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Abstract

We introduce some parallel domain decomposition preconditioners for
iterative solution of sparse linear systems like those arising from the approx-
imation of partial differential equations by finite elements or finite volumes.
We first give an overview of algebraic domain decomposition techniques. We
then introduce a preconditioner based on a multilevel approximate Schur
complement system. Then we present a Schwarz-based preconditioner aug-
mented by an algebraic coarse correction operator. Being the definition of
a coarse grid a difficult task on unstructured meshes, we propose a general
framework to build a coarse operator by using an agglomeration proce-
dure that operates directly on the matrix entries. Numerical results are
presented aimed at assessing and comparing the effectiveness of the two
methodologies. The main application will concern computational fluid dy-
namics (CFD), and in particular the simulation of compressible flow around
aeronautical configurations.

1 Introduction

Modern supercomputers are often organized as a distributed environment and
an efficient solver for partial differential equations (PDEs) should exploit this
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architectural framework. Domain decomposition (DD) techniques are a natural
setting to implement existing single processor algorithm in a parallel context.

The basic idea, as the name goes, is to decompose the original computational
domain Ω into subdomains Ωi, i = 1, . . . .M , which may or may not overlap, and
then rewrite the global problem as a “sum” of contributions coming from each
subdomain, which may be computed in parallel. Parallel computing is achieved
by distributing the subdomain to the available processors; often, the number
of subdomains equals the number of processors, even if this is not, in general,
a requirement. Clearly one cannot achieve a perfect (ideal) parallelism, since
interface conditions between subdomains are necessary to recover the original
problem, which introduce the need of inter-processor communications. The con-
cept of parallel efficiency is clearly stated for the case of homogeneous systems
(see [12]). An important concept is that of scalability: an algorithm is scalable
if its performance is proportional to the number of processor employed. For
the definition to make sense we should keep the processor workload approxi-
mately constant, so the problem size has to grow proportionally to the number
of processor.

This definition is only qualitative and indeed there is not a quantitative
definition of scalability which is universally accepted, and a number of scalability
models proposed in the last years [13]. They are typically based on the selection
of a measure which is used to characterize the performance of the algorithm, see
for instance [21, 22, 11]. We may consider the algorithm scalable if the ratio
between the performance measure and the number of processors is sub-linear. In
fact, the ideal value of this ratio would be 1. Yet, since this ideal value cannot
be reached in practice, a certain degradation should be tolerated.

Typical quantities that have been proposed to measure system performance
include CPU time, latency time, memory, etc. From the user point of view,
global execution time is probably the most relevant measure. A possible defini-
tion is the following. If E(s,N) indicates the execution time for a problem of
size s when using N processor on a given algorithm, then the scalability from
N to M > N processors is given by

SM,N =
E(Mγ,M)

E(Nγ,N)
,

where γ is the size of the problem on a single processor.
A few factors may determine the loss of scalability of a parallel code: the cost

of inter-processor communication; the portion of code that has to be performed
in a scalar fashion, may be replicated on each processor (for instance i/o if your
hardware does not support parallel i/o). A third factor is related to a possible
degradation of the parallel algorithm as the number of subdomain increases.
In this work we will address exclusively the latter aspect, the analysis of the
other two being highly dependent on the hardware. In particular, since we will
be concerned with the solution of linear systems by parallel iterative schemes,
the condition number of the parallel solver [16] is the most important measure
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related to the algorithm scalability properties. In this context, the algorithm is
scalable if the condition number remains (approximately) constant as the ratio
between problem size and number of subdomains is kept constant. In a domain
decomposition method applied to the solution of PDE’s (by finite volumes or
finite elements) in R

d this ratio is proportional to (H/h)d, being H and h the
subdomain and mesh linear dimension, respectively. We are assuming a partition
with subdomains of (approximately) the same size and a quasi-uniform mesh.

Domain decomposition methods may be classified into two main groups
[16, 20]. The first includes methods that operate on the differential problem,
we will call them differential domain decomposition methods. Here, a differential
problem equivalent to the single domain one is written on the decomposed do-
main. Conditions at the interface between subdomains are recast as boundary
conditions for local differential problems on each Ωi. Then, the discretisation
process is carried out on each subdomain independently (even by using different
discretisation methods, if this is considered appropriate).

The second group includes the DD techniques that operates at the algebraic
level. In this case the discretisation is performed (at least formally) on the
original, single domain, problem and the decomposition process is applied on
the resulting algebraic system. The latter technique has the advantage of being
“problem independent” and may often be interpreted as a preconditioner of the
global solver. The former, however, may better exploit the characteristics of the
differential problem to hand and allows to treat problems of heterogeneous type
more naturally. We refer to the relevant chapter in [16] for more insights on
heterogeneous DD techniques.

In this chapter, we deal with DD schemes of algebraic type. In particular,
we address methods suited to general problems, capable of operating on un-
structured mesh based discretisations. For a more general overview of the DD
method the reader may refer to the already cited literature, the review paper [5]
and the recent monograph [24].

We will focus on domain decomposition techniques that can be applied to the
numerical solution of PDEs on complex, possibly three dimensional, domains.
We will also consider discretisations by finite element or finite volume tech-
niques, on unstructured meshes. The final result of the discretisation procedure
is eventually a large, sparse linear system of the type

Au = f , (1)

where A ∈ R
n×n is a sparse and often non-symmetric and ill conditioned real

matrix. Indeed, also non-linear problems are usually treated by an iterative
procedure (e.g. a Newton iteration) that leads to the solution of a linear system
at each iteration. This is the case, for instance, of implicit time-advancing
schemes for computational fluid dynamics (CFD) problems.

The decomposition of the domain will induce a corresponding block decom-
position of the matrix A and of the vector ~f . This decomposition may be ex-
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ploited to derive special parallel solution procedures, or parallel precondition-
ers for iterative schemes for the solution of system (1). Perhaps the simplest
preconditioner is obtained using a block-Jacobi procedure, where each block is
allocated to a processor and is possibly approximated by an incomplete factor-
ization [17] (since usually an exact factorization is too expensive). This approach
may work well for simple problems, yet its performance degrades rapidly as the
size of the matrix increases, leading to poor scalability properties. Other popu-
lar techniques are the Schwarz methods with a coarse grid correction [2] and the
preconditioners based on the Schur complement system, like the balancing Neu-
mann/Neumann [23], the FETI [10, 24] and the wire-basket method [1, 20]. In
this work we will address preconditioners based either on an approximate Schur
complement (SC) system or on Schwarz techniques, because of their generality
and relatively simple implementation.

Schwarz iterations is surely one of the DD based parallel preconditioner with
the simplest structure. In its basic form, it is equivalent to a block-Jacobi
preconditioner, where each block is identified by the set of unknowns contained
in each subdomain. In order to improve the performance of Schwarz iterations,
the partitions of the original domain are extended, so that they overlap and the
overlapping region acts as means of communication among the subdomains. In
practice, the domain subdivision is commonly carried out at discrete level, that is
by partitioning the computational mesh. In the minimal overlap version of the
Schwarz method the overlap between subdomains is reduced to a single layer
of elements. Although a bigger overlap may improve convergence, a minimal
overlap allows to use the same data structure normally used for the parallel
matrix-vector multiplication, thus saving memory. However, the scalability is
scarce and a possible cure consists in augmenting the preconditioner by a coarse
operator, either in an additive or in a multiplicative fashion [20] . The coarse
operator may be formed by discretising the problem to hand on a much coarser
mesh. The conditions by which a coarse mesh is admissible and is able to provide
an appropriate coarse operator have been investigated in [3]. Another possible
way to construct the coarse operator is to form a reduced matrix by resorting
to a purely algebraic procedure [27, 19]. We will here describe a rather general
setting for the construction of the coarse operator.

The set up of the Schur complement system in a parallel setting is only
slightly more involved. The major issue here is the need of preconditioning the
Schur complement system in order to avoid the degradation of the condition
number as the number of subdomain increases. We will here present a tech-
nique to build preconditioners for the Schur complement system starting from a
preconditioner of the original problem.

The chapter is organized as follows. Schur complement methods are intro-
duced in Sections 2 and 3. Schwarz methods are detailed in Section 4. Numerical
results for a model problem and for the solution of the compressible Euler equa-
tions are presented in Section 5. Section 6 gives some further remarks on the
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techniques that have been presented.

2 The Schur complement system

Let us consider again (1) which we suppose has been derived by a finite element
discretisation of a differential problem posed on a domain Ω ⊂ R

d, d = 2, 3.
Indeed, the considerations of this Section may be extended to other type of
discretisations as well, for instance finite volumes, yet we will here focus on a
finite element setting. More precisely, we can think of (1) as being the algebraic
counterpart of a variational boundary value problem which reads: find uh ∈ Vh

such that
a (uh, vh) = (f, vh) ∀vh ∈ Vh , (2)

where Vh is a finite element space, a the bilinear form associated to the differ-
ential problem to hand and (f, v) =

∫
Ω fvdΩ is the standard L2 product.

We consider a decomposition of the domain Ω made in the following way. We

first triangulate Ω and indicate by T
(Ω)
h the corresponding mesh. For the sake

of simplicity we assume that the boundary of Ω coincides with the boundary
of the triangulation and we consider the case where the degrees of freedom of
the discrete problem are located at mesh vertices, like in linear finite elements.

In particular, a partition into two subdomains is carried out by splitting T
(Ω)

h

into 3 parts, namely T
(1)
h , T

(2)
h and Γ(1,2) such that T

(1)
h ∪ T

(2)
h ∪ Γ(1,2) = T

(Ω)
h .

We may associate to T
(1)

h and T
(2)

h the two disjoint subdomains Ω(1) and Ω(2)

formed by the interior of the union of the elements of T
(1)
h and T

(2)
h respectively,

while Γ(1,2) ≡ Γ(2,1) is clearly equal to Ω \ (Ω(1) ∪ Ω(2)).
Two notable cases are normally faced, namely

• Γ(1,2) reduces to a finite number of disjoint measurable d−1 manifolds. An
example of this situation is illustrated in the left drawing of Fig. 1, where

Γ(1,2) = Ω
(1)

∩ Ω
(2)

, i.e. Γ(1,2) is the common part of the boundary of
Ω(1) and Ω(2). This type of decomposition is called element oriented (EO)
decomposition, because each element of Th belongs exclusively to one of

the subdomains Ω
(i)

, while the vertices laying on Γ(1,2) are shared between
the subdomains triangulations.

• Γ(1,2) ⊂ R
d, d = 2, 3 is formed by one layer of elements of the original mesh

laying between Ω(1) and Ω(2). In Fig. 1, right, we show an example of such a
decomposition, which is called vertex oriented (VO), because each vertex of

the original mesh belongs to just one of the two subdomains Ω
(i)

. We may
also recognize two extended, overlapping, sub-domains: Ω̃(1) = Ω(1)∪Γ(1,2)

and Ω̃(2) = Ω(2) ∪ Γ(1,2). We have here the minimal overlap possible.
Thicker overlaps may be obtained by adding more layers of elements to
Γ(1,2).
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Figure 1: Example of element-oriented (left) and vertex-oriented (right) decom-
position.

Both decompositions may be readily extended to any number of subdomains, as
shown in Fig. 2.

The choice of a VO or EO decomposition largely affects the data structures
used by the parallel code. Sometimes, the VO approach is preferred since the
transition region Γ(1,2) may be replicated on the processors which holds Ω(1) and
Ω(2) respectively and provides a natural means of data communication among
processor which also allow to implement a parallel matrix-vector product. Fur-
thermore, the local matrices may be derived directly from the global matrix A,
with no work needed at the level of the (problem dependent) assembly process.
For this reason the VO technique is also the matter of choice of many parallel
linear algebra packages. We just note that for the sake of simplicity, in this
work we are assuming that the graph of the matrix A coincides with the com-
putational mesh (which is the case of a linear finite element approximation of
a scalar problem). This means that if the element aij of the matrix is different
from zero, then the vertices vi and vj of the computational mesh are connected
by an edge. However, the techniques here proposed may be generalized quite
easily to more general situations.

We now introduce some additional notations. The nodes at the intersection
between subdomains and Γ(1,2) are called border nodes. More precisely, those

in T
(i)
h ∩Γ(1,2) are the border nodes of the domain Ω(i). A node of T

(i)
h which is

not a border node is said to be internal to Ω(i), i = 1, 2. We will consistently use
the subscripts I and B to indicate internal and border nodes, respectively, while

the superscript (i) will denote the subdomain we are referring to. Thus, u
(i)
I will

indicate the vector of unknowns associated to nodes internal to Ω(i), while u
(i)
B

is associated to the border nodes. For ease of notation, in the following we will
often avoid to make a distinction between a domain Ω and its triangulation Th

whenever it does not introduce any ambiguity.

2.1 Schur complement system for EO domain decompositions

Let us consider again the left picture of Fig. 1. For the sake of simplicity, we
assume that the vector ~u is such that the unknowns associated to the points
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Figure 2: Example of element-oriented (left) and vertex-oriented (right) decom-
position in the case of a partition of Ω into several subdomains.

u
(1)
I internal to Ω(1) are numbered first, followed by those internal to Ω(2) (u

(2)
I ),

and finally by those on Γ(1,2) (uB = u
(1)
B = u

(2)
B ) (obviously this situation can

always be obtained by an appropriate numbering of the nodes). Consequently,
equation (1) can be written in the following block form




A
(1)
II 0 A

(1)
IB

0 A
(2)
II A

(2)
IB

A
(1)
BI A

(2)
BI A

(1)
BB + A

(2)
BB







u
(1)
I

u
(2)
I

uB


 =




f
(1)
I

f
(2)
I

fB


 . (3)

Here, A
(i)
II contains the elements of A involving the nodes internal to subdomain

Ω(i), while the elements in A
(i)
IB are formed by the contribution of the boundary

nodes to the rows associated to the internal ones. Conversely, in A
(i)
BI we have

the terms that link border nodes with internal ones (for a symmetric matrix

A
(i)
BI = A

(i)T

IB ). Finally, ABB = A
(1)
BB +A

(2)
BB is the block that involves only border

nodes, which can be split into two parts, each built from the contribution coming
from the corresponding subdomain. For instance, in a finite element procedure
we will have

[A
(i)
BB ]kj = a(φk|Ω(i) , φj |Ω(i)) , (4)

where φk, φj are the finite element shape functions associated to border nodes
k and j, respectively, restricted to the subdomain Ω(i) and a is the bilinear
form associated to the differential problem under consideration. An analogous

splitting involves the right hand side fB = f
(1)
B + f

(2)
B .

A formal LU factorization of (3) leads to




A
(1)
II 0 0

0 A
(2)
II 0

A
(1)
BI A

(2)
BI I







I 0 A
(1)−1

II A
(1)
IB

0 I A
(2)−1

II A
(2)
IB

0 0 Sh







u
(1)
I

u
(2)
I

uB


 =




f
(1)
I

f
(2)
I

fB


 ,
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where Sh is the Schur complement (SC) matrix, given by Sh = S
(1)
h + S

(2)
h

where
S

(i)
h = A

(i)
BB − A

(i)
BIA

(i)−1

II A
(i)
IB (5)

is the contributions associated to the subdomain Ω(i), for i = 1, 2. We may note
that we can solve the system (at least formally) using the following procedure.
We first compute the border values uB by solving

ShuB = g, (6)

where g = g(1) + g(2), with

g(i) = f
(i)
B − A

(i)
BIA

(i)−1

II f
(i)
I , i = 1, 2 .

Then, we build the internal solutions u
(i)
I , for i = 1, 2, by solving the two com-

pletely independent linear systems

A
(i)
II u

(i)
I = f

(i)
I − A

(i)
IBuB , i = 1, 2 . (7)

The second step is perfectly parallel. Furthermore, thanks to the splitting of
Sh and ~g, a parallel iterative scheme for the solution of (6) can also be devised.
However, some communications among subdomains is here required. The con-

struction of the matrices A
(i)
BB in (4) requires to operate at the level of the matrix

assembly by the finite element code. In general, there is no way to recover them
from the assembled matrix A. Therefore, this technique is less suited for “black
box” parallel linear algebra packages. More details on the parallel implementa-
tion of the Schur complement system are given in Sec. 2.3.

2.2 Schur complement system for VO domain decompositions

Let us consider again problem (1) where we now adopt a VO partition into two
subdomains like the one on the right of Fig. 1. The matrix A can be written
again in a block form, where this time we have

Au =




A
(1)
II A

(1)
IB 0 0

A
(1)
BI A

(1)
BB 0 E(1,2)

0 0 A
(2)
II A

(2)
IB

0 E(2,1) A
(2)
BI A

(2)
BB







u
(1)
I

u
(1)
B

u
(2)
I

u
(2)
B


 =




f
(1)
I

f
(1)
B

f
(2)
I

f
(2)
B


 . (8)

Here, the border nodes have been subdivided in two sets: the set B (1) of nodes
of Γ(1,2) which lay on the boundary of Ω(1) (the border nodes of Ω(1)) and the
analogous set B(2) of the border nodes of Ω(2). Correspondingly, we have the

blocks u
(1)
B and u

(2)
B in the vector of unknowns and f

(1)
B and f

(2)
B in the right

hand side. The entries in E(i,j) are the contribution to the equation associated
to nodes in B(i) coming from the nodes in B(j). We call the nodes in B(j)

contributing to E(i,j) external nodes of domain Ω(i).
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Figure 3: Sparsity pattern for SC matrix derived from an EO decomposition
(left) and a VO one (right).

.

The nodes internal to Ω(i) are the nodes of the triangulation T
(i)

h whose
“neighbors” all belong to Ω(i). In a matrix-vector product, values associated
to internal nodes may be updated without communication with the adjacent
subdomains. The update of the border nodes requires instead the knowledge of
the values at the corresponding external nodes (which are in fact border nodes of
neighboring subdomains). This duplication of information lends itself to efficient
implementation of inter-processor communications.

Analogously to the previous section we can construct a Schur complement
system operating on the border nodes, obtaining

ShuB =

(
S

(1)
h E(1,2)

E(2,1) S
(2)
h

)(
u

(1)
B

u
(2)
B

)
=

(
g(1)

g(2)

)
,

where S
(1)
h and S

(2)
h are defined as in (5). Note, however, that now the entries in

A
(i)
BB , i = 1, 2, are equal to the corresponding entries in the original matrix A.

Thus they can be built directly from A as soon as the topology of the domain
decomposition is known.

Once we have computed the border values uB, the internal solutions u
(i)
I , i =

1, 2, are obtained by solving the following independent linear systems,

A
(i)
II u

(i)
I = f

(i)
I − A

(i)
IBu

(i)
B , i = 1, 2 .

In Fig. 3 we report the sparsity pattern of Sh in the case of a decomposition
with 2 subdomains.

This procedure, like the previous one, can be generalized for an arbitrary
number of subdomains. If we have M subdomains the decomposition of system
(8) may be written in a compact way as

(
AII AIB

ABI ABB

)(
uI

uB

)
=

(
fI
fB

)
, (9)
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where

AII =




A
(1)
II 0

. . .

0 A
(M)
II


 , ABB =




A
(1)
BB E(1,2) . . . E(1,M)

E(2,1)

...
. . .

...

E(M,1) A
(M)
BB




,

AIB =
(
A

(1)
IB A

(2)
IB . . . A

(M)
IB

)
, ABI =

(
A

(1)
BI A

(2)
BI . . . A

(M)
BI

)T

and

uI =
(
u

(1)
I . . . u

(M)
I

)T
, uB =

(
u

(1)
B . . . u

(M)
B

)T
,

fI =
(
f
(1)
I . . . f

(M)
I

)T
, fB =

(
f
(1)
B . . . f

(M)
B

)T
.

For the sake of space, we have transposed some matrices. Note however that
here the transpose operator acts on the block matrix/vector, not on the blocks

themselves, i.e.
(
~a ~b

)T
equals to

(
~a
~b

)
and not

(
~aT

~bT

)
.

The Schur complement system of problem (1) can now be written as ShuB =
g, where

Sh = ABB − ABIA
−1
II AIB, and g = fB − ABIA

−1
II fI .

To conclude this Section, we wish to note that an EO arrangement is often
the direct result of a domain decomposition carried out at a differential level.
In this case, the Schur complement matrix may be identified as the discrete
counterpart of a particular differential operator acting on the interface Γ (the
Steklov-Poincarè operator [16]). Instead, a VO decomposition is normally the
result of a purely algebraic manipulation and in general is lacking an immediate
interpretation at differential level. Finally, the VO arrangement produces a
larger number of degrees of freedom in the resulting Schur complement system.

2.3 Parallel solution of the Schur complement system

Schur complement matrices are usually full and in large scale problems there
is no convenience in building them in an explicit way. Thus, the SC system is
normally solved by an iterative method, such as a Krylov acceleration method
[25], which requires only the multiplication of the matrix with a vector. To
compute wB = Sh vB , one may proceed as indicated in the following algorithm,
where Ri is the restriction operator from the global border values vB to those
associated to subdomain Ω(i).

Algorithm 1: Computation of wB = Sh vB

10



1. Restrict vB to each subdomain boundary,

v
(i)
B = RivB , i = 1, . . . ,M .

2. For every Ω(i), i = 1, . . . M solve

A
(i)
II u

(i)
I = −A

(i)
IBv

(i)
B ,

then compute

w
(i)
B =

M∑

j=1

E(ij)vj
B + A

(i)
BBv(i)

B − A
(i)
BIu

(i)
I .

3. Apply the prolongation operators to get wB =
∑M

i=1 RT
i w

(i)
B .

In general, Steps 1 and 3 are just formal if we operate in a parallel environ-
ment since each processor already handles the restricted vectors uB

(i) instead
of the whole vector. Note that the linear system in Step 2 must be solved with
high accuracy in order to make the Schur complement system equivalent to the
original linear system (1).

Algorithm 1 requires four matrix-vector products and the solution of a linear
system for each subdomain. Even if carried out in parallel, the latter operation
can be rather expensive and is one of the drawbacks of a SC based method. The
local problems have to be computed with high accuracy if we want to recover
an accurate global solution.

Although (at least in the case of symmetric and positive-definite matrices)
the condition number of the Schur matrix is no larger than that of the original
matrix A [20, 16], nevertheless it increases when h decreases (for a fixed number
of subdomains), but also when H decreases (for a fixed h, i.e. for a fixed problem
size). This is a cause of loss of scalability. A larger number of subdomains imply
a smaller value of H, the consequent increase of the condition number causes in
turn a degradation of the convergence of the iterative linear solver. The problem
may be alleviated by adopting an outer preconditioner for Sh, we will give a fuller
description in the next Paragraph.

We want to note that if we solve also Step 2 with an iterative solver, a good
preconditioner must be provided also for the local problems in order to achieve
a good scalability (for more details, see for instance [20, 23]).

2.3.1 Preconditioners for the Schur complement system

Many preconditioners have been proposed in the literature for the Schur comple-
ment system with the aim to obtain good scalability properties. Among them,
we briefly recall the Jacobi preconditioner P J

h , the Dirichlet-Neumann P ND
h , the

balancing Neumann-Neumann P NN,b
h [23], the Bramble-Pasciak P BPS

h [1], the
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Preconditioner Estimation of the condition number

of the preconditioned Schur comple-

ment operator

P J
h K((P J

h )−1Sh) ≤ CH−2(1 + log(H/h))2

PBPS
h K((P BPS

h )−1Sh) ≤ C(1 + log(H/h))2

P V S
h K((P V S

h )−1Sh) ≤ C(1 + log δ−1)2

PWB
h K((P WB

h )−1Sh) ≤ C(1 + log(H/h))2

PNN,b
h K((P NN,b

h )−1Sh) ≤ C(1 + log(H/h))2

Table 1: Convergence rate for different preconditioner of the Schur complement
system with respect to the discretisation size h and the subdomain size H, for
an elliptic problem. The constants C (which are different for each method)
are independent from h and H, yet they may depend on the coefficients of the
differential operator. The δ ∈ (0, 1] in the Vertex Space preconditioner is the
overlap fraction, see the cited reference for details.

Vertex-Space P V S
h [8] and the wire-basket P WB

h preconditioner. We refer [16, 24]
and to the cited references for more details. Following [16], we summarize in Ta-
ble 1 their preconditioning properties with respect to the geometric parameters
h and H, for an elliptic problem (their extension to non-symmetric indefinite
systems is, in general, not straightforward). We may note that with these pre-
conditioners the dependence on H of the condition number becomes weaker, a
part from the Jacobi preconditioner which is rather inefficient. The most effec-
tive preconditioners are also the ones more difficult to implement, particularly
on arbitrary meshes.

Alternative and rather general ways to build a preconditioner for the SC
system exploits the identity

S−1
h =

(
0 I

)
A−1

(
0
I

)
, (10)

where I is the nB × nB identity matrix, being nB the size of Sh. We can
construct a preconditioner PSchur for Sh from any preconditioner P−1

A of the
original matrix A by writing

PSchur =
(
0 I

)
P−1

A

(
0
I

)
.

If we indicate with vB a vector of size nB and with RB the restriction operator
on the interface variables, we can compute the operation P −1

SchurvB (which is
indeed the one requested by an iterative solver) by an application of P −1

A , as
follows

P−1
SchurvB = RBP−1

A

(
0

vB

)
= RBP−1

A RT
BvB . (11)
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In a parallel setting, we will of course opt for a parallel P −1
A , like a Schwarz-based

preconditioner of the type outlined in Section 4. This is indeed the choice we
have adopted to precondition the SC matrix in many examples shown in this
work.

3 The Schur complement system used as a precondi-

tioner

Although the Schur complement matrix is better conditioned than A, its mul-
tiplication with a vector is in general expensive. Indeed Step 2 of Algorithm 1
requires the solution of M linear systems, which should be carried out to machine
precision, otherwise the iterative scheme converges slowly or may even diverge.

An alternative is to adopt a standard (parallel) iterative scheme for the global
system (1) and use the SC system as a preconditioner. This will permit us to
operate some modifications on the SC system in order to make it more compu-
tationally efficient. Precisely, we may replace Sh with a suitable approximation
S̃ that is cheaper to compute. The preconditioning matrix can then be derived
as follows. We consider again the block decomposition (9) and we write A as a
product of two block-triangular matrices,

A =

(
AII 0
ABI I

)(
I A−1

II AIB

0 Sh

)
.

Let us assume that we have good, yet cheaper, approximations of AII and Sh,
which we indicate as ÃII and S̃, respectively, a possible preconditioner for A is
then

PASC =

(
ÃII 0
ABI I

)(
I Ã−1

II AIB

0 S̃

)
,

where ASC stands for Approximate Schur Complement. Indeed the approxi-
mation ÃII may be used also to build S̃ by posing S̃ = ABB − ABIÃ

−1
II AIB.

Note that PASC operates on the whole system while S̃ on the interface variables
only, and that PASC does not need to be explicitly built, as we will show later
on. A possible approximation for AII is an incomplete LU decomposition [17],
i.e. ÃII = L̃Ũ , where L̃ and Ũ are obtained from an incomplete factorization of
AII . Another possibility is to approximate the action of the inverse of AII by
carrying out a few cycles of an iterative solver or carrying out a multigrid cycle.

The solution of the preconditioned problem PASC = ~z~r, where ~r = (rI , rB)T

and ~z = (~zI , ~zB) may be effectively carried out by the following Algorithm.

Algorithm 2: Application of the ASC preconditioner

1. Apply the lower triangular part of PASC. That is solve ÃIIyI = rI and
compute ~yB = rB − ABIyI .
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2. Apply the upper triangular part of PASC. That is solve

S̃~zB = ~yB , (12)

with S̃ = ABB − ABIÃ
−1
II AIB , and compute ~zI = yI − Ã−1

II AIBzB . The
solution of (12) may be accomplished by an iterative scheme exploiting
Algorithm 1.

Notice that the Step 1 and the computation of zI in Step 2 are perfectly parallel.
On the contrary (12) is a global operation, which, however, may be split into
several parallel steps preceded and followed by scatter and gather operations
involving communication among subdomains. Note that the matrix S̃ may itself
be preconditioned by using the technique outlined in Section 2.3.1, in particular
by using a Schwarz-type preconditioner, as illustrated in Section 3.

As already said, ÃII may be chosen as the ILU(f) incomplete factorization
of AII , where f is the fill-in factor. Furthermore, (12) may be solved inexactly,
using a fixed number L of iterations of a Krylov solver. We will denote such
preconditioner as ASC-L-iluf. Alternatively, one may avoid to factorize AII

and build its approximation implicitly by performing a fixed number of iteration
when computing the local problems in Step (2) of Algorithm 1.

In both cases the action the ASC preconditioner corresponds to that of a ma-
trix which changes at each iteration of the outer iterative solver. Consequently,
one needs to make a suitable choice of the Krylov subspace accelerator for the
the solution of (1) like, for instance, GMRESR [26] or FGMRES [17]. The former
is the one we have used for the numerical results shown in this work.

We mention that the ASC preconditioner lends itself to a multilevel imple-
mentation, where a family of increasingly coarser approximations of the Schur
complement matrix is used to build the preconditioner. The idea is that the
coarsest approximation should be small enough to be solved directly. The draw-
back is the need of assembling and storing a number of matrices equal to the
number of levels.

4 The Schwarz preconditioner

The Schwarz iteration is a rather well known parallel technique based on an
overlapping domain decomposition strategy. In a VO framework, it is normally
built as follows (we refer again to Fig. 1).

Each subdomain Ω(i) is extended to Ω̃(i) by adding the strip Γ(1,2), i.e. Ω̃(i) =
Ω(i) ∪Γ(1,2), i = 1, 2. A parallel solution of the original system is then obtained
by an iterative procedure involving local problems in each Ω̃(i), where on ∂Ω̃i ∩
Ω(j) we apply Dirichlet conditions by getting the data from the neighboring
subdomains.

What we have described here is the implementation with minimum overlap.
A larger overlap may be obtained by adding further layers of elements. The
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procedure may be readily extended to an arbitrary number of subdomains. More
details on the algorithm with an analysis of its main properties may be found,
for instance, in [16].

A multiplicative version of the procedure is obtained by ordering the sub-
domains and solving the local problems sequentially using the latest available
interface values. This is indeed the original Schwarz method and is sequential.
Parallelism can be obtained by using the additive variant where all subdomain
are advanced together, by taking the interface values at the previous iteration.

From an algebraic point of view, multiplicative methods can be reformu-
lated as a block Gauss-Seidel procedure, while additive methods as block Jacobi
procedure [17].

If used as a stand-alone solver, the Schwarz iteration algorithm is usually
rather inefficient in terms of iterations necessary to converge. Besides, a damp-
ing parameter has to be added, see [16], in order to ensure that the algorithm
converges. Instead, the method is a quite popular parallel preconditioner for
Krylov accelerators. In particular its minimum overlap variant, which may ex-
ploit the same data structure normally used for the parallel implementation of
the matrix-vector product, allowing a saving in memory requirement.

Let B(i) be the local matrix associated to the discretisation on the extended
subdomain Ω̃(i), R(i) a restriction operator from the nodes in Ω to those in Ω̃(i),
and P (i) a prolongation operator (usually, P (i) = (R(i))T ). Using this notation,
the Schwarz preconditioner can be written as

P−1
AS =

M∑

i=1

P (i)B(i)R(i), (13)

being M the number of subdomains.
The matrices B(i) can be extracted directly from the set of rows of the global

matrix A corresponding to the local nodes, discarding all coefficients whose
indexes are associated to nodes exterior to the subdomain. The application of
R(i) is trivial, since it returns the locally hosted components a the vector; the
prolongation operator P (i) just does the opposite operation.

Although simple to implement, the scalability of the Schwarz preconditioner
is hindered by the weak coupling between far away subdomains. We may recover
a good scalability by the addition of a coarse operator [9, 20]. If the linear system
arises from the discretisation of a PDE system a possible technique to build the
coarse operator matrix AH consists in discretising the original problem on a
(very) coarse mesh, see for instance [4]. However the construction of a coarse
grid and of the associated restriction and prolongation operators may become
a rather complicated task when dealing with three dimensional problems and
complicated geometries. An alternative is to resort to algebraic procedures, such
as the aggregation or agglomeration technique [20, 1, 4, 2, 27, 19], which are akin
to procedures developed in the context of algebraic multigrid methods. Here,
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we will focus on the latter, and in particular we will propose an agglomeration
technique.

4.1 The agglomeration coarse operator

To fix the ideas let us consider a finite element formulation (2). Thanks to a VO
partitioning we can split the finite element function space Vh as

Vh =

M⋃

i=1

V
(i)
h ,

where M is the number of subdomains, and V
(i)
h is set of finite element functions

associated to the triangulation of Ω̃(i) with zero trace on ∂Ω̃(i) \∂Ω. We suppose
to operate in the case of minimal overlap among subdomains as described in the

previous section and we indicate with n(i), the dimension of the space V
(i)
h . By

construction, n =
∑M

i=1 n(i).

We can build a coarse space considering for each Ω(i) a set of vectors {β
(i)
s ∈

R
n(i)

, s = 1, . . . , l(i)} of linearly independent nodal weights β
(i)
s =

(
β

(i)
s,1, . . . , β

(i)

s,n(i)

)
,

with β
(i)

s,n(i) 6= 0. The value l(i), i = 1, . . . , will be the (local) dimension of

the coarse operator on the corresponding subdomain. Clearly, we must have
l(i) ≤ n(i) and, in general, l(i) << n(i). We indicate with l the global dimension
of the coarse space, i.e.

l =

M∑

i=1

l(i) .

With the help of the vectors β
(i)
s , we can define a set of local coarse space

functions as linear combination of basis functions, i.e.

V
(i)
H =



Φ(i)

s : Ω → R | Φ(i)
s =

n(i)∑

k=1

β
(i)
s,kφ

(i)
k , s = 1, . . . , l(i)



 .

It is easy to verify that the functions in V
(i)
H are linearly independent. Finally,

the set VH =
⋃M

i=1 V
(i)
H is the base of the global coarse grid space VH , i.e. we

take VH = span{VH}. By construction, dim(VH) = card(VH) = l.
We note that VH ⊂ Vh, as it is built by linear combinations of function in

Vh, and any function uH ∈ VH may be written as

uH(~x) =
M∑

i=1

l(i)∑

s=1

U (i)
s Φ(i)

s (~x), (14)

where the U
(i)
s are the “coarse” degrees of freedom. Finally, the coarse problem

is built as:
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Find uH ∈ VH so
a(uH , wH) = f(wH), ∀wH ∈ VH .

From an algebraic point of view, we have

M∑

i=1

l(i)∑

s=1

U (i)
s

n(i)∑

k=1

n(m)∑

t=1

β
(i)
s,kβ

(m)
q,t a(φ

(i)
k , φ

(m)
t ) =

n(m)∑

t=1

β
(m)
q,t (f, φ

(m)
t )

q = 1, . . . , l(m), m = 1, . . . ,M .

To complete the procedure we need to define a restriction operator RH :
Vh → VH which maps a generic finite element function to a coarse grid function.
Since u ∈ Vh may be written as

uh =

M∑

i=1

n(i)∑

k=1

φ
(i)
k u

(i)
k ,

where the u
(i)
k are the degrees of freedom associated to the triangulation of Ω(i),

a restriction operator may be defined by computing uH = Rhu as

uH =

M∑

i=1

l(i)∑

s=1

U (i)
s Φ(i)

s ,

where

U (i)
s =

n(i)∑

k=1

β
(i)
s,ku

(i)
k , s = 1, . . . l(i), i = 1 . . . ,M.

At the algebraic level, we build a global vector UH by assembling the U
(i)
s

on a subdomain basis, i.e.

UH =
(
U

(1)
1 . . . U

(1)

l(1)
. . . U

(M)

l(M)

)T
,

and we arrange similarly the vector uh of the nodal values of uh, i.e.

uh =
(
u

(1)
1 . . . u

(1)

n(1) . . . u
(M)

n(M)

)T
.

The prolongation matrix RT
H ∈ R

n×l will then have the following block struc-
ture,

RT
H =




β
(1)T

1 β
(1)T

2 . . . β
(1)T

l(1)
0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 β
(2)T

1 β
(2)T

2 . . . β
(2)T

l(2)
0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . 0 β
(M)T

1 β
(M)T

2 . . . β
(M)T

l(M)




,
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Proc 4

Proc 3
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Proc 1

Figure 4: Example of two-level decomposition. First level in continuous line, and
second level in dashed line. Typically, each first-level decomposition subdomain
is given to a different processor.

and the coarse matrix AH and right-hand side of the coarse system can be
written as

AH = RHART
H , ~fH = RH

~f ,

respectively.

The conditions imposed on the β
(i)
s vectors guarantees that RH has full rank.

Moreover, if A is symmetric and positive definite, then AH will share the same
property. The application of the agglomeration coarse grid operator does not
require to build RH explicitly. Even the construction of the vectors β can be
avoided if they have a simple structure. In fact the construction of AH involves
just a weighted sum of the element of A. Concerning the parallel implementation,
the overhead of the coarse problem depends in general on the number of local
coarse degrees of freedom. In general l(i) << n(i) (in the limit we may even take
l(i) = 1 for all i!), and consequently the matrix AH is rather small compared
to A. This a major difference from the use of this technique in an algebraic
multigrid setting, where many levels of coarse operator are considered.

The build up of the coarse linear system can be carried out as follows. Each
processor computes the contribution to AH and ~fH corresponding to the associ-
ated subdomains, then it broadcasts the results to the other processors. Being
the coarse system small, the cost of the broadcast operation is limited. Further-
more, it is usually carried out only once.

The domain decomposition technique may be used also for the set up of

the β
(i)
s vectors. Indeed, after having set up the basic Schwarz preconditioner

by assigning each extended subdomain Ω̃i to a different processor, at a second
stage, each subdomain Ω̃(i) can be further partitioned into l(i) connected parts

with minimum overlap. We will indicate this second level partition as ω
(i)
s with

s = 1, . . . , l(i). Then we may take
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βs,k =

{
1 if node k belongs to ω

(i)
s \∂ω

(i)
s ,

0 otherwise.

As already explained, the coarse grid operator is used to improve the scala-
bility of a Schwarz-type parallel preconditioner PS . We will indicate with PACM

a preconditioner augmented by the application of the coarse operator (ACM
stands for agglomeration coarse matrix) and we illustrate two possible strategies
for its construction.

A one-step preconditioner, PACM,1, may be formally written as

P−1
ACM,1 = P−1

S + RT
H A−1

H RH , (15)

and it corresponds to an additive application of the coarse operator.
An alternative formulation adopts the following two-steps Richardson method

~un+1/2 =~un + P−1
S ~rn ,

~un+1 =~un+1/2 + RT
H A−1

H RH~rn+1/2 ,
(16)

where ~rn and ~un are respectively the residual and the approximate solution at the
n− th iteration of the outer iterative solver. The corresponding preconditioning
matrix can be formally written as

P−1
ACM,2 = P−1

S + RT
H A−1

ACM RH − P−1
S ART

H A−1
ACM RH . (17)

The implementation of (15) and (17) requires the parallel solution of the
coarse problem

AH~uH = ~rH , (18)

where ~rH = RH~r. If one has only a limited number of processors at disposal, per-
haps the best approach is to gather the entire coarse matrix AH on one processor
(say, processor 0), and perform each solution phase of (18) using an appropriate
sequential linear solver. Each processor computes its contribution to ~rH and
sends it to processor 0 (gathering phase). The solution computed by processor
0 will then be scattered to the other processors, for example by a broadcast
operation and the final prolongation operation will be carried out independently
on each processor. As the coarse problem is likely to be small, its sequential
solution causes little overhead and the cost of broadcast communication is also
likely to be negligible as well.

Instead, if hundreds or thousands of processors are used, the coarse problem
is likely to have a non-negligible size, and furthermore, the cost of the gathering-
scattering communication phases may be substantial. Therefore, in this case a
parallel direct solver is to be preferred. Generic interfaces to serial and parallel
direct solvers are available, see [18]. We also mention that the presented two-
level algebraic preconditioner can be extended in a multilevel fashion; see for
instance [15].
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5 Applications

In this Section we show some applications of the techniques here illustrated.
We will report some academic tests used mainly to assess the basic properties
of the scheme and more realistic applications. The latter include the solution
of compressible flow around aircrafts and free surface hydrodynamics problems.
For the decomposition of the domain, we have adopted the software package
Metis [14], which operates on the finite element mesh, and can produce both
EO and VO decompositions. For the overlapping Schwarz preconditioner, wider
levels of overlap are recursively created by adding internal nodes that are linked
with a side to the current overlap region. If we use higher order finite elements,
we may still make the basic partitioning using just the mesh information. Then
the new nodes corresponding to the additional degrees of freedom are added and
their nature (interior, exterior or border) can be immediately identified by the
geometrical entity that is associated to the node. For instance, additional in a
VO framework, additional nodes on a side linking to nodes internal to subdomain
Ωi are internal to Ωi etc.

5.1 2D Poisson Problem

We have considered the following Poisson problem

{
−∆u = f in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1) × (0, 1). For the discretisation we have used P1 finite elements
on a regular mesh. The linear system has been solved using GMRES(60), in the
case of the Schwarz preconditioner, or GMRESR with the ASC preconditioner,
up to a tolerance of 10−6. The right-hand side is made up of random numbers
between 0 and 1.

Being the mesh structured, we have divided the computational domain into
M square subdomains, and we have used these subdomains to build a “classical”
coarse correction for a 2-level Schwarz preconditioner, following [9].

In Table 2 we have compared the Schwarz preconditioner (PS) without the
coarse grid correction, the one augmented by the “classical” coarse operator,
indicated by PC , and the proposed preconditioners PACM,1 and PACM,2. Finally,
we report the results obtained with the ASC preconditioner ASP-L-iluf.

The performance of the Schwarz method without any coarse correction de-
grades rapidly, demonstrating the poor scalability of the basic algorithm. Pre-
conditioning with PACM,1 has a very poor influence (probably also because of the
relative small number of subdomains), while the 2-level version behaves much
better. The ASC-type preconditioners show a very good scalability, even if the
CPU times, reported in Table 3, are less interesting. Another important pa-
rameter is the dimension of the agglomeration coarse space, and it is analyzed
in Tables 4 and 5. Note that increasing the dimension of the coarse space has
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Table 2: 2D Poisson problem. Comparison of different preconditioners. Number
of iterations needed to reduce the initial residual by a factor of 106, M is the
number of subdomains. The starting mesh has 180 × 180 squares, each of them
has been divided into 2 triangles.

solver M = 4 M = 9 M = 16 M = 25

PS GMRES - 57 70 76
PC GMRES - 42 40 39

PACM,1 GMRES - 56 69 70
PACM,2 GMRES - 51 49 46

ASP-2-ilu0 GMRESR 99 97 97 99
ASP-4-ilu0 GMRESR 82 78 75 71
ASP-2-ilu1 GMRESR 68 68 70 69
ASP-2-ilu2 GMRESR 52 53 56 52

Table 3: 2D Poisson problem. Comparison of different preconditioners. CPU-
time in seconds to reduce the initial residual by a factor of 106.

M = 4 M = 9 M = 16 M = 25

PS - 3.90 1.59 0.77
PC - 5.50 1.94 2.13

PACM,1 - 5.10 2.08 1.68
PACM,2 - 4.16 2.03 0.89

ASP-2-ilu0 12.64 3.94 3.34 2.12
ASP-4-ilu0 9.73 5.46 2.23 1.88
ASP-2-ilu1 8.04 3.87 1.80 2.11
ASP-2-ilu2 6.44 4.32 1.77 1.54

a positive effect on the convergence. Even if the numerical experiments show
that the “classic” preconditioner is in general more effective unless a “rich” local
coarse space dimension is used in the agglomeration procedure, we point out
again the greater flexibility and generality of the latter.

5.2 The compressible Euler equations

Any standard spatial discretisation applied to the Euler equations leads eventu-
ally to a system of ODE in time, which may be written as

dU

dt
= R

(
~U
)

, (19)

where ~U = (U1, U2, . . . , Un)T is the vector of unknowns with Ui = Ui(t) and
R (U) the result of the spatial discretisation of the Euler fluxes. An implicit
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Table 4: 2D Poisson problem. PACM,2. The table reports the number of itera-
tions needed to reduce the initial residual by a factor of 106.

Local dimension of coarse space M = 9 M = 16 M = 25

1 51 49 46
2 57 54 50
4 55 49 46
8 50 45 41
32 50 34 32

Table 5: 2D Poisson problem. PACM,2. The table reports the CPU time (in
seconds) needed to reduce the initial residual by a factor of 106.

Local dimension of coarse space M = 9 M = 16 M = 25

1 4.16 2.03 0.89
2 4.28 1.60 0.98
4 4.22 1.55 0.96
8 4.16 1.54 0.88
32 4.17 1.52 0.94

two-step scheme applied to (19), for instance a backward Euler method, yields

~Un+1 − ~Un = ∆tR
(

~Un+1
)

, (20)

where ∆t is a diagonal matrix of local time steps, i.e. ∆t = diag(∆ti, i =
1, . . . , n). The non-linear problem (20) may be solved by employing a Newton
iterative procedure, which computes successive approximations ~U(k+1) of ~Un+1

by solving

[
I + ∆t

∂R

∂~U

(
~U(k)

)](
~U(k+1) − ~Un

)
= ~U(k) − ~Un − ∆tR

(
~U(k)

)
, k = 0, . . . ,

with ~U(0) = ~Un. We have reduced the original non-linear problem to the solution
of a series of linear systems which will be finally tackled by the proposed parallel
techniques.

Since we are considering steady state solutions, we have taken just a single
iteration of the Newton procedure. Furthermore, we have taken an approximate
Jacobian ∂R

∂~U
. More precisely, the Jacobian is the exact Jacobian of a first-

order upwind spatial discretisation. This ease up the computation greatly. The
resulting method is sometimes called pseudo-transient continuation [6].

For the numerical experiments at hand we have used the parallel version
of the code THOR, developed at the Von Karman Institute. This code uses
for the spatial discretisation the multidimensional upwind finite element scheme
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Figure 5: Pressure coefficient contours for FALCON 45k.

Figure 6: Mach number contours for M6 316K.

[7]. The solutions obtained on two of the presented test cases are illustrated in
Figs. 5 and 6.

The test cases are summarized in Table 6. For all of them, the starting
solution is a constant vector, and the local CFL numbers are varied from 10
to 105, by multiply them at each time level by a factor of 2 until we reach
CFL=105. The computations are stopped when the Euclidean norm of the
density residual is less than 10−6. As previously described, at each time level
we have to solve a linear system. This is done using GMRES(60) in the case of
Schwarz-type preconditioner or GMRESR if the ASC preconditioner is chosen,
up to a tolerance on the relative residual ||r||/||r0|| of 10−6. The starting solution
is the zero vector. The Schwarz preconditioner PS uses a minimal overlap and
the local problems are solved inexactly using an ILU(0) decomposition. A first
test case concerns the flow around a Falcon Aircraft. We have considered a free-
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Table 6: Main characteristics of the test cases.
name M∞ α N nodes N cells

FALCON 45k 0.45 1.0 45387 255944
M6 23k 0.84 3.06 23008 125690
M6 42k 0.84 3.06 42305 232706
M6 94k 0.84 3.06 94493 666569
M6 316k 0.84 3.06 316275 1940182
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Figure 7: FALCON 45k. Convergence history with 4 (left) and 8 processors
(right) with the ASC preconditioner, for different values of L.

stream Mach number of 0.45 and zero angles of yaw and attach. The mesh is
formed by 45387 elements, corresponding to 226935 degrees of freedom.

Figures 7 and 8 report the iterations to converge at each time level for dif-
ferent values of L, using 4, 8, 16 and 32 SGI-Origin 3000 processors for FAL-

CON 45k. The time step in Equation (19) is increased exponentially. This quite
common practice, here adopted in order to minimize the effect of “bad” start-
ing solutions on the convergence of the Newton method, makes the first linear
systems relatively well conditioned. The iterations to converge increase at each
time level, to decrease again when the system is approaching the steady-state
solution. We may notice that using 16 and 32 processors the ASC preconditioner
cannot guarantee good performance, at least for some combinations of the num-
ber of levels L and CFL number. This may suggest to adapt the value of L to
the CFL number. The elapsed CPU times are reported in Table 7, where we
have highlighted the best performance. We may notice that one iteration of the
nested solver is not enough to guarantee good convergence results, especially as
the number of processors grows. At the same time, high values of L will decrease
the performance. A value of about 4 seems a good compromise.

In Fig. 9 we have reported the results obtained with the proposed Schwarz
methodology and in particular the influence of the local dimension of the coarse
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Figure 8: FALCON 45k. Convergence history with 16 processors (left) and 32
processors (right) with the ASC preconditioner, for different values of L.

Table 7: FALCON 45k. CPU-time (in seconds) for ASC preconditioner, using
different values of L.

N procs ASC-1-ilu0 ASC-2-ilu0 ASC-4-ilu0 ASC-8-ilu0

4 2542.4 2401.7 2393.2 3319.7
8 925.5 897.6 1406.6 1423.2
16 863.7 753.7 561.6 707.2
32 443.8 332.1 248.6 398.6

space Np for PACM,1 and PACM,2, using 16 MIPS 14000 processors. We recall
again that Np is the dimension of the coarse space on each processor. For low
CFL numbers the value of Np does not affect remarkably the convergence of
GMRES, while as the CFL number increases the positive effect of an increasing
coarse space becomes more evident, as we may notice in Fig. 10. The two-level
preconditioner seems a better choice from the point of view of both iterations
to converge and CPU time, especially for low values of Np. Fig. 11 shows a
comparison among the Schwarz preconditioner without coarse correction PS ,
the ASC preconditioner and the ACM preconditioner. Although better than PS

in terms of converge rate, ASC-2-ilu0 doesn’t seem to be a suitable choice, as
one may observe from the left picture of Fig. 11, where we have plotted the time
residual versus the CPU-time. On the contrary, both PACM,1 and PACM,2 are
substantially better than PS .

We have obtained similar results for the test case M6 94k, as reported in
Figs. 12 and 13.

The CPU times are reported in Tables 8, 9 and 10 for M6 94K, and in table 11
for M6 316k.
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Figure 9: FALCON 45k. Iterations to converge with different values of Np for
PACM,1 (left) and PACM,2 (right).
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Figure 10: FALCON 45k. Comparison among different preconditioners (left) and
CPU time, in seconds (right). 16 SGI-Origin3000 processors.
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Figure 11: FALCON 45k. Residual versus CPU-time (left) and iterations to
converge at each time level (right), using 16 SGI-Origin3000 processors.
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Figure 13: M6 94k. Residual versus CPU-time (right) and iterations to converge
at each time level (right), using 32 processors.

Table 8: M6 94k. CPU-time (in seconds) for ASC preconditioner, using different
values of L.

N procs ASC-2-ilu0 ASC-4-ilu0 ASC-8-ilu0

8 1538.4 1600.4 1859.9
16 544.8 569.1 1330.5
32 248.5 286.0 358.9
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Table 9: M6 94k. CPU-time to converge, using PACM,1 and varying the number
of processors. Best results are highlighted.

N procs Np=4 Np=8 Np=16 Np=32

8 1008.2 978.4 1251.3 883.4
16 502.5 506.9 515.0 457.3
32 208.0 245.3 300.5 505.0

Table 10: M6 94k. CPU-time to converge, using PACM,2, and varying the number
of processors. Best results are highlighted.

N procs Np=4 Np=8 Np=16 Np=32

8 934.8 945.6 909.3 925.6
16 458.6 405.2 413.9 442.6
32 164.4 164.7 181.4 515.6

Table 11: M6 316k. CPU-time (seconds) required to reach the steady state solu-
tion, using 32 processors. Comparison between Schwarz preconditioner without
coarse grid, the ACM preconditioner, multiplicative version, and an approxi-
mated Schur complement preconditioner.

N procs PS PACM,2 ASC-4-ilu0

32 1524.2 1370.6 2691.3
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6 Conclusions

In this chapter we have presented a class of preconditioners based on the DD
approach that are well suited for parallel implementation. A great variety of
methods are in fact available in literature and we have chosen to focus our
attention on DD methods applied at the algebraic level, namely the Schur com-
plement and the Schwarz algorithms. The reason being their generality and the
fact that they are implemented in many available parallel linear algebra pack-
ages. We have illustrated mainly their use as preconditioners. Indeed, the first
consideration we can make is that these methods are usually inefficient when
used as solvers.

A clear cut comparison of the two is difficult as their performance is of-
ten problem dependent. As a general rule we may state that the approximate
Schur complement system has generally a better preconditioning property at
the price of an higher cost “per iteration”. It performs better when the ratio
unknowns/number of subdomains is “low”. Otherwise, the computational cost
linked to the solution of the internal problems (which in most cases scales with
the square of the number of the local degrees of freedom) may degrade the ef-
fectiveness of the preconditioner. It may be attractive also if the ratio between
computational and communication speed is high, for example when the proces-
sors are connected through a slow network. The smaller number of iterations to
converge imply less communication, and in this case it may overcome the higher
cost spent at local level.

The Schwarz preconditioner is often the matter of choice of many parallel lin-
ear algebra packages, because of its rather simple implementation. The minimal
overlap variant is also rather attractive in term of memory usage. Yet it needs
a coarse operator to obtain scalability. To this aim, here we have described an
agglomeration procedure that has the advantage of generality and of a simple
set up. The cost per iteration is smaller, since we need to solve the local problem
only once. Yet its preconditioning properties are usually less marked, and this
imply a slower convergence.

It is important to notice that all efficient DD preconditioners consist of a
local and a global component. The local part, acts at the subdomain level and
may possibly capture the coupling between neighboring subdomains through
the interface nodes; the global part provides instead an overall communication
among far away subdomains. In the Schur complement based methods, the
global part is the solution of the Schur complement system itself, in the Schwarz
technique this task is played by the coarse operator.
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