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Abstract. We study two sequential, response-adaptive random-
ized designs for clinical trials; one has been proposed in Bandy-
opadhyay and Biswas (2001) and in Biswas and Basu (2001), the
other stems from the randomly reinforced urn introduced and stud-
ied in Muliere et al.(2005). Both designs can be used in clinical
trials where the response from each patient is a continuous variable.
Comparison is conducted through numerical studies and along a
new guideline for the evaluation of a response-adaptive design.

1. Introduction

In this paper we compare two sequential, response-adaptive random-
ized designs suitable for clinical trials where the observed response from
each patient is a continuous variable.

Suppose patients enter the trial sequentially; a sequential, response-
adaptive randomized design assigns each new patient in the trial to a
treatment with a probability that changes along the trial according to
the data that have already accrued about treatment effects. Aiming,
for ethical reasons, at maximizing the patient’s personal experience
while treated in the trial, sequential response-adaptive designs incline
to assign more patients to the better treatment, while seeking to keep
randomness as a basis for statistical inference; for a foundational de-
scription of this approach to sequential design see Flournoy and Rosen-
berger (1995), Rosenberger (1996), Rosenberger (2002) and the book
by Rosenberger an Lachin (2002).

Most of the literature on sequential, response-adaptive designs deals
with the case where responses are binary variables. Among the few
exceptions, are the design proposed by Bandyopadhyay and Biswas
(2001), further explored in Biswas and Basu (2001), and the design
based on the randomly reinforced urn introduced in Muliere et al.(2005).
In this paper we will compare these two adaptive designs for clinical
trials with responses on the continuous scale: details on the designs
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and their definitions are given in the next section after setting the
probabilistic stage for the analysis.

The comparison is carried along a guideline that we introduce in
Section 3. We believe that the analysis generated by this procedure is
deeply rooted in two foundational motivations, moving most research
on response-adaptive designs:

(1) to generate experimental data adequate for statistical inference
on treatment effects;

(2) to randomly allocate patients to treatments, using the informa-
tion about treatments generated along the trial for biasing the
allocation probabilities toward the better treatment.

The quantities we propose in Section 3 for the evaluation of a response-
adaptive design, are difficult to compute analytically. Hence in Section
4, for both designs object of this paper, we conduct a numerical study
for eliciting them in different illustrative instances; this put us in the
position to construct a comparative analysis for the two designs. A
discussion on the two designs merits concludes the paper.

2. Two response-adaptive designs for continuous
responses

We indicate with Mi and Ni the response for patient i = 1, 2, ...,
depending on whether the patient has been allocated to treatment A
or treatment B respectively. We assume that the random variables
M1,M2, ...,Mi, ... are i.i.d. with probability distribution function µ,
that the random variables N1, N2, ..., Ni, ... are i.i.d. with probability
distribution function ν and that the two sequences are independent.
Furthermore we assume that the expected values of the response dis-
tributions,

mµ =

∫
xµ(dx) and mν =

∫
xν(dx)

respectively, exist and are finite.

Definition 2.1. A sequential design ρ is a sequence (ρ0, ρ1, ..., ρi, ...)
such that ρ0 ∈ [0, 1] while, for i ≥ 1, ρi is a measurable function from
the space ({0, 1} ×R)i to the space [0, 1].

If patients enter the trial sequentially, the design ρ describes the
strategy followed by the experimenter for allocating patients to treat-
ments. In fact, for i = 1, 2, ..., let us indicate with Xi the indicator
function which takes value 1 if patient i is allocated to treatment A
and 0 if patient i is allocated to treatment B; moreover, let Fi be the
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sigma-field generated by

X1, X1M1 + (1−X1)N1, ..., Xi, XiMi + (1−Xi)Ni,

i.e. the sigma-field representing the information available to the exper-
imenter before the allocation of the (i + 1)-th patient to a treatment.
We assume that X1 has Bernoulli(ρ0) distribution and that, for i ≥ 1,
the conditional distribution of Xi+1, given Fi, is

Bernoulli(ρi(X1, X1M1 + (1−X1)N1, ..., Xi, XiMi + (1−Xi)Ni)).

When the trial sample size is fixed a priori and the target number of
patients that are going to be treated is n, specification of the elements
ρn, ρn+1, ... of ρ becomes irrelevant.

In this paper we will consider and compare two different sequential
designs. Both designs are randomized and response-adaptive; that is,
both modify, along the trial, the probabilities of allocation to treat-
ments according to the information provided by past data. Further-
more, both designs can be used in clinical trials where responses are
continuous variables and the ultimate goal is to decide the treatment
generating the response with highest mean.

2.1. A response-adaptive design generated by a randomly re-
inforced urn. Fix 0 < λ ≤ υ < ∞, a transformation function φ : R →
[λ, υ] and a couple of positive real numbers (b0, w0). Define the design
σ by setting σ0 = b0/(b0 + w0) and, for i ≥ 1 and (x1, e1, ..., xi, ei) ∈
({0, 1} ×R)i, let

σi(x1, e1, ..., xi, ei) =
b0 +

∑i
j=1 xjφ(ej)

b0 + w0 +
∑i

j=1 φ(ej)
.

That is, according to σ, given the past allocations X1, ..., Xi and the
observed responses X1M1+(1−X1)N1, ..., XiMi+(1−Xi)Ni, the exper-
imenter allocates the next patient i+1 to treatment A with probability

σi(X1, X1M1 + (1−X1)N1, ..., Xi, XiMi + (1−Xi)Ni)

=
b0 +

∑i
j=1 Xjφ(Mj)

b0 + w0 +
∑i

j=1 Xjφ(Mj) +
∑i

j=1(1−Xj)φ(Nj)
.

The sequential design σ is randomized and response-adaptive; it is
implemented by an urn containing initially b0 balls of color A and
w0 balls of color B. When patient i = 1, 2, ... enters the trial, the
experimenter allocates him to a treatment by sampling a ball from
the urn. After the treatment effect XiMi + (1 − Xi)Ni is observed,
and before allocating the (i + 1)-th patient, the urn composition is
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reinforced with a number φ(XiMi + (1 − Xi)Ni) of balls of the same
color as that of the last one sampled.

In Muliere et.al. (2005) it is proved that, if
∫

φ(x)µ(dx) >

∫
φ(x)ν(dx), (2.1)

then, whatever the initial composition (b0, w0),

P [ lim
i→∞

σi(X1, X1M1 + (1−X1)N1, ..., Xi, XiMi + (1−Xi)Ni) = 1] = 1;

(2.2)
that is, asymptotically, with probability one the design σ assigns pa-
tients to treatment A. For instance, if treatment effects are positive
and bounded real quantities with different mean values and we let φ to
be the identity function, the design σ asymptotically allocates patients
to the treatment with highest mean value.

If the trial sample size is fixed to be a very large n, (2.2) supports the
claim that the design σ will bias the allocation probabilities of the n pa-
tients toward the treatment associated with the φ-transformed response
with highest mean, whatever the initial urn composition (b0, w0). How-
ever, since convergence in (2.2) is typically slow, for small or moderate
n the effect of the initial composition (b0, w0) on the allocation prob-
abilities will be relevant. In this paper we follow this simple rule for
setting it; first we allocate an equal number k of patients to treatment
A and to treatment B and we observe the responses M1, ..., Mk and
Nk+1, ..., N2k respectively. Then we set

b0 =
k∑

i=1

φ(Mi), w0 =
k∑

i=1

φ(Nk+i)

and we proceed to allocate patient 2k + 1, 2k + 2, ... to treatments
following the design σ with initial composition (b0, w0). The integer
number k is called the initialization parameter: in the numerical studies
illustrated in this paper it will be set equal to a small fraction of the
trial sample size n.

Remark 2.2. In a Bayesian analysis, different choices of b0 and w0 would
incorporate different prior believes about the better treatment.

2.2. The triple-B response-adaptive design. In Bandyopadhyay
and Biswas (2001) and in Biswas and Basu (2001) a sequential design
τ for comparing mean responses after treatments is proposed which
accommodates for robust estimates of the means of response distribu-
tions.
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Let G be a continuous cumulative distribution function, symmetric
about 0, like, for instance, the cumulative distribution Φ of a standard
normal. Set τ0 = 0, τ1(x1, e1) = 1 for all (x1, e1) ∈ {0, 1} ×R and, for
i = 2, 3, ..., and (x1, e1, ..., xi, ei) ∈ ({0, 1} ×R)i define

τi(x1, e1, ..., xi, ei) = G(
M i −N i

c
)

where

M i =

∑i
j=1 xjej∑i
j=1 xj

, N i =

∑i
j=1(1− xj)ej∑i
j=1(1− xj)

and c is an appropriate scaling constant. Hence, according to τ, the
first patient in the trial is allocated to treatment A, the second to
treatment B and then, from the third patient on, having observed past
allocations X1 = 0, X2 = 1, X3, ..., Xi and responses M1, N2, X3M3 +
(1 − X3)N3, ..., XiMi + (1 − Xi)Ni, the (i + 1)-th patient is allocated
to treatment A with probability G((M i −N i)/c) where

M i =

∑i
j=1 XjMj∑i

j=1 Xj

and N i =

∑i
j=1(1−Xj)Nj∑i

j=1(1−Xj)
(2.3)

represent the current estimates of the mean of the distributions µ and
ν respectively. The sequential design τ is randomized and response-
adaptive.

Remark 2.3. Modifications in the definition of τ when one wants robust
estimates of the means, instead of sample means as in (2.3), are easily
implemented and have been considered in Biswas and Basu (2001).
Analogously, a suitable choice of the φ transformation in the design σ
would meet robustness concerns. We don’t elaborate further on this
theme; it will be the topic of future research.

Clearly, the design τ favors the treatment which has led to larger
responses on average in the past. In point of fact, Biswas and Basu
(2001) conjecture that

P [ lim
i→∞

τi(X1,M1, ..., Xi, XiMi + (1−Xi)Ni) = G(
mµ −mν

c
)] = 1;

(2.4)
see also Bandyopadhyay and Biswas (2001). Parallel to the choice of
the initialization parameter k for the sequential design σ described in
the previous subsection, an important question for the determination
of τ is the choice of the scaling constant c. Small values of c make the
design sensitive to outliers particularly during the early stages of the
experiment. Larger values of c will cause the design to be less and
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less adaptive to the information provided by the experiment while it
is carried on, eventually pulling the allocation ratio toward the 50:50
pattern. For σ, this happens when the initialization parameter k is set
equal to half the trial sample size n.

3. A guideline for evaluating and comparing different
response-adaptive designs

The goal of a randomized, response-adaptive sequential design is
two-fold:

(1) to generate experimental data adequate for statistical inference
on treatment effects;

(2) to randomly allocate patients to treatments, using the informa-
tion about treatments generated along the trial for biasing the
allocation probabilities toward the better treatment.

When considering a response-adaptive design for a particular clinical
trial, a standard, non-adaptive alternative is usually available; gener-
ally speaking, this is the default design that the experimenter would im-
plement for carrying on the trial in the absence of a response-adaptive
competitor, to be followed by a default inferential analysis applied to
the data generated by the design. Default design and default inferential
analysis represent the experimenter’s default plan. We believe that the
experimenter might be persuaded to use a response-adaptive design,
instead of the default design, if we show that:

(a) the response-adaptive design makes it possible to perform an
inferential analysis with the same optimality characteristics as
those guaranteed by the default plan;

and

(b) the number of patients allocated in the trial to the worse treat-
ment by the response-adaptive design is less than that provided
by the default design.

Remark 3.1. Condition (b) could be modified by focusing on a different
optimality criterion. For instance, when responses are survival times,
the sum of the survival times of the patients involved in the trial could
generate more concern than the number of patients allocated to the
worse treatment.

Informed by (a) and (b), we propose a guideline for the evaluation
and comparison of a response-adaptive design: the idea is to focus on
a benchmark, a basic inferential problem often encountered in prac-
tice, and to base the design’s evaluation on the conditions for which
requirements (a) and (b) are simultaneously satisfied. As a seminal
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example, in this paper we will fix our benchmark to be the problem
of comparing the means of two normal distributions, with same known
variance, in order to test if one mean is greater than the other: the
method is however easily extendable to more complex benchmarks.

Hence, assume that the goal of the experiment is to test whether
the mean response generated by treatment A is equal to the mean
response generated by treatment B against the alternative hypothesis
that A generates a response with greater mean. In symbols:

H0 : mµ = mν vs. H1 : mµ > mν . (3.1)

Moreover, assume that the response distributions µ and ν are Normal
with common known variance v2

0.
A standard design and inferential analysis for the problem (3.1) are to

randomly allocate nA patients to treatment A, nB patients to treatment
B and, at the end of the experiment, to perform a one-sided z-test. For
any given level α ∈ (0, 1) and any even trial sample size n ≥ 2, the
power of the test is maximized if nA = nB = n/2; we refer to this
design and inference with the expression a balanced, one-sided z-test.
In the following pages, it is going to play the role of default plan.

Suppose that the level α of the test is assigned and that n has been
chosen so that the balanced, one-sided z-test has a given power 1 − β
when

δ = mµ −mν

is greater or equal to a specific, clinically relevant difference δ0 > 0. In
order to convince the experimenter to switch from the default design
to a competitor response-adaptive design, we need:

(a) to elicit an α-level test, function of the experimental data gen-
erated by the response-adaptive design, for proving H0 versus
H1. For a trial sample size n∗, the power of the test must be at
least 1− β when δ ≥ δ0;

(b) to show that, when the trial sample size is n∗ and δ ≥ δ0, the
random number NB of patients allocated to treatment B is less
than or equal to n/2, with high probability.

If (a) and (b) hold simultaneously, the experimenter adopting the
response-adaptive design, knows that the probability that a significant
result will be obtained if a clinically relevant difference between the
two treatments exists (i.e. the power of the test), is not less than the
power of the test in the default plan at the smallest clinically relevant
difference; this might happen at the cost of a number n∗ of patients
in the trial greater than or equal to n, but with the assurance that,
if there is a clinically relevant difference between the treatments, with
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high probability less patients than those allocated by the default design
will in fact experience the worse treatment.

The numerical studies illustrated in this paper evaluate and compare
the two response-adaptive designs described in the previous section in
the light of the benchmark inferential problem described above. To ex-
plore conditions for which requirements (a) and (b) are simultaneously
met, we will in fact consider two different analysis.

3.1. First analysis. We fix the trial sample size n of the default plan
and a level α ∈ (0, 1) and we compute, as a function of the difference
δ = mµ − mν , the power 1 − β(δ) of the balanced, one-sided z-test
of level α. Next, for the competitor response-adaptive design and for
different values of δ, we compute through simulation the smallest trial
sample size n∗ = n∗(δ) such that a given α-level test (to be specified in
the next section) has power greater than or equal to the power 1−β(δ)
of the z-test. We also compute through simulation the distribution of
the random number NB of patients allocated to treatment B by the
response-adaptive design when the trial sample size is n∗ = n∗(δ). The
typical situation is summarized in Figure 1.

Inspection of Figure 1 shows the existence of three different regions
for the values of δ. For small values of δ, n∗ is larger than n but NB

is not smaller than n/2 with high probability: this is the “red zone”
where condition (a) above is met, but not (b). That is: in order to
get the same power as that of the default plan with sample size n, the
response-adaptive design needs a sample size n∗ > n, but the higher
cost due to a larger sample size is not compensated by a gain in terms
of less patients allocated to the worse treatment. Moderate values of
δ fall in the “yellow zone”: (a) and (b) are met at the cost of a larger
sample size n∗ for the response-adaptive design. Finally, large values
of δ belong to the “green zone”: (a) and (b) are satisfied and n∗ is less
or equal to n, (n∗ ≤ n + 1.)

If the experimenter believes that values of δ in the “red zone” are
clinically relevant, he shouldn’t exchange the default design for the
response-adaptive design. If the smallest clinically relevant value δ0 for
δ falls in the “yellow zone”, the experimenter might switch from the
default design to the response-adaptive design, at a cost of a larger
trial sample size. Finally, when δ0 falls in the “green zone” it seems
unreasonable not to use the response-adaptive design.

To make these ideas more precise, we define two crucial δ-values.
The first is

δY
1 = inf{δ > 0 : q3(NB(δ)) ≤ n/2},
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Figure 1. First analysis: the picture on the left rep-
resents the function n∗ = n∗(δ) by means of the values
determined by simulation and a loess curve interpolat-
ing them; the horizontal dotted line corresponds to the
sample size n, while the vertical line indicates the value
δG
1 . On the right picture, the first quartile, the median

and the third quartile of the distribution of NB are rep-
resented as a function of δ; the horizontal dotted line
corresponds to the value n/2 while the vertical line indi-
cates the value δY

1 .

where q3(NB(δ)) represents the third quartile of the distribution of the
random number of patients NB allocated to the worse treatment B by
the response-adaptive design when the trial sample size is n∗(δ). The
second crucial δ-value is

δG
1 = inf{δ ≥ δY

1 : n∗(δ) ≤ n}.
Assuming that q3(NB(δ)) is a decreasing function of δ, if δ0 is the
smallest clinically relevant difference for the means of µ and ν and
δ0 < δY

1 , it is not advisable to switch from the default design with
sample size n to the response-adaptive design; if δ0 ≥ δY

1 switching
to the response-adaptive design will put less patients on the worse
treatment with high probability, while preserving the same power as
the balanced z-test. This however happens at the cost of a larger trial
sample size if δY

1 ≤ δ0 < δG
1 .
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Remark 3.2. When defining δY
1 , a less restrictive analysis would con-

sider a smaller quantile than q3 of the distribution of the random num-
ber of patients NB allocated to the worse treatment B by the response-
adaptive design when the trial sample size is n∗(δ). For instance,

δY
1 = inf{δ > 0 : q2(NB(δ)) ≤ n/2},

where q2 is for the median.

3.2. Second analysis. We fix a level α ∈ (0, 1) and a large power 1−β.
As a function of δ = mµ −mν , we compute the smallest sample size n
such that a balanced, one-sided z-test of level α for the hypothesis in
(3.1) has power greater than or equal to 1−β. Next, through simulation,
we compute the smallest sample size n∗ = n∗(δ) for which a test (to
be specified in the next section) based on the data generated by the
competitor response-adaptive design, has power greater than or equal
to 1−β when mµ−mν = δ. We then compute, again through simulation,
the distribution of the random number NB of patients allocated to
treatment B, when the response-adaptive design is adopted and the
trial sample size is n∗ = n∗(δ). Figure 2 illustrates the typical situation.

Define

δY
2 = inf{δ > 0 : q3(NB(δ)) ≤ n(δ)

2
}

where q3(NB(δ) represents the third quartile of the distribution of the
random number NB of patients allocated by the response-adaptive de-
sign to the worse treatment B and the trial sample size is n∗ = n∗(δ).
Moreover set

δG
2 = inf{δ ≥ δY

2 : n∗(δ) ≤ n(δ)}.
As in our first analysis, we identify three different regions for the val-
ues of δ; as before they are called the “red zone”, the “yellow zone”
and the “green zone” and they are represented by the, possibly void,
intervals (0, δY

2 ), [δY
2 , δG

2 ) and [δG
2 ,∞). To illustrate, assume that δ0 is

the smallest clinically relevant value for the difference δ = mµ − mν .
If δ0 < δY

2 , the experimenter using the response-adaptive design will
obtain a significant result for δ = δ0 with probability at least 1 − β
by enrolling n∗ = n∗(δ0) patients in the trial. However with such a
sample size, there is a probability greater than .25 that the number
of patients in the trial allocated to the worse treatment B is larger
than n/2, the number of patients allocated to B by the default design.
Hence, values of δ0 less than the value δY

2 falls in the “red zone” where
the experimenter would be wise not to abandon the default design in
favor of the response-adaptive competitor. For values of δ0 ≥ δG

2 the
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Figure 2. Second analysis: for the picture on the left,
the black dotted line represents n = n(δ) while the func-
tion n∗ = n∗(δ) is represented by the continuous black
line.The vertical line corresponds to the value δG

2 . On
the right picture, the black dotted line represents n/2
for different values of δ, while the three continuous red
lines represent, respectively, the third quartile, the me-
dian and the first quartile of the distribution of NB. The
vertical value corresponds to the value δY

2 .

smallest trial sample size for the default plan with power greater than
or equal to 1 − β is negligibly different from the smallest sample size
for the response-adaptive design guaranteeing a power greater than or
equal to 1 − β : these values of δ0 belong to the “green zone”. When
δY
2 ≤ δG

2 , a value of δ0 in the green zone denounces as unreasonable
the adoption of the default design since, at no higher cost in terms of
sample size, the response-adaptive design would put the experimenter
in the position to perform an α-level test with the same power 1 − β
for δ = δ0 as the test belonging to the default plan, but allocating
a smaller number of patients to the worse treatment with probability
greater than .75. Finally, for values of δ0 in the “yellow zone” [δY

2 , δG
2 ),

switching from the default design to the response-adaptive competitor
will allocate less patients to the worse treatment with high probability
but at the cost of a larger trial sample size.
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4. Numerical studies

We are now ready to evaluate and compare the response-adaptive
designs σ and τ defined in Section 2, along the guideline illustrated
in the previous pages and using as benchmark inferential problem the
balanced, one-sided z-test for testing the hypothesis (3.1).

Before proceeding, we need to specify a test statistic and a rejection
region for the testing problem (3.1) when data are acquired according
to one of the two response-adaptive designs under scrutiny. For a given
trial sample size n, an obvious candidate for the test function is:

Z0 =
M̄ − N̄

v0

√
1

NA
+ 1

NB

where NA =
∑n

i=1 Xi and NB = n − NA are the random number of
patients allocated by the design to treatment A and B respectively and

M̄ =
1

NA

n∑
i=1

XiMi, N̄ =
1

NB

n∑
i=1

(1−Xi)Ni

are the observed sample means for the responses of patients allocated
to treatment A and treatment B respectively. (Recall that v2

0 is the
known common variance of the Normal distributions µ and ν.)

Proposition 4.1. For both response-adaptive designs σ and τ, when
H0 is true and the means of µ and ν are the same, the test statistic
Z0 is asymptotically standard normal, as the trial sample size n goes
to infinity.

Proof. For the design τ, asymptotic normality of Z0 follows from the
results in Bandyopadhyay and Biswas (2001).

In order to prove that Z0 is asymptotically normal when the design
σ is adopted and H0 is true, we need two facts that are proved in May
et al. (2005):

(i) As n goes to infinity, NA/n converges almost surely to a ran-
dom variable Z∞ ∈ [0, 1]. The distribution of Z∞ has no point
masses.

(ii) The sequence of allocation variables {Xn} is asymptotically ex-
changeable with de Finetti measure Z∞. Hence: for all j ≥
0, conditionally on Z∞, the random variables (Xn, ..., Xn+j)
are asymptotically i.i.d. with distribution Bernoulli(Z∞), as
n grows to infinity.

¿From (i) and (ii) it follows that, given Z∞, the asymptotic condi-
tional distribution of Z0 is standard normal. Hence, the unconditional
asymptotic distribution of Z0 is also standard normal.
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For α ∈ (0, 1) and a large trial sample size n, the previous result
supports the rejection region

Rα = {X1, X1M1+(1−X1)N1, ..., Xn, XnMn+(1−Xn)Nn : Z0 > z1−α}
(4.1)

for testing the hypothesis (3.1) at a level α; z1−α is the (1 − α)-th
quantile of a standard normal distribution. The simulations conducted
for our first analysis will show that, even for small and moderate sample
sizes (n = 20, 40, 100), P (Rα) is close to α when H0 is true.

For δ = mµ −mν ≥ 0 and a trial sample size n, let

πα(n, δ) = P [Z0 > z1−α]

be the power function of the test with rejection region Rα. Recall that
the power function for a balanced, one-sided z-test for the hypothesis
(3.1) is equal to

1− Φ(z1−α − δ

2v0

√
n).

The simulations for the first and the second analysis, described in
their generalities in the previous section, are carried out for the designs
σ and τ with the following common settings:

• µ and ν are normal distribution with means mµ and mν respec-
tively and common known variance v2

0;
• v0 = 0.25;
• mµ ∈ [1, 1.8], mν = 1;
• the level of the test is set to be α = 0.05;
• for the design σ, the transformation function

φ(x) =





0.1 if x ≤ 0.1,
x if 0.1 < x < 10,
10 if x ≥ 10,

whereas the initialization parameter k = 1, 3, 5;
• for the design τ, G is set equal to the cumulative distribution

function Φ of a standard normal and the normalizing constant
c = 1, 5, 10.

4.1. Simulations for the first analysis. We fix n = 20, 40, 100. For
both response-adaptive designs σ and τ, δ ∈ [0, 0.8], first we find the
smallest n∗ = n∗(δ) such that

π(n∗, δ) ≥ 1− Φ(z1−α − δ

2v0

√
n) (4.2)

with δ ∈ [0, 0.8]. The integer n∗ is found via simulation: for δ ∈
{0, 0.025, 0.05, ..., 0.775, 0.8}, we begin the simulation by setting n∗ = n
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Design σ δG
1 δY

1 Design τ δG
1 δY

1

n=20, k=1 > 0.8 0.8 n=20, c=1 0.725 0.325
n=20, k=3 0.7 0.625 n=20, c=5 0.8 0.8
n=20, k=5 0.65 0.65 n=20, c=10 > 0.8 > 0.8
n=40, k=1 > 0.8 0.75 n=40, c=1 0.350 0.225
n=40, k=3 0.5 0.45 n=40, c=5 0.625 0.625
n=40, k=5 0.475 0.425 n=40, c=10 > 0.8 > 0.8
n=100, k=1 > 0.8 0.6 n=100, c=1 0.275 0.125
n=100, k=3 0.375 0.325 n=100, c=5 0.45 0.45
n=100, k=5 0.325 0.25 n=100, c=10 > 0.8 > 0.8

Table 1. First analysis: Values of δG
1 and δY

1

and we estimate the power π(n∗, δ) by iteratively running an experi-
ment where n∗ patients are sequentially allocated to treatment A or
treatment B according to the response-adaptive design while, at the
end of the experiment, the hypothesis H0 is rejected or accepted accord-
ing to the test statistic Z0 and the rejection region Rα in (4.1). The ex-
periment is iterated 1000 times and the frequency of rejection is consid-
ered as an estimate of π(n∗, δ); if this frequency is strictly smaller than
1−Φ(z1−α− δ

2v0

√
n), the integer n∗ is increased by one and a new exper-

iment, with the new value for n∗, is iteratively run. And so on until an
n∗ satisfying (4.2) is found. Next, for δ ∈ {0, 0.025, 0.05, ..., 0.775, 0.8},
the distribution of NB when the trial sample size is n∗ = n∗(δ) is ap-
proximated by the empirical distribution generated by running for 1000
times the experiment where n∗ patients are allocated to treatment A
or B according to the response-adaptive design; the first quartile, the
median and the third quartile of the empirical distribution of the 1000
deviates thus obtained are considered to be estimates of the correspond-
ing quantiles for the distribution of NB. Results of these simulations for
the design σ are illustrated in figures 3-5, those for τ in figures 6-8; all
the empirical points have been interpolated by means of a polynomial
local regression using a loess of degree 2: fitting is by weighted least
square, with span equal to 0.55 and tricubic weight. The quantities δY

1

and δG
1 have been computed on the loess curves; their values appear in

Table 1.

4.2. Simulations for the second analysis. We fix 1−β = 0.8, 0.9, 0.95.
For δ ∈ [0.025, 0.8] we find the smallest value of n = n(δ) such that

1− Φ(z1−α − δ

2v0

√
n) ≥ 1− β
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Design σ δG
2 δY

2 Design τ δG
2 δY

2

1− β = 0.8, k=1 >0.5 >0.5 1− β = 0.8, c=1 0.2 0.2
1− β = 0.8, k=3 0.41 0.41 1− β = 0.8, c=5 0.57 0.57
1− β = 0.8, k=5 0.32 0.32 1− β = 0.8, c=10 0.67 0.67
1− β = 0.9, k=1 >0.5 >0.5 1− β = 0.9, c=1 0.22 0.2
1− β = 0.9, k=3 0.42 0.42 1− β = 0.9, c=5 0.64 0.64
1− β = 0.9, k=5 0.36 0.36 1− β = 0.9, c=10 0.79 0.79
1− β = 0.95, k=1 > 0.5 > 0.5 1− β = 0.95, c=1 0.29 0.2
1− β = 0.95, k=3 0.46 0.46 1− β = 0.95, c=5 0.74 0.74
1− β = 0.95, k=5 0.38 0.38 1− β = 0.95, c=10 >0.8 >0.8

Table 2. Second analysis: values of δG
2 and δY

2 .

and the smallest n∗ = n∗(δ) such that

π(n∗, δ) ≥ 1− β. (4.3)

The integer n∗ is found via simulation. For δ ∈ {0.025, 0.05..., 0.775, 0.8},
we begin by setting n∗ = n0 : for σ the initial value n0 = max(n, 2k)
while for τ we let n0 = max(n, 2). We then estimate the power π(n∗, δ)
by iteratively running an experiment where n∗ patients are sequentially
allocated to treatment A or treatment B according to the response-
adaptive design and the hypothesis H0 is rejected or accepted accord-
ing to the test statistic Z0 and the rejection region Rα in (4.1). The
experiment is iterated 5000 times and the frequency of rejection is con-
sidered as an estimate of π(n∗, δ); if this frequency is strictly smaller
than 1− β, the integer n∗ is increased by one and a new experiment is
iteratively run. And so on until an n∗ satisfying (4.3) is found. Sim-
ulations than proceed as before: the third quartile, the median and
the first quartile of the distribution of NB = NB(δ), when the trial
sample size is n∗(δ), are estimated by means of the corresponding em-
pirical quantiles based on 5000 deviates generated by the distribution
of NB(δ), for δ ∈ {0.025, 0.05..., 0.775, 0.8}. Results of these simula-
tions, for the design σ are illustrated in figures 9-11 and for τ in figures
12-14; for graphical convenience we focus the figures on suitable ranges
for δ. These results suggest that both functions n∗(δ) and q3(NB(δ) are
monotonically decreasing with δ; we interpolated the empirical points
by joining them with linear segments. The quantities δY

2 and δG
2 have

been computed on the interpolated curves; their values appear in table
2. For the design σ, notice that n∗(δ) ≥ 2k for all values of δ, where
the integer k is the initialization parameter.
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5. Discussion

The simulations studies described in the previous section give im-
portant information about the two designs σ and τ and the parameters
k and c determining them.

5.1. First analysis. Larger values of the initialization parameter k
for σ, or of the scaling constant c for τ , move the corresponding design
toward a balanced allocation; as a consequence we might expect that
both δG

1 (σ) and δG
1 (τ) are decreasing functions of k and c, respectively,

for all sample sizes n of the reference default plan. This fact is con-
firmed by the simulations as long as δG

1 > δY
1 . However, the analogies

between the roles of the two parameters stop here.
In fact higher values of c for the design τ imply more robustness

to outliers, as has been pointed out in Biswas and Basu (2001), but
also larger values for δY

1 (τ); in other words, since δY
1 (τ) is an increas-

ing function of c, for a large c the number NB of patients allocated
to the inferior treatment is smaller than n/2 with high probability
only when the difference δ between the means of the two treatments is
large, maybe larger than the smallest clinically relevant difference δ0.
The variability of the distribution of NB, measured by its interquartile
range, is also affected by changes in the values of c, larger values of c
implying a smaller IQR for the distribution of NB.

The role that the initialization parameter k plays in the determina-
tion of the critical value δY

1 (σ) is more complicated. The simulations
show that for small values of k, δY

1 (σ) is a decreasing function of k.
However for larger values of k, δY

1 (σ) must be an increasing function
of k and δY

1 (σ) = ∞ in the limit case when k = n/2. In fact, when
the reference sample size of the default plan is n = 20, the simulation
supports the conjecture that δY

1 (σ), as a function of k, reaches its min-
imum for k close to 3. For n = 40 and n = 100, the value of k for
which δY

1 (σ) is minimum is conjectured to be larger than 5, hence in
both cases we observe a decreasing sequence of values for δY

1 (σ), for
k = 1, 3, 5. Moreover; the IQR of the distribution of NB seems to be
a decreasing function of k. Both facts discourage the use of very small
values, like k = 1, for the initialization parameter of the design σ and
suggest the existence of an optimal value for k depending on the sample
size n of the default plan.

For both designs σ and τ, once the respective parameters k or c are
fixed, the values δG

1 and δY
1 are decreasing functions of n, the refer-

ence sample size of the default plan. Hence for clinical trials where the
planned sample size n of the default plan is large, it is to be expected
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that both response-adaptive designs σ and τ could be effective alter-
natives, even in cases where the smallest clinically relevant difference
δ0 is small. By looking at the values of δY

1 when the sample size of the
default plan is n = 100, one can conclude that, at the possible cost of
a larger sample size for the trial, the design σ becomes a viable alter-
native to a balanced design for values of the smallest clinically relevant
difference δ0 greater than 0.25; if one is willing to choose a small value
for the scaling constant c, the design τ is better than a balanced design
even for values of δ0 greater than 0.12.

5.2. Second analysis. The results of the second analysis confirm the
findings of the first.

As it was to be expected, all the simulations show that for both
designs σ and τ, the critical value δG

2 is an increasing function of the
power 1 − β. For a fixed power 1 − β, both δG

2 (σ) and δG
2 (τ) are non

increasing functions of the initialization parameter k and the scaling
constant c, respectively, as long as δG

2 > δY
2 .

The critical value δY
2 (τ) increases with c for any value of the power

1 − β; hence a stronger protection against outliers is paid in terms
of larger values for the smallest difference δ for which the response-
adaptive design becomes a viable alternative to the default design. For
a fixed value of c, the simulations support the conjecture that δY

2 (τ) is
an increasing function of 1− β.

For the design σ it is confirmed that very small values of the initial-
ization parameter k are to be discouraged: in fact, for 1 − β = 0.8,
the value δY

2 (σ) seems to reach a minimum for values of k close to
5, while this minimum is attained for values of k larger than 5 when
1−β > 0.9 : this findings will stimulate future research on the optimal
choice for the parameter k.

This second analysis seems slightly in favor to the design τ : for mod-
erate values of the scaling constant c, the values of δY

2 (τ) are generally
smaller than those obtained with the design σ, even when we believe
we are dealing with a value for the initialization parameter k close to
the optimum (1− β = 0.8, k = 5).

6. Conclusion

Research on response-adaptive designs for clinical trials with con-
tinuous responses is gaining momentum. In this study we compared
two different response-adaptive designs for continuous responses by in-
troducing a criterion that evaluates them by considering their per-
formances when competing with a benchmark, non-adaptive standard
alternative.
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Over all the two designs seem to have similar merits; when confronted
with a balanced, one-sided z-test, both look like viable alternatives
when the smallest clinically relevant difference δ0 between the means
of the two responses assumes moderate to large values. In fact, when
power is the main concern, our findings are slightly in favor of the
design τ proposed by Bandyophady and Biswas (2001) and Biswas and
Basu (2001), implemented with a small or moderate scaling constant
c. In contrast, the appeal of the design σ generated by the randomly
reinforced urn of Muliere et al. (2005) stems from the fact that it
targets an asymptotic allocation where all the patients are given the
better treatment, a property not shared by the design τ.
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Figure 3. Design σ, first analysis: n = 20, k = 1, 3, 5.
Pictures on the left side represent the function n∗ = n∗(δ)
by means of the values determined by simulation and a
loess curve interpolating them; the horizontal dotted line
corresponds to the sample size n, while the vertical line
indicates the value δG

1 . On the right side, the first quar-
tile, the median and the third quartile of the distribution
of NB are represented as a function of δ; the horizontal
dotted line corresponds to the value n/2 while the verti-
cal line indicates the value δY

1 .



20 A.M. PAGANONI AND P. SECCHI

0.0 0.2 0.4 0.6 0.8

0
40

0
80

0

n = 40, k = 1

Delta

S
am

pl
e 

si
ze

0.0 0.2 0.4 0.6 0.8

0
50

15
0

n = 40, k = 1

Delta

N
_B

0.0 0.2 0.4 0.6 0.8

40
45

50

n = 40, k = 3

Delta

S
am

pl
e 

si
ze

0.0 0.2 0.4 0.6 0.8
0

10
20

n = 40, k = 3

Delta

N
_B

0.0 0.2 0.4 0.6 0.8

40
44

n = 40, k = 5

Delta

S
am

pl
e 

si
ze

0.0 0.2 0.4 0.6 0.8

0
10

20

n = 40, k = 5

Delta

N
_B

Figure 4. Design σ, first analysis: n = 40, k = 1, 3, 5.
Pictures on the left side represent the function n∗ = n∗(δ)
by means of the values determined by simulation and a
loess curve interpolating them; the horizontal dotted line
corresponds to the sample size n, while the vertical line
indicates the value δG

1 . On the right side, the first quar-
tile, the median and the third quartile of the distribution
of NB are represented as a function of δ; the horizontal
dotted line corresponds to the value n/2 while the verti-
cal line indicates the value δY

1 .
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Figure 5. Design σ, first analysis: n = 40, k = 1, 3, 5.
Pictures on the left side represent the function n∗ = n∗(δ)
by means of the values determined by simulation and a
loess curve interpolating them; the horizontal dotted line
corresponds to the sample size n, while the vertical line
indicates the value δG

1 . On the right side, the first quar-
tile, the median and the third quartile of the distribution
of NB are represented as a function of δ; the horizontal
dotted line corresponds to the value n/2 while the verti-
cal line indicates the value δY

1 .
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Figure 6. Design τ, first analysis: n = 20, c = 1, 5, 10.
Pictures on the left side represent the function n∗ = n∗(δ)
by means of the values determined by simulation and a
loess curve interpolating them; the horizontal dotted line
corresponds to the sample size n, while the vertical line
indicates the value δG

1 . On the right side, the first quar-
tile, the median and the third quartile of the distribution
of NB are represented as a function of δ; the horizontal
dotted line corresponds to the value n/2 while the verti-
cal line indicates the value δY

1 .
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Figure 7. Design τ, first analysis: n = 40, c = 1, 5, 10.
Pictures on the left side represent the function n∗ = n∗(δ)
by means of the values determined by simulation and a
loess curve interpolating them; the horizontal dotted line
corresponds to the sample size n, while the vertical line
indicates the value δG

1 . On the right side, the first quar-
tile, the median and the third quartile of the distribution
of NB are represented as a function of δ; the horizontal
dotted line corresponds to the value n/2 while the verti-
cal line indicates the value δY

1 .
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Figure 8. Design τ, first analysis: n = 100, c = 1, 5, 10.
Pictures on the left side represent the function n∗ = n∗(δ)
by means of the values determined by simulation and a
loess curve interpolating them; the horizontal dotted line
corresponds to the sample size n, while the vertical line
indicates the value δG

1 . On the right side, the first quar-
tile, the median and the third quartile of the distribution
of NB are represented as a function of δ; the horizontal
dotted line corresponds to the value n/2 while the verti-
cal line indicates the value δY

1 .
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Figure 9. Design σ, second analysis: 1− β = 0.8, k =
1, 3, 5. Pictures on the left: the black dotted line repre-
sents n = n(δ) while the function n∗ = n∗(δ) is repre-
sented by the continuous black line. Vertical lines corre-
spond to the value δG

2 . Pictures on the right: the black
dotted line represents n/2 for different values of δ, while
the three continuous red lines represent, respectively, the
third quartile, the median and the first quartile of the
distribution of NB. Vertical lines correspond to the value
δY
2 .
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Figure 10. Design σ, second analysis: 1−β = 0.9, k =
1, 3, 5. Pictures on the left: the black dotted line repre-
sents n = n(δ) while the function n∗ = n∗(δ) is repre-
sented by the continuous black line. Vertical lines corre-
spond to the value δG

2 . Pictures on the right: the black
dotted line represents n/2 for different values of δ, while
the three continuous red lines represent, respectively, the
third quartile, the median and the first quartile of the
distribution of NB. Vertical lines correspond to the value
δY
2 .
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Figure 11. Design σ, second analysis: 1 − β =
0.95, k = 1, 3, 5. Pictures on the left: the black dotted
line represents n = n(δ) while the function n∗ = n∗(δ) is
represented by the continuous black line. Vertical lines
correspond to the value δG

2 . Pictures on the right: the
black dotted line represents n/2 for different values of
δ, while the three continuous red lines represent, respec-
tively, the third quartile, the median and the first quartile
of the distribution of NB. Vertical lines correspond to the
value δY

2 .



28 A.M. PAGANONI AND P. SECCHI

0.20 0.25 0.30 0.35 0.40

5
15

30

1 − beta = 0.8, c = 1

Delta

S
am

pl
e 

si
ze

0.20 0.25 0.30 0.35 0.40

0
5

15

1 − beta = 0.8, c = 1

Delta

N
_B

0.40 0.45 0.50 0.55 0.60

2
6

10

1 − beta = 0.8, c = 5

Delta

S
am

pl
e 

si
ze

0.40 0.45 0.50 0.55 0.60
0

2
4

6
8

1 − beta = 0.8, c = 5

Delta

N
_B

0.50 0.55 0.60 0.65 0.70

2
4

6
8

1 − beta = 0.8, c = 10

Delta

S
am

pl
e 

si
ze

0.50 0.55 0.60 0.65 0.70

0
2

4
6

1 − beta = 0.8, c = 10

Delta

N
_B

Figure 12. Design τ, second analysis: 1−β = 0.8, c =
1, 5, 10. Pictures on the left: the black dotted line rep-
resents n = n(δ) while the function n∗ = n∗(δ) is repre-
sented by the continuous black line. Vertical lines corre-
spond to the value δG

2 . Pictures on the right: the black
dotted line represents n/2 for different values of δ, while
the three continuous red lines represent, respectively, the
third quartile, the median and the first quartile of the
distribution of NB. Vertical lines correspond to the value
δY
2 .



29

0.20 0.25 0.30 0.35 0.40

10
30

50

1 − beta = 0.9, c = 1

Delta

S
am

pl
e 

si
ze

0.20 0.25 0.30 0.35 0.40

0
10

20

1 − beta = 0.9, c = 1

Delta

N
_B

0.50 0.55 0.60 0.65 0.70

4
6

8
12

1 − beta = 0.9, c = 5

Delta

S
am

pl
e 

si
ze

0.50 0.55 0.60 0.65 0.70
0

2
4

6
8

1 − beta = 0.9, c = 5

Delta

N
_B

0.60 0.65 0.70 0.75 0.80

2
4

6
8

1 − beta = 0.9, c = 10

Delta

S
am

pl
e 

si
ze

0.60 0.65 0.70 0.75 0.80

0
2

4
6

1 − beta = 0.9, c = 10

Delta

N
_B

Figure 13. Design τ, second analysis: 1−β = 0.9, c =
1, 5, 10. Pictures on the left: the black dotted line rep-
resents n = n(δ) while the function n∗ = n∗(δ) is repre-
sented by the continuous black line. Vertical lines corre-
spond to the value δG

2 . Pictures on the right: the black
dotted line represents n/2 for different values of δ, while
the three continuous red lines represent, respectively, the
third quartile, the median and the first quartile of the
distribution of NB. Vertical lines correspond to the value
δY
2 .
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Figure 14. Design τ, second analysis: 1−β = 0.95, c =
1, 5, 10. Pictures on the left: the black dotted line rep-
resents n = n(δ) while the function n∗ = n∗(δ) is repre-
sented by the continuous black line. Vertical lines corre-
spond to the value δG

2 . Pictures on the right: the black
dotted line represents n/2 for different values of δ, while
the three continuous red lines represent, respectively, the
third quartile, the median and the first quartile of the
distribution of NB. Vertical lines correspond to the value
δY
2 .


