a half-width of the sinusoidal surface water waves equal
to B
��� � , wave length equal to  �*� and period equal to � � . The total duration of
the time simulation is

� 4 � 4 � BD�O� � . As for the computational parameters, a number
of � 7 � �O� mesh elements has been used for the spatial discretization of the cable
equations, while 
 �

� B,� � � � is the value of the time step.

Fig. 6 (left) shows the computed trajectory of the center of mass of the buoy. We
notice that the amplitude of the displacement of the buoy, due to the effect of wave
forces, is approximately of 5 meters in the � direction and of 3 meters in the �
direction. Fig. 6 (right) reports the time evolution of the tension strength � 7M')� -
(i.e., the computed tension at the sea bottom) and of

/ � � 4N3 / (i.e., the computed
tension at the mooring point of the system). From the results, it turns out that the
maximum values of the tension strengths are approximately B �
�
�
� � and BD�O�
�O� � ,
the difference being due to the contribution of the cable weight. Fig. 7 (left) shows a
plot of the time evolution of the 	 coordinate of the buoy center of mass ( � � " � , solid
line), superposed to the corresponding evolution of the surface water height ( 	.� ,
dashed line), while in Fig. 7 (right) the difference � � " �G� 	N� is reported. From the
results, the difference between the two quantities lies between � �*�  and ��  � , with
a maximum excursion of B � . Finally, Fig. 8 (left) shows the time evolution of the
cone angle between the 	 axis and the slenderness axis of the buoy, while in Fig. 8
(right) a three-dimensional snap-shot of the time evolution of the global system
including in the plot the visualization of the fluid velocity field, of the external
applied force

� ��� 6 and of the two point masses (indicated by the black dots in the
figure).

5.2 Simulation of a tethered buoy with long cable

In this second numerical test case, we study the dynamics of a tethered buoy with a
long–length cable. The geometrical and mechanical data of the cable are as follows:� � ����� � , 7�� ���*� � � � � � � , � � �� � �*� , � 9 � � �*� � +
B ��� � , <?> � �*� � , <G3�4 �
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Figure 6. Left: trajectory of buoy center of mass in the ����� plane. Right: � 7�� �	� (dashed
line) and 
 � � 4,3�
 (solid line) as a function of time.
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Figure 7. Left:  � " � (solid line) and � � (dashed line). Right:  � " � ��� � as a function of time.
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Figure 8. Left: cone angle time evolution. Right: a three-dimensional snap-shot of system
configuration.

���� and <G3�6 �(�� B . The mechanical data of the buoy are as follows: � � � � �  � � � ,
with a point mass of �O�
� � � added along the slenderness axis of the buoy. As for the
fluid environmental data, wind and water current effects have been included, with
a sea depth of �O�
�*� , a half-width of the sinusoidal surface water waves equal to
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B
� �*� , wave length of
 �*� and period equal to

 � . The total duration of the time
simulation is

� 4 � 4 � BD�O� � , with a value 
 �
� B � � � � for time advancing.

Fig. 9 (left) reports the time evolution of the tension strength � 7M'��
- (i.e., the com-
puted tension at the sea bottom) and of

/ � � 4,3 / (i.e., the computed tension at the
mooring point of the system). In order to obtain a reasonable accuracy, a rather
high number of mesh elements ( � 7 �8�O�
� ) has been used for the spatial discretiza-
tion of the cable equations. From the results, it turns out that the maximum values
of the tension strengths are approximately B �
�
�
� � and   �
�
� � , the difference
being due to the contribution of the cable weight. Fig. 9 (right) shows a detail of
the time evolution of the 	 coordinate of the buoy center of mass, superposed to
the corresponding evolution of the surface water height. From the results, the dif-
ference between the two quantities lies between � B
� � and �� �*� , with a maximum
excursion of B
�  � . Fig. 10 (left) shows the three-dimensional trajectory of the buoy
center of mass within one wave period, from which it turns out that the maximum
horizontal displacement is of � � , while in Fig. 10 (right) the time evolution of
the cone angle between the 	 axis and the slenderness axis of the buoy is reported.
Finally, Fig. 11 shows a three-dimensional snap-shot of the time evolution of the
global system, including in the plot the visualization of the fluid velocity field and
of the point mass.
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Figure 9. Left: � 7�� �	� (dashed line) and 
 � � 4,3	
 (solid line) as a function of time. Right:  � " �
(solid line) and � � (dashed line) as a function of time.

6 Conclusions and Future Work

In this article we have addressed the numerical simulation of the dynamics of a
tethered buoy system for marine applications.

The mathematical model consists of a highly complex nonlinear fluid–structural
problem, characterized by the simultaneous presence of quasi–inextensible materi-
als, constituting the cable subsystem, and large rotations and displacements affect-
ing the motion of the buoy subsystem.
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Figure 10. Left: trajectory of the buoy center of mass. Right: cone angle time evolution.

Figure 11. A three-dimensional snap-shot of system evolution. Left: full view of the cou-
pled system, right: a detail around the buoy.

In order to end up with a robust and accurate simulation tool for real-life industrial
application, appropriate numerical techniques have been devised and investigated.

Concerning the treatment of the cable subsystem, a novel mixed formulation has
been proposed with the aim of including the inextensibility constraint in a way that
is similar to what is typically done in mixed methods for incompressible materials
and fluids. The approach falls under the standard Babuska–Brezzi abstract theory
and its numerical stability and accuracy behaviour have been assessed by extensive
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computer experiments which show optimal convergence rates of the finite element
approximation.

Concerning the numerical study of the Euler motion equations for the buoy subsys-
tem, a quaternion–based mathematical model has been used in view of the attractive
stability properties of quaternion variables, especially when large rotations are ex-
pected. Time advancing has been dealt with the implicit Euler scheme, because it
has been shown that adopting an explicit method in the problem at hand would lead
to a too severe restriction on the choice of the time step.

A full coupled Newton’s method has then been used to manage the solution of the
overall coupled problem at each time step.

Numerical results on both academic test problems and real–life applications have
been included to validate the performance of the proposed algorithms.

The following issues will be addressed in forthcoming investigation:

� improvement of the time advancing strategy by adopting higher–order methods
(for example, the

�
-schemes analyzed in [8]);

� improvement of the coupling between the mechanical model and the fluid-dy-
namical description, by including potential–based formulations or, in the limit,
Navier–Stokes equations for the fluid environment;

� theoretical analysis of the novel mixed formulation for the cable.
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