A flux form, semi - Lagrangian method
for the scalar advection equation
using Discontinuous Galerkin reconstruction

Marco Restelli ®, Luca Bonaventura ®, Riccardo Sacco®

2MOX- Modellistica e Calcolo Scientifico,
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy

bDipartimento di Matematica “F. Brioschi”,
Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy

Keywords: Advection equation, tracer transport, semi-Lagrangian techniques,
Discontinuous Galerkin finite element method.

AMS Subject Classification: 656M25, 65M60, 68W10, 86A10

Abstract

A new semi-Lagrangian formulation is proposed for the discretization of
the scalar advection equation in flux form. The approach combines the ac-
curacy and flexibility of the Discontinuous Galerkin method with the com-
putational efficiency and robustness of Semi-Lagrangian techniques. Un-
conditional stability of the proposed discretization is proven in the von
Neumann sense for the one dimensional case. A monotonization technique
is then introduced, based on the Flux Corrected Transport approach. This
yields a multidimensional monotonic scheme for the piecewise constant com-
ponent of the computed solution, while reducing the numerical diffusion of
monotonization approaches more common in the Discontinuous Galerkin
framework. The accuracy and stability of the method are further demon-
strated by two dimensional tracer advection tests. The comparison with
results obtained by standard semi - Lagrangian and Discontinuous Galerkin
methods highlights several computational advantages of the new technique.



1 Introduction

The development of accurate and conservative numerical methods to
solve efficiently the linear advection equation
%+V-(uc)=0 (1)
has always been a main goal of the research on advection dominated flows.
In many important applications, especially in environmental modelling, the
solution of large system of advection - diffusion - reaction equations re-
quires an increasingly large share of the available computational time. For
example, atmospheric chemistry, air quality, water quality or ocean biogeo-
chemistry models require the solution of one advection - diffusion - reaction
equation for each chemical or biological species involved, whose number can
be quite high (see e.g. the atmospheric chemistry and aerosol models de-
scribed in [23], [44]), if a detailed description of the processes of interest
has to be achieved. Thus, very efficient numerical methods are crucial to
perform long range simulations effectively. Furthermore, good scalability
and parallel efficiency are also essential requirements for these computa-
tionally intensive applications. These equations are usually coupled only
by the reaction terms, while their advection and diffusion components are
essentially decoupled.

In the context of these low Mach number, advection dominated flows,
the semi - Lagrangian method (also known as modified method of char-
acteristics, Eulerian - Lagrangian method or the characteristic Galerkin
method in different modelling communities, see, e.g., the reviews in [13],
[33], [42]) is widely acknowledged as an accurate and efficient option. The
original formulation of semi - Lagrangian methods, however, is inherently
non conservative. The advection equation (1) is reformulated in Lagrangian
form

%:%+H-V020 (2)
and time discretization exploits the fact that the solution values are con-
stant along the characteristic lines, which are approximated numerically
(see e.g. [41] for a discussion of the issues related to this approximation).
For simplicity of the presentation, we assume in the following to deal with
incompressible flows only, but most of the ideas that we will discuss gener-
alize naturally to the compressible case.

A number of approaches have been proposed to overcome the lack of
mass conservation of semi - Lagrangian methods. In many practical ap-
plications, a posteriori mass restoration is performed to keep the mass of
the atmosphere constant. The methods proposed in [20], [36] enforce mass
conservation as a global constraint, which is however still achieved via re-
distribution of the mass gains or losses among all mesh points. Neither of
these simpler approaches guarantees local mass conservation, i.e., changes
in the solution at a given mesh point do not necessarily depend only on the
values at the neighbouring mesh points.

In order to achieve also local mass conservation, two main strategies
have been pursued. In the first strategy, the advection equation (2) is



integrated over a volume Q(t) that is moving with the flow, in order to
obtain

% / o(z,t) dz = 0. 3)

Taking Q(t + At) to coincide with a mesh control volume, as in the non
conservative semi - Lagrangian approach, time integration of (3) yields

/ c(z,t) de = / c(z,t) dz, 4)
Q(t+At) Q(t)

where Q(t) is now the upstream control volume which evolves into Q(¢t+ At)
within the timestep At (see Fig. 1). Equation (4) is then discretized by ap-
proximate reconstruction of the upstream control volume and approximate
computation of the integral on the right hand side. This approach has
been sometimes called conservative remapping, or cell integrated semi -
Lagrangian method. The idea of remapping dates back at least to [22].
Mass conserving variants of the semi - Lagrangian method based on this
concept of remapping were introduced for example in [25], [30], [31], [35].

Figure 1: The upstream control volume used in advective form conservative
extensions of semi-Lagrangian schemes.

In the second strategy, that is more similar in spirit to Eulerian finite
volume methods, equation (1) is integrated in space over a fixed mesh
control volume Q and the divergence theorem is applied as usual. The
resulting equation is then integrated in time over a generic time step At,
in order to obtain

/Q ozt + A do = /Q oz, 1) da 5)
-/ i | ete.spuies)-n ds

Equation (5) is then discretized by approximate reconstruction of the flux
through the domain boundary 92 over the time step At, see Fig. 2, where
Q is assumed to coincide with a mesh element K and the fluz tube based



Figure 2: The fluz tube wused in flux form conservative extensions of semi-
Lagrangian schemes.

on a portion of OK is represented. Semi-Lagrangian backward trajectories
that reach a number of points along 0K at time t + At are computed and
used for the approximation of the fluid portion that is advected through
the boundary. Some form of polynomial reconstruction is then used at
these points to discretize the space time integral on the right—hand side.
We will refer loosely to methods which can be described in this way as
flux form semi - Lagrangian methods. Examples of these techniques have
been introduced for example in [12], [15], [16], [17], [18], [19], [26], [28],
[29]. In [33], these approaches were described in a wider context as general-
ized Godunov methods and a stability analysis was outlined. It should be
remarked that generalized Godunov methods can also be interpreted as a
natural generalization of the so called wave propagation methods, see e.g.
[27].

The purpose of the present work is to introduce a flux form semi - La-
grangian discretization for the scalar advection equation that employs a
Discontinuous Galerkin (DG) formulation (see e.g. [10]) to reconstruct the
numerical solution within each control volume. We will refer shortly to
this technique as semi - Lagrangian Discontinuous Galerkin (SLDG) ap-
proach. More specifically, discontinuous elements are used to reconstruct
the numerical solution at the points needed for the computation of the
space time integral in (5). In doing so, the proposed method aims at com-
bining the accuracy and locality of the DG method with the computational
efficiency and robustness of semi - Lagrangian techniques. The use of semi
- Lagrangian backward trajectories allows to achieve unconditional stabil-
ity, irrespective of the value of the Courant number. This overcomes the
rather stringent stability restricitions required by the DG scheme. In the
case of large systems of advection - diffusion - reaction equations, the extra
computational effort needed to compute the trajectories is required only
once for the whole system, thus reducing the potential overhead associated
with this procedure. The proposed method also appears to exhibit sev-
eral advantages in a massively parallel computing framework. Firstly, the



type and amount of information that different processors need to exchange
within one time step can be estimated only once for the whole system.
This feature is also shared by the approaches presented in [25], [30], [31],
[35]. The present approach, however, would have peculiar features similar
to those of the Eulerian DG formulation, since higher order reconstruc-
tions could be achieved without using large stencils, thus making domain
decomposition parallelization approaches more straightforward. Further-
more, the potential loss of accuracy of standard semi-Lagrangian methods
at low Courant numbers that was highlighted in [14] does not affect the
method we propose.

A brief outline of the article is as follows. The SLDG method is de-
scribed in greater detail in Sect. 2. A von Neumann stability analysis for
the constant coefficient, one dimensional case is then carried out in Sect.
3, showing that the method is stable for arbitrary Courant number. Since
the SLDG is not inherently monotonic in its higher order version, a mono-
tonization approach based on the Flux Corrected Transport (FCT) tech-
nique is introduced and discussed in Sect. 4, while in Sect. 5 the interesting
properties of the new method are demonstrated by a number of numerical
tests relevant in advection dominated flows. The issue of coupling with
discrete models of divergent or variable density flow is discussed in section
Sect. 6, while future developments and possible applications are discussed
in Sect. 7.

2 The Semi-Lagrangian Discontinuous Galerkin
method

In this section we describe in greater detail the Semi-Lagrangian Discon-
tinuous Galerkin (SLDG) method. In doing this, we combine the unified
framework for generalized Godunov methods proposed in [33] with the Dis-
continuous Galerkin finite element formulation introduced and analyzed in
[8], [10] in the case of nonlinear hyperbolic problems.

2.1 Notation

Firstly, the basic notation used for the discretization of the linear advection
problem (1) is introduced. For simplicity, we assume henceforth that € is
an open bounded domain of R?, and let 7, denote a triangulation of Q into
N triangular elements K, although the method can be easily extended to
deal with three-dimensional problems and to include quadrilateral elements
as well. The area of an element is denoted by |K|, while its boundary and
outward unit normal vector are 9K and nyg, respectively. The set of all the
edges of K is £k, while &, is the set of the N,q445 edges of the triangulation,
with |e| denoting the length of a generic edge e € £, and n, being a normal
unit vector arbitrarily associated with edge e. For each element and edge,
an orientation ok . = *+1 is also defined, so that ok n. is the outer normal
unit vector associated with edge e of element K. We will also denote by wu,
the discrete value of the normal velocity component in the direction of n,,
ue being a constant quantity over each edge e € &,.



Equation (1) will be solved on Q with appropriate inflow boundary con-
ditions and assuming that a smooth, incompressible velocity field is given.
In order to make coupling to generic hydrodynamic models more straight-
forward, the velocity field is assumed to be known in discrete form only and
to satisfy the discrete divergence free constraint exactly. More specifically,
for each time interval [t",t" 1], with At = t,41 — t,, the components of
the velocity field normal to the edges of 7, are assumed to be given at
a single intermediate time level 3. These components will be denoted
by u?+%,e = 1,..., Nedges, although the time dependence will often be
omitted for the sake of simplicity. The discrete divergence free constraint
amounts to requiring the following equation to be satisfied for each element
KeT,

1
> oxeus e =0. (6)
e€Efk

Although the above assumption on u2+% reduces a priori the formal time
accuracy of the method to second order, it corresponds to what is actu-
ally computationally feasible when coupling tracer advection to most semi-
Lagrangian models for fluid flow. This assumption also helps to ease the
future coupling of the proposed method to mass conservative methods for
environmental flows, such as those proposed in [4], [5], [6], [32]. As a mat-
ter of fact, these numerical methods use the discrete normal components
ue as prognostic variables and employ Raviart-Thomas finite elements (see
e.g. [37]) to reconstruct the velocity field from these components. Fur-
thermore, the present framework can be seen as an extension to triangular
grids of the C-type staggering commonly used on Cartesian grids in many
environmental models (see e.g. [1]). Thus, this choice should allow a natu-
ral application of the proposed SLDG method in a wide number of already
available models. It is to be remarked that appropriate coupling of the mass
continuity equation and flux form tracer equations is essential for accurate
transport modelling. The issue of discrete consistency with continuity has
been highlighted by many authors and the inaccuracies resulting from ne-
glecting this issue have been analyzed in [21]. In the present, preliminary
stage, the velocity field is assumed to be divergence free for simplicity of
the presentation. However, the generalization to the divergent case is being
investigated and the outline of a general proof of discrete consistency with
continuity will be introduced in Sect. 6.

2.2 Spatial discretization

The spatial discretization of (1) is carried out initially along the usual lines
of Discontinous Galerkin (DG) methods (see e.g. [8]). In this preliminary
presentation, only piecewise linear elements will be considered for simplicity.
It is to be remarked that, in principle, the order of the polynomials used
could be different for each element K € T,. As it will be clear from the
description of the numerical method, this can be done maintaining the
global and local mass conservation properties of the scheme. This more
general case will not be considered here for the sake of simplicity, but it



will be exploited in a forthcoming implementation to reduce computational
costs.

An approximation c¢p, = ¢(x,t) to the solution c(z,t) of (1) is sought,
such that ¢, is a linear polynomial over each element K € 7, for each time
t, not necessarily continuous across the edges of K. Multiplying equation
(1) by a piecewise linear function vy, integrating over K € T, and replacing
the exact solution ¢ by its approximation ¢, one obtains

dcn vp(x) dr = —/ div(ucp) vp(z) dz VK € Tp.
K Ot K

Then, formally integrating by parts, we obtain

6ch

— vp(x )d:z::/ u-Vvh(x)da:—/ cpu - ngg d€ VK € Tp. (7)
K Ot K 0K

Notice that the advective boundary term cp(§,t)u - nsr in (7) does not
yet have a precise meaning, because ¢, is a discontinuous function across
interelement boundaries. Equation (7) is the starting point for time dis-
cretization with Runge-Kutta schemes in standard DG formulations [8],
[10]. In our approach, we depart from this latter procedure and follow the
path of generalized Godunov methods as presented and analized in [33].
With this aim, we integrate (7) in time between " and ¢"*!, to obtain the
following weak form of the linear advection equation

/Kch(m,t""'l)vh(;v) dz = /Kch(x,t") vp(z) dr

e
-.

For simplicity, we will restrict ourselves to the case of piecewise linear poly-
nomials, but the method can be easily extended to more general polynomial
spaces. For each element K, the discrete degrees of freedom associated with
a numerical solution at a given timestep ¢ are denoted by ci = {c7 ¢ }3_o,
so that an approximate numerical solution can be reconstructed locally for
all K € T, as

cnk (2,1") = ¢ k() = g g do(x) + ¢ k1 (2) + 5 pa(2),  (9)

where ¢g (), ¢1 (), P2 () are taken to be an orthogonal basis for the linear
polynomials over K such that [} ¢i(x)¢;(z)dz = |K|d;; (and, in particu-
lar, [ ¢1(x)dz = [} ¢o(x)dz = 0 and ¢o(x) = Lg(x), where 1 is the
characterlstlc function associated with element K).

The approximate numerical solution for all z € Q at the time level t”

reads then
e ) =R = T 3 )

KeTh j=0

ds/ cn(z,s)u- Vo, dz (8)

gl

ds/ en(€,5) u - nox vn (€) dé VK € T
OK



2.3 Time discretization

The next step is to derive from (8) a full space-time discretization. In order
to describe the time evolution of ¢y (z,t), we define, as in [33], the exact
evolution operator

E(t", At) : c(z,t") = [E(t", At)c(-, t")](z) = c(=z,t" + At). (10)

E(t"™, At) can be interpreted as a representation of the solution of the linear
advection equation in non conservative form (2). More precisely, under mild
regularity assumptions on the velocity field (see e.g. the discussion in [37]),
it can be proven that streamline or characteristic line functions exist, which
are defined as the solutions of the ordinary differential equations

d
—X(Sl?,t,T) = U(X(ﬂf,t, T)aT) (11)
-
with initial datum at time ¢ given by X (z,¢;¢t) = x. For smooth initial
data, by the chain rule it is then possible to prove that for any ¢ and 7 the
following relation holds

c(z,t) = [E(r,t —1)e(.,7)](x) = (X (z,t;7), 7). (12)

A discrete approximation of this evolution operator representing the time
evolution from t" to ¢" + At will be denoted by ER,. This approximation
is completely determined once a discrete approximation X (z,t;7), with
T € [t",t" + At], is provided for the solution of (11). The latter can be
interpreted as the numerical approximation of the streamlines usually per-
formed in semi - Lagrangian methods. It can be assumed that all the basic
semigroup properties of the continuous evolution operator, such as equation
(12), still hold for its discrete approximation, so that, for example, we can
write

[ES chl(2) = ch(X (2, 1" + 5;87)), (13)

with s € [0, At]. Following the ideas proposed e.g. in [26], [28], we can now
resort to (12) and the operator E%X, to evaluate the right hand side of (8).
More precisely, the SLDG method can be defined for each element K € T
by

K| = K|k (14)
At
+/ ds/ [ETcp](z) u(z,t™) - Vi(z) dx
0 K

At

_ / ds Y [IED1E) ue dul€) de,
0 ecEx V€

i=0,...,2.



2.4 The fully discrete SLDG approximation

In order to obtain a fully discrete method, the integrals in space and time in
(14) must be replaced by appropriate quadrature rules. In the present im-
plementation of the proposed method, Gaussian quadrature rules have been
used for the integration in space. Normahzed Gaussian points {z,}2,
{yv}vzl, are introduced according to some parametric representation of the
edges and the elements, respectively. The corresponding Gaussian weights
are denoted by {@,}Le,, {axjv}ﬁil For the integration in time, a simple

composite rule is applied in the present implementation. For each ele-
ment K and for each edge e, we define intermediate time levels {sﬁ}nﬂfgg) ,
{sﬁn}%ieo) For convenience, the dependency on the edge and element will
often be dropped and should be recovered from the context. The interme-
diate time steps are such that so = 0, spy = At and A7, = Si — Sp_1-

Formally, we will make the approximation

At M-1
Epds~ ) Egm+%ATm, (15)

0 m=0

where now s, 1 = s, + 5*. More accurate composite integration rules
can of course be used along the same lines. The numerical trajectories
X(z,t" + s;t™) necessary for the complete definition of E? are computed
by a simple backward Euler method with time substeps given by the 7,,.
Given these definitions, the fully discrete SLDG approximation of equation
(1) can then be defined for each K € Ty, as

K|t = K|k (16)
M-1 Ly

+ Z Z En yv) (yvatn) ' V¢z(yv) ATy, ff)v

m=0 v=1

— Z OK,eUe |€

M-1 L.
|
e€lK m=

[E? ch (zv) Gi(xy) ATy Oy,
0 v=1

i=0,...,2.

It is to be remarked that the approximation (15) of the evolution operator

eliminates the ambiguity in the definition of the numerical fluxes along

interelement boundaries, since in all cases with non zero advecting velocity

the quantity [E? i c}](zy) is univocally defined for m =0,---,M — 1. In
mTy

the special case where piecewise constant finite elements are considered, the
following finite volume method is recovered

Klegk = IK|cgx (17)
M-1 L.
- Z OK,eUe |€] Z Z[E" ch (%) AT @0,
e€lk m=0 v=1

where the quantity cj x is the discrete degree of freedom representing the
average of the concentration over element K € 7, and cj is a piecewise
constant function over 7Tp,.



3 Linear stability analysis in the one-dimensional
case

The von Neumann stability analysis of the SLDG scheme will now be
carried out along the lines of [7]. With this aim, let us consider equation
(1) in the one dimensional case with constant advection velocity

{ct+uc$:0 in [0,L]x][0,T]

18
c(z,0) = co(z) =z €0, L], (18)

and supplied with periodic initial and boundary conditions. Let 75, be a
uniform triangulation of [0, L], with h denoting the (uniform) amplitude
of each element K € 7T, and At denoting the time step. Finally, for each
K; € Ty, let x;, Tig1 and z;_1 be the midpoint and the points on the
boundary of Kj;, respectively. The key stability parameter is the Courant

number C' = “ﬁt, which can be split in its integer and fractional part

C=m+r, meN, ~€[0,1),

as customary in the analysis of semi-Lagrangian schemes (see e.g. [2]).

Introducing the cell characteristic time 7 = % we have also

At = (m + )T

Denoting now by a; and b; the degrees of freedom with respect to the Py
hierarchical basis, the approximate concentration cp is given at any time
level t" by

cp(T) |k, = ai! + b} (z — z) VK; € Th.

Then, the SLDG formulation for the evolution from time level ¢ to ¢*+!
reads

1
A == o = s = DO = )| (19)
n+1 _n aznfm B aznfmfl n n
I R TR ORI S

3 n n
+2v (5 - ’7) (0Fm — biml)]

or, equivalently

a?""l =a , — ’Y(aznfm - a?*mfl) 20)
~V3Y(L = )T = 5Fm)
s =5 By — )@, —a,, )

3
3= D+ o) =27 (=) (ol = sEm)

where the new degrees of freedom

o V3

10



have been introduced for the purpose of simplifying the stability analysis.
Equations (19)-(20) can be obtained as follows. Taking in (8) vy, = ¢g(x) =

1k, yields
gt

1
Mapt —a) = [ dtu(—y 46
where ;1 represents the value of EX,cy in @;, 1 (see Fig. 3). For this
analysis, we will assume that ER,c, coincides with the exact evolution

operator, so that

51'—{-% = cﬁ(xH% — uAt) (21)
Then, evaluating the integral
. m ot gkT "+ AL
ha?*! — ha® =u / —£,, a1dt + / =&, 1dt (22)
! ’ ,; tm 4+ (k—1)T e t"+mT s

mo gy AL
+ / f-,;dt-l—/ & 1dt
Z (k=) trgmr 2

k=1

“ n n h n - n
=ut {_ Z Qi fpp1 — Y [az‘—m + 5(1 - ’Y)bim] + Z ai_p,
k=1 k=1
n h n
Y |GG t+ 5(1 N1
n n n n h n n
SUT Oy, — Q5 = Oy — Qg T+ 5(1 =0 = b 1)

gives the first equation in (19) after further algebraic manipulation.

g . .
—__—*_ : gz_j
1 1 bl
: : : :
1 1 1 1
@ @ @ @
Lij—m—1 T;—1 x’i—l x;
2
uyT umT h .

u\t

Figure 3: Piecewise linear solution of the advection equation in the one dimen-
sional case with constant coeflicients.

Taking now in (8) vy, = ¢1(z) = (z — ;) Lk, we obtain

gl

B3 h h
— (- =/ dtu [—5,- 1-+& 1 (——) +/ EAC"dw],
12( i ) i +t22 2\ 2 K. h

11



which yields, after decomposing the time integrals

B3 - B3 h m t" kT
Zopntl D gn =yl —= / & 1dt (23)
12 12 2 ;; ooty
t"+ AL t" kT t"+AL
+/ §z+1dt+2/ §Z,ldt+/ & _1dt
t"+mT nt(k—1)7 t"+mT
m t"+kT t"+At
—1—2/ dt/ EAcha:—}—/ dt/ Eacpdzx .
k=1 t"+(k—1)T K; t"+mT K;
Substituting now (21) in (23) we obtain
B3 3 1,
Eb?H - ﬁb? =u {_gf”'z (a?—kﬂ + a?—k) (24)
k=1
1 n n h n n
_ihTV L S 5(1 = )07 + 1)
1 - n n L., S n n
+§h7' (ai,k + ai,k+1) + Eh TZ ( i—k ifk+1)
k=1 k=1

1 1\ .,
+2h7'fy a; 1 + hTy (1—57) a; .

1 2 2 1 1 n 7
+§h TY (5 37> (O — bi—m)}

which, after some further algebraic manipulation, gives the second equation
n (19).

At each time level, the approximate (periodic) solution c}} is represented
via the degrees of freedom a;, s;. Because of the definition of s; we obtain

ekl 0,0y = B 3_4(aF)? + (7)) (25)

We can associate with each ¢! the piecewise constant vector function [a?(z) s7(z)]”

defined as
= Za?]lKi (2), sp(z) = ZS?]IKZ' (z)

and rewrite (25) as

llerlZ2 0,y = llakll72c0,z) + 157 1Z20,1)- (26)
We now consider the Fourier series associated with a and s}:

ap(z) =) AREE, (@) =) SpelE

kEZ keZ

where I = 4/—1. Due to the Bessel-Parseval equality, we have

larlliao.ny = LY 1ARE,  [lshllZ20.) = LD ISEP

kEZ kE€Z

12



so that relation (26) implies
lerllZa0,0y = LY (AR +[SE?). (27)
keZ

The SLDG method allows to express the coefficient AZ“, S,:“Ll as linear
combinations of A}, Sp as follows

Antl AR
L= | (28)
Sy S
where 6 = @ and we have introduced the amplification matrix
G [ 1-y(1-e") —V3y(1-7)(1-e")
3yl -1 -e) 1-37(1-7n(1+e") =B -27)(1-e")

Let A1,2 denote the eigenvalues of G, with |A2| < |A1]. It can be checked
that Ay # A2 V0 € [-7, 7]. Furthermore, for # — 0 we have

1
|A] =1-

V(1 =7(1 =7 +9)8" +0(6°)

and for arbitrary 6 € [—m, 7] we have that |A;| is always smaller than one
for |y| <1, as can be seen from the plots of A1, Az in Fig. 3. This proves the
unconditional stability of the SLDG method in the von Neumann sense.
This result is analogous to what is usually obtained for standard semi-
Lagrangian methods (see e.g. [2], [14]), while it contrasts with the stability

analysis carried out in [9], which yields the stability constraint v < % for
the one dimensional case with linear basis functions.

-1 -0.5 . 1 . . 1

Figure 4: Representation of A; (solid line) and A, (dashed line) for v =
0.05, 0.2, 0.4 (left) and v = 0.6, 0.8, 0.9 (right). Dash—dot line: unit circle.

4 Monotonicity

In the context of DG methods for scalar conservation laws (see e.g. [8],
[10]) a maximum principle is established by showing that the degrees of

13



freedom representing the average of the solution over each element K (i.e.,
in our case, the values cg}l) are bounded by the maximum and minimum
of ¢f g, for every element K’ € Tr, belonging to a neighbourhood of K.
The proof of the above result is similar to the monotonicity proof for a
finite volume scheme. In [10], the maximum principle for the DG method
was proven by limiting the slopes of the numerical solution, represented by
the degrees of freedom ko with j = 1,2, in (9). In the present approach,
instead, we enforce monotonicity by a suitable correction of the edge fluxes.
We first introduce the functions

cpi@) = > Frdik@), j=01,2
KeTs,

The contribution to the flux through edge e associated with the j—th degree
of freedom can then be written as

M-1 L.

FJ = u, e Z Z c,”] (xy) AT @y, j=0,1,2.

m=0 v=1

This allows to reformulate the update for the mean (17) in the following
equivalent form

Loy =y K (29)
OK. U |e| N L.
-3 eSS Sy k) Arn
e€fk m=0 v=1
Sy TRy Y o
e€fk |K| j=1le€fk |K|

The monotonicity proof will then consist of two steps. First, it will be
shown that the low order flux F? yields a monotonic method, given by

OK,
CSHI_(I =Cox — Z |T|€F‘? (30)
e€fk

In the second step, a monotonic higher order method will be derived through
the use of the well known Flux Corrected Transport (FCT) technique, (see

g- [45]). In this approach, appropriate limiting coefficients C, € [0, 1] are
introduced for the antidiffusive fluxes F!, F?, so as to obtain the mono-
tonized higher order scheme

2

n OK.,e OK,e
e D D R IR < DI D

ecfk e€fk Jj=1

The derivation of the coefficients C, is done exactly along the same lines
as in the Cartesian grid case considered by [45], so the details of the com-
putation of C, will not be reported here.

We will now proceed to a reformulation of the low order flux F?, in
order to prove monotonicity of the low order method. More precisely, we
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redefine F? as

At At
= [ s [ de = [ [CEG©as @2

where we assume that, thanks to the piecewise constant structure of cj g,
exact evaluation of the integrals is possible. Due to (13), one has

[Eychol(€) = & o (X (6,17 + 534™),

from which

At At R
| i@ ds= [ eho(Reetn+ sitm) ds
0 0

It is to be remarked that, since the time dependency of the velocity field
is assumed to be frozen during each time step, the set of points X (&, +
s;t™), s € [0, At], coincides with those spanned by the backward trajectory
X (&t — ) s € [0, Ad).

Exploiting the fact that cj, , is piecewise constant over 7j, the previous
relation can be written as

At
| chol® et +si6m) ds = 3 cf o
0 7

where Asﬁ(, denotes the amount of time during which X (&t ntl _g) €
K' and the sum is extended over all elements crossed by X (¢,t"+1; ¢+ —5),
As a result, 3" AsS., = At independently of ¢ and

F? = u,le|At Z QK1,eCo K1 (33)
K'eT.
where we set
a S /Asg d¢ (34)
Koo T Jefat TR

and where 7, is the set of all elements crossed by X (&, ¢t — g) for
any £ € e. Noting that for each edge e € Ex we have

Z/Asi(, d¢ = |e|At,
K’ [

from definition (34) the coefficients ak' . are nonnegative numbers such
that ) ., ak’,. = 1. Furthermore, in the case of a velocity field that satis-
fies exactly the discrete divergence free constraint (6), the quantities Asi{,
and ak' . can be computed exactly starting from the piecewise constant
representation of the vector field given in this case by the Raviart Thomas
reconstruction.

The proof of monotonicity for the piecewise constant case now proceeds
by showing that, using definition (33) in (30), and rearranging the sums
appropriately, c’}(“ is given by a linear combination of ¢, with nonnegative

15



coefficients. This result can be readily proved in the case of sufficiently small
time step and Courant number, along the lines of basic monotonicity proofs
for upwind based schemes. In order to prove a similar result in the case of
larger Courant numbers, it is useful to introduce the following sets

8+:{668K:0K,6u620}, EI}:{6€5K:UK,G?L€<O},

which represent the outflow and inflow boundaries of K, respectively. We
also introduce the two following subsets of 7:

T"=UT Txk=UT.

ecEE e€Ey
Clearly, £k = £ U g and this fact can be used to reformulate (30) as

At
o=, -y A e (35)
’ Z K

|ue|le|At
£ 3 S S anecde

e€€Ey K'eTe

uc||e|At
SCTIEED DD DR

K'eTF ecEf

Ue||e| At
+ ) eIt At e||L{|| K ,eCh -

K'eT; e€€y

For simplicity, we make now the assumption that K ¢ 7, , which excludes
the case of very high Courant numbers or flows with very strong deforma-
tion (i.e., high Lipschitz numbers according to the definition in [41]). The
monotonicity proof can in principle be extended to cover also these cases,
but the above assumption greatly simplifies the proof. Furthermore, inde-
pendently of this restriction one has T, = {K} U (T N Tk ). These facts
are used to rearrange the sums on the right hand side of (35) as a linear
combination of cell averages cg g, 0 as to obtain

Atlu.|le
cg""Kl =|1- Z %ame oK (36)
eEE;
At n
Y g | X tulldaxe = 3 Juellelaxce | e
K'e(TgNTF) e€lx e€EE
At
+ ) & D luellelak ecf g
K'e(Te\T;H) e€Ex

The proof of monotonicity is achieved if one can prove that all the coeffi-
cients of cg ; in the right hand side of (36) are non negative and sum up
to one. The value of their sum can be obtained by taking cg ; =1 for all
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elements J in the right hand side of (36) and tracing back the steps leading
from (35) to (36). Since ) x:c7 @k’ = 1, and using the fact that

A A
] 2 osceluellel = 7 [ 3 fuellel = 3 fuelel] =0

e€fx ecéy ecef

because the discrete velocity field has been assumed to be divergence free
(see equation (6)), the sum of the coefficients in the right hand side of (36)
yields exactly one. These coefficients are also non negative. This is obvious
for the third term in the sum in (36). For the first term, non negativity
can be proven rigorously using the definition of sf-(, and exploiting again
the assumption of a piecewise constant Raviart-Thomas reconstruction of
the velocity field over each element. For the second term, non negativity
is ensured by the fact that, for reasonably accurate approximations of the
characteristic lines one has agr o > akr o if €' € Ex,€e" € SIJQ. This allows
to write that, for each K’ € (T, N T;{),

Y luelle'larre = > uflle|ax: e

e'efy e e

> min age| D lucllel = Y fuellel]-
min
¢€k ecEx ecE}

Using again the fact that the velocity field has discrete divergence equal to
zero, non negativity for these coefficients follows as well.

5 Numerical experiments

In this section, the accuracy and stability of the SLDG method will be
demonstrated in the numerical solution of two—dimensional benchmark
test cases for passive tracer advection. In particular, solid body rota-
tion and deformational flow tests will be considered, for which analytic
solutions are available. The behaviour of the solution provided for these
tests by the SLDG method will be compared with the results achieved in
the same tests by its ’parent’ methods, e.g. the standard, non conser-
vative semi-Lagrangian (SL) method and the classical Runge-Kutta Dis-
continuous Galerkin (RKDG) method proposed and analyzed in [9]. In
our opinion, these comparisons highlight several attractive properties of
the SLDG formulation, which appears to merge effectively the SL and DG
methods without any loss in accuracy or computational efficiency, while
avoiding the most unpleasant shortcomings of the SL approach (loss of
mass conservation, potential loss of accuracy at low Courant numbers) and
of the DG approach (severe stability restrictions), respectively. Further-
more, the FCT based monotonization approach described in Sect. 4 ap-
pears to be superior to the slope limiting approach proposed in [8], [10]
and does not display excessive sharpening of smooth profiles reported e.g.
in [39] for more traditional applications of FCT. In particular, the idea of
retaining the higher order degrees of freedom in the computation of the
monotonized flux for the piecewise constant component of ¢} is highly ben-
eficial to the overall quality of the computed approximate solution. In
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all the tests, the numerical solution is compared to the analytic one af-
ter four full rotations, at time level T};, = 4000 s, and the following er-
ror norms are computed: |[u(Trin) — un(Trin)||z2(Q)/||w(Tfin)lL2(@) and
[u(Tpin) — un(Tyin)||Lo (@) /|[w(Tin)||L= (). Moreover, we evaluate the
dissipation error and the dispersion error as defined in [3], [43]. All the
compared methods were coded using the MATLAB software environment for
the purpose of this preliminary assessment. For the SL and SLDG runs,
the backward trajectories were approximated by using the backward Euler
method with substepping (see e.g. [38]).

5.1 Solid body rotation

For the solid body rotation test, a stationary velocity field was used,
representing a rotating flow with frequency w = 2r/1000 s~! = 6.2832e —
03 s~! around the point (1, 1) on the spatial domain Q = (0,2)?. The initial
datum was taken to be either a compactly supported C? function with the
shape of a cosine hill or a piecewise constant, discontinuous function with
the same support.

5.1.1 Experimental convergence analysis

In order to test the accuracy of the proposed SLDG method, we consider the
standard test case of solid body rotation with smooth initial datum, namely
a compactly supported C? function with the shape of a cosine hill, and we
switch off the FCT limiter. We consider four unstructured computational
grids of varying amplitude h, while keeping constant the Courant number.
More specifically, we set the time step in order to mantain the maximum
Courant number C' = 0.25. Numerical quadratures are performed by setting
L.=2,L; =3 and M = 2in (16). Characteristics of the computational
grids are summarized in Table 1 while numerical results are shown in Tab. 2.

h Ny dofs At
h=0.1 1372 4116 1.25
h=0.05 | 5458 | 16374 | 0.625

h =0.033 | 12222 | 36666 | 0.416
h =0.025 | 22172 | 66516 | 0.312

Table 1: Computational grids for the convergence test.

The experimental convergence rates derived from Table 2 are 2.5,2.6 in
the L2, L™ norms, respectively. Analogous results, here omitted, have been
obtained in the L' norm.

5.1.2 Behaviour at low Courant number

It is interesting to compare the results summarized in Tab. 2 with the
analogous ones obtained using the SL and RKDG formulations under the
same working conditions (C' = 0.25). Tab. 3 refers to the solution computed
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Rel. L? | Rel. L™ | Dissipation | Dispersion Min
error error error error
h=0.1 | 3.53e-01 | 4.07e-01 1.96e-02 7.77e-02 | -4.51e-01
h=0.05 | 1.24e-01 | 1.49e-01 1.51e-03 1.11e-02 | -2.73e-01
h=0.033 | 5.58e-02 | 6.82e-02 1.96e-04 2.39e-03 | -1.21e-01
h=0.025 | 2.73e-02 | 3.18e-02 3.36e-05 5.87e-04 | -5.37e-02

Table 2: Convergence test for SLDG without FCT limiter: results after 4 full

rotations of a smooth profile at C' = 0.25.

by the SL method on three computational grids with Py reconstruction,
h ={0.1, 0.05, 0.025} and dofs = {2825, 11077, 44665}.

Rel. L? | Rel. L™ | Dissipation | Dispersion Min
error error error error
h=0.1 | 7.42e-01 | 7.13e-01 1.02e-01 1.74e+00 | -7.00e-01
h=0.05 | 5.18e-01 | 4.86e-01 1.77e-02 8.80e-01 | -1.08e+00
h=0.025 | 2.29e-01 | 2.14e-01 1.16e-03 1.75e-01 | -6.87 e-01

Table 3: Convergence test for SL: results after 4 full rotations of a smooth profile

at C'=0.25.

Tab. 4 refers to the solution computed by the RKDG method without
slope limiting on two computational grids with Py finite elements, h =
{0.1, 0.05} and dofs = {4116, 16374}.

Rel. L? | Rel. L*® | Dissipation | Dispersion Min
error error error error
h=0.1 | 3.47e-01 | 3.99e-01 2.48e-02 6.91e-02 | -2.74e-01
h=0.05 | 1.15e-01 | 1.41e-01 2.22e-03 8.56e-03 | -1.56e-01

Table 4: Convergence test for RKDG without slope limiting: results after 4 full
rotations of a smooth profile at C' = 0.25.

These results show that at low Courant number the SLDG method does
not suffer from the error amplification that is typical of SL methods (see
e.g. the analysis in [14]), while its accuracy is completely comparable to
that of the RKDG method.

It is now important to address the effect of limiting procedures on the
computed solution. With this aim, we compare the performance of SLDG
method with FCT monotonization and RKDG method with slope limiting
monotonization. Results are summarized in Tab. 5 for the smooth advected
profile and in Tab. 6 for the discontinous advected profile, respectively.
Both cases were computed at resolution h = 0.1.

It is remarkable to notice that the FCT strategy applied to SLDG is far
less diffusive than the slope limiting procedure used in the RKDG formula-
tion. This can be seen also in the plots of the solutions displayed in Fig. 5.
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Rel. L? | Rel. L™ | Dissipation | Dispersion

error error error error
SLDG | 4.28e-01 | 5.51e-01 6.24e-02 8.00e-02
RKDG | 8.74e-01 | 9.23e-01 4.36e-01 1.59e-01

Table 5: Comparison of SLDG and RKDG with monotonization: results after 4
full rotations of a smooth profile at C' = 0.25.

Rel. L? | Rel. L™ | Dissipation | Dispersion

error error error error
SLDG | 4.48e-01 | 6.03e-01 2.18e-01 2.62e-01
RKDG | 8.73e-01 | 8.98e-01 1.34e-00 4.88e-01

Table 6: Comparison of SLDG and RKDG with monotonization: results after 4
full rotations of a discontinuous profile at C = 0.25.

It can be observed as well that the SLDG solution does not display exces-
sive sharpening of smooth profiles reported e.g. in [39] for more traditional
applications of FCT.

These results suggest that the present FCT approach, beyond its ap-
plication in conjunction to SLDG, could also be a useful improvement of
monotonization techniques in the framework of generak DG approxima-
tions.

5.2 Behaviour at high Courant number

In this section the numerical performance of the SLDG formulation at
C = 3 is analyzed. Results are summarized in Tab. 7 for the smooth ad-
vected profile without monotonization, computed at resolution h = 0.05.
The number of elements and degrees of freedom is the same as reported in
the section on low Courant number results. The results of SLDG are com-
pared to those of a standard SL method with continuous P; reconstruction.
As it is well known, the SL solution is quite sensitive to the trajectory
approximation technique. Thus, we report results in two extreme cases of
simple Euler approximation with substepping, indicated as SL(a), and of
semi-Lagrangian advection computed using the analytical trajectory, indi-
cated as SL(b). On the other hand, for the SLDG method only the simple
Euler approximation has been used. It can be seen that the results of SLDG
are much less sensitive to the trajectory approximation method and that
the SLDG errors are comparable to those of SL(b), while they are superior
to SL(a). This greater accuracy of SLDG, however, corresponds to a po-
tentially higher computational cost, due to the fact that numerical solution
does not only involve reconstructions at the foot of the characteristic lines,
but along these as well.

5.3 Deformational flow tests

The deformational flow tests considered were the non divergent vortical
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Rel. L? | Rel. L™ | Dissipation | Dispersion
error error error error
SLDG | 7.31e-02 | 7.20e-02 2.55e-04 4.13e-03
SL(a) | 2.45e-01 | 2.44e-01 6.61e-03 1.95e-01
SL(b) | 7.75e-02 | 7.40e-02 5.51e-04 1.96e-02

Table 7: Comparison of SLDG with P; reconstruction and SL with continuous
Py reconstruction: results after 4 full rotations of a smooth profile at C' = 3.

velocity field introduced in [11], which has been used by many authors to
assess the accuracy of advection schemes, see e.g. [34], [35], and the well
known test proposed by P. Smolarkiewicz in [40]. For the non divergent
vortex of [11], a circular domain of radius R = 3 was considered, which
was discretized with a triangular mesh composed of 2352 elements with
dofs = 7056. The initial datum was given by a function taking two different
constant values on the upper and lower half of the computational domain,
respectively, with a sharp transition zone in the middle. The zero order
degrees of freedom representing cell averages are displayed in Fig. 6, as
computed by the monotonized SLDG and RKDG schemes, at C' = 2 and at
C = 0.3, respectively. It can be observed that the monotonization approach
proposed for SLDG leads to a much sharper interface and to much greater
detail in the vortex roll-up zone, which is consistent with the error statistics
shown in Table 8.

Rel. L? | Rel. L' | Dissipation | Dispersion
error error error error
SLDG | 2.24e-01 | 1.05e-01 8.04e-04 1.2185
RKDG | 3.55e-01 | 1.96e-01 9.80e-3 3.0571

Table 8: Errors for the SLDG solution (at C = 2) and RKDG solution ( at
C = 0.3)in the Doswell deformation flow test case.

The SLDG solution for the deformation flow proposed in [40] is displayed
in Fig. 7, along with a reference solution computed using the standard
RKDG method with higher order elements and a much smaller timestep.
It can be observed that the SLDG method is quite effective in reproducing
very similar results using a much longer time step. The effective reduction
of the associated computational cost can only be estimated precisely once
the optimal time discretization approach will have been identified.

6 Coupling the SLDG method to discrete mod-
els of divergent flow
Divergent flows or two dimensional free surface flows are often considered in

applications to realistic environmental problems. In these cases the SLDG
method proposed in the present article should be coupled to an appropriate
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discretization of the continuity equation. For sake of simplicity, this prob-
lem will be described here in greater detail in the case of a two dimensional
divergent flow. Consider the coupled system

%—Ij +V- (Hu) -0, (37)
8(;f) +V- (cHu) -0 (38)

where u is the velocity field, H is the thickness of a homogeneous two-
dimensional layer of fluid and c is the concentration of an advected tracer.
System (37)-(38) enjoys the basic property that setting ¢ = 1 in (38), equa-
tion (37) is recovered. If this property of compatibility or consistency with
continuity is not preserved also at a discrete level, effective loss of mass con-
servation and monotonicity arise, even for fully conservative discretizations
of (37), see e.g. the discussion in [21], [27], [28], [39]. The inaccuracies re-
sulting from neglecting this issue in realistic atmospheric chemistry models
have been analyzed in [24].

In many mass conservative environmental models (see e.g. [4], [5], [6],
[32]), the continuity equation (37) is usually discretized using a finite volume
method as

OK e|Uc||e|At
H&_}_{l — H(?,K _ Z K,e||Iz||| | H::'L‘
ek
Here, the same notation as in Sect. 2 was used and u. denotes a discrete
velocity field. In many applications, for the sake of efficiency, equation (6)
is the result of a semi-implicit discretization, so that indeed the velocities
involved are to be interpreted as velocity values at an intermediate time

step ue = u?+% and switching to a different numerical method to ensure
consistency might require extensive reformulation of the available numerical
models. Thus, it is convenient to discretize (38) so that consistency with
(6) is achieved automatically.

The discretization of the tracer equation by the SLDG method can be
extended to the divergent case as follows. The equation for the degree of
freedom corresponding to the mean over each element can be discretized as

Hplerhe  =Hixcx (39)
2
Y - Y Seom [k
) e 2 e G| L
e€lx e€lx j=1

It is to be remarked here that this equation is entirely analogous to the equa-
tion for cgj(l in (16). For any reasonable definition of the numerical fluxes,
this expression will yield exactly equation (6) in the case of constant 5 K>
so that discrete consistency is granted. It should be remarked, however,
that the divergence free property of the flow was essential for the present
derivation of monotonic low order fluxes F?. Thus, the presently available
proof of monotonicity does not hold in the divergent case and needs to be
extended appropriately, while on the other hand a non monotonic version

of the scheme can be extended to the divergent case straightforwardly.
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7 Open issues and further developments

The main open issue with respect to the SLDG method at this stage
appears to be the characterization of the accuracy required in the space-
time quadrature formulas introduced in Sect. 2.4. A precise evaluation of
the relative accuracy and efficiency of the SLDG method compared to other
more mature methods will only be feasible once this point has been prop-
erly addressed. The accuracy required in the quadrature formulas for the
approximate computation of the fluxes and volume integrals in equation
(8) appears to be related to the local Courant number, in the sense that,
for low Courant numbers, a smaller number of quadrature points appears
to be necessary to achieve the same accuracy. One possibility to achieve
greater computational efficiency could be to choose the number of quadra-
ture points locally in space and time as a function of the Courant number.

Finally, a major theoretical development that also appears feasible is
to provide a convergence and stability proof for the SLDG method along
the lines of [14], which should be able to give a more rigorous basis to the
empirical finding on the better convergence rate of the SLDG formulation
compared to the classical SL approach discussed in Sect. 5.

8 Conclusions

The SLDG discretization approach for the scalar advection equation has
been introduced, combining the accuracy and flexibility of the DG method
with the computational efficiency and robustness of semi - Lagrangian tech-
niques. Unconditional stability of the proposed discretization was proven
in the von Neumann sense for the one dimensional case. A monotonization
technique has also been introduced, based on the Flux Corrected Trans-
port approach, which yields a multidimensional monotonic scheme for the
piecewise constant component of the computed solution, while reducing the
numerical diffusion of monotonization approaches more common in the Dis-
continuous Galerkin framework. The accuracy and stability of the method
have been demonstrated by two dimensional tracer advection tests. In par-
ticular, the comparison with results obtained by standard semi - Lagrangian
and Discontinuous Galerkin methods has shown that SLDG merges effec-
tively the most desirable properties of both approaches, while avoiding their
most remarkable shortcomings. More thourough theoretical analysis and
further testing of the proposed approach are currently being undertaken,
as well as its extension to tracer transport in divergent flows and to the
solution of nonlinear systems of conservation laws.
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Figure 5: Monotonized solutions in the solid body rotation test case at C' = 0.25.
SLDG solution computed with P; elements (a) RKDG solution computed with
P; elements (b) and analytic solution (c).
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Figure 6: Solutions in the Doswell deformation flow test case.
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Figure 7: Solutions in the Smolarkiewicz deformation flow test case. SLDG
solution computed with P; elements at maximum Courant number 4 (a) and
reference RKDG solution computed with Py elements (b). Red contours: nu-
merical solution; blue contours: inital datum.
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