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Abstract

The numerical investigation of a recent family of algebraic fractional-step methods for the
solution of the incompressible time-dependent Navier-Stokes equations is presented. These
methods are improved versions of the Yosida method proposed in [29] and [28] and one
of them (the Yosidaj method) is proposed in this paper for the first time. They rely on
an approximate LU block factorization of the matrix obtained after the discretization in
time and space of the Navier-Stokes system, yielding a splitting in the velocity and pressure
computation. In this paper we analyze the numerical performances of these schemes when
the space discretization is carried out with a spectral element method, with the aim of
investigating the impact of the splitting on the global accuracy of the computation.

1 Introduction

One of the most known techniques for an efficient solution of the incompressible Navier-Stokes
equations consists in using fractional-step methods of differential or algebraic type. In the former,
the splitting is based either on physical considerations (see for example [12]), or on the Helmholtz
decomposition principle. These methods are called projection methods and the most famous one
is the Chorin-Temam scheme ([5], [36]). The accuracy of projection methods depends strongly
on the boundary conditions chosen for the differential subproblems in which the original problem
is split. In the last three decades many papers have been devoted to the study of high accurate
differential fractional-step schemes, see for example [23, 22, 8, 38, 15, 14, 35, 3, 17, 18, 19] and
the references therein.

On the other hand, algebraic fractional-step methods are based on an algebraic decomposition
of the matrix arising from the full discretization (in both space and time) of the Navier-Stokes
equations. Such decomposition (or splitting) could be performed either by a sum of simpler
matrices (see for example the methods described by Yanenko [41] and Marchuk [24]) or a product
of block-triangular matrices. In this perspective, Perot [26] revisited the Chorin-Temam method
as an approximate (or inezact) block LU factorization of the matrix arising from the fully
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discretized equations. Following this approach the boundary conditions were incorporated in
the discretized operator and no boundary conditions have to be selected.

The paper of Perot was followed by various works in which different formulations of the
Chorin-Temam method were proposed and investigated (see [6, 29, 28, 40, 20]).

The interpretation of the Chorin-Temam scheme from an algebraic point of view gave rise to
the investigation of new families of (algebraic) fractional-step schemes, with good accuracy and
stability properties and which do not have a differential counterpart (see [29], [28], [20]).

To set up new algebraic methods, the idea is to choose appropriately the inexact factorization
of the matrix (say A) arising from the full discretized equations.

The Yosida method, proposed in [29, 28], is an algebraic fractional-step scheme, which differs
from the algebraic version of the Chorin-Temam (ACT) method basically for fulfilling the discrete
momentum equation, while the Chorin-Temam method guarantees the conservation of the mass.
These two schemes differ from one another also in accuracy and stability properties and they
have been investigated when coupled to finite element methods, also as preconditioners (see also
[34], [40]). In [10] and [34] a more accurate scheme (here called Yosida3), based on the idea of
adding a final correction step for the pressure computation to Yosida scheme is proposed.

In this paper we present a new (and computationally feasible) modification (called Yosida4)
of the Yosida scheme, featuring better accuracy properties. Actually, when the Yosida3 method
is combined with a third order approximation scheme in time, the discrete L2(H?!)-error on the
velocity behaves like At? and the discrete L?(L?)-error on the pressure like At%/? for vanishing
At, while, if the Yosida4 method is combined with a fourth order approximation scheme in time,
the resulting discrete L2(H)-error on the velocity behaves like At* and the discrete L2(L?)-error
on the pressure like At7/2. An extensive theoretical analysis of the schemes, corroborating the
numerical results presented here, will be carried out elsewhere (see [11]).

The second aim of the paper is to validate the accuracy of the Yosida schemes when conformal
Pn — Py—2 spectral elements are chosen for the space discretization ([1]).

Finally we will compare Yosida, Yosidad and Yosida4d schemes from a computational point of
view.

An outline of this paper is as follows. In Section 2 we state the terms of the problem: we briefly
recall the notations of Navier-Stokes equations for incompressible flows, the Backward Differen-
tiation formulas (BDF) used for approximation in time and the spectral element methods. In
Section 3 we briefly recall the Yosida scheme and we show the numerical results obtained using
it jointly with spectral methods. In Section 4, starting for the strategy for improving Yosida
schemes introduce in [34] and based on a further step for the pressure computation, we derive
the new Yosida4 scheme. We prove the fourth order in time dependence of the splitting error.
Then, we illustrate several numerical results obtained by applying these schemes to spectral
elements approximation. Some conclusions are drawn in Section 5.

2 Definitions and settings

We consider the Navier-Stokes equations for Newtonian incompressible fluids in the primal
velocity-pressure formulation. For any open bounded domain Q C R? with a Lipschitz bound-
ary, and a positive T, given an external field f € [L2(0,T;L?(Q2))], a boundary data g €
[L2(0,T; H/2(99Q))]? and an initial datum ug € [H'(92)]? such that V - ug = 0, we look for
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the velocity field u € [L?(0,T; H(€))]? and the pressure field p € L?(0,T; L3(92)) solutions of

a—u—1/Au—i—(u-V)u+Vp:f

ot
V-u=0
u=g
u = Ug

in Q % (0,7)
in Q x (0,7)
on 90 x (0,7T)
in Q x {0},

where v > 0 is the kinematic viscosity.
Problem (1) admits a unique solution if suitable smallness assumptions on the data, with respect
to the viscosity v, are assumed (see [37]). It is worth to mention that all methods and the analysis
developed hereafter can be applied to different kinds of boundary conditions as well.

We approximate in time the Navier-Stokes system (1) by a Backward Differentiation Formula
of order p (BDFp) and we linearize the convective term by an extrapolation formula of the same
order of the BDF' used.

Given At € (0,T), we set t° =0 and t" = t° + nAt with n = 1,..., Ny and Ny = [%]

)

Given u", for n > ng (depending on the BDF scheme used), we look for the solution (u”*! pn+1)
of the system
Agtun—l—l . I/Alln+1 + (11* . v)un+1 + Vpn+1 _ f-n+1 in Q
Vourtl =0 in Q (2)
untl = gntl on 99,
where
u” when using BDF1
. 2u” —u" ! when using BDF2 3)
u =
3u” —3u" ! un? when using BDF3
4u” —6u” ! +4u” 2 —u"? when using BDF4
and
= 1
np=1, a=1, =+ 4 Eun for BDF1
3 rn+1 1 1 n 1 n—1
n=2 a=-, M=ty _2u" - ) for BDF2
2 At 2
11 - 1 3 1 )
no=3, o=, frtl — ot g <7 (3u" — 5u"—l + gu"—Q) for BDF3
25 - 1 4 1
ng=4, a=T, frotl — gn+l 4 (" - 3u™ ! 4 gun—2 — Z11”—3) for BDF4.

Moreover we chose conforming spectral elements with numerical integration to approximate
with respect to the space variables. In order to fulfill the inf-sup condition for the discretized
problem we use the Py — Py_o scheme with staggered grids ([1]), according to which local
polynomials of degree IV in each space variable are used to approximate the velocity field and
local polynomials of degree N — 2 in each space variable are used to approximate the pressure.
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By this choice, the inf-sup condition is satisfied with a constant which depends on the parameter
N (2)).

We introduce a conformal, regular and quasi-uniform (see, e.g., [21]) partition 7, of Q in N,
quadrilaterals T} such that

Ne
Q=T (5)
k=1
with
h = max hy, hy = diam(Ty), k=1,..,N.. (6)

Tk: ETh

Let Pn(T})) be the set of algebraic polynomials, defined on T}, of degree less than or equal
to N in each direction, and set

PH(Q) = {UH S Co(ﬁ) Y UNk ‘= UH|T, S PN(Tk), VT; € 7;1} (7)

The subscript H represents the discretization level and it stands for the couple (h,N). The
definition (7) states that the space Px(f2) is the space of global continuous functions on £,
which are polynomials of degree N, with respect to each space variable, on every quadrilateral
of the mesh. The functions uy, vy, ... will denote generic elements of the space Py(€2). Given
UK, VH € ]P)H(Q), we set

Ne

(wrt, vr) 1,0 = Y (UN ks UN KN T (8)

k=1
where (-,-)n 1, denotes the discrete inner product in L?(T},), based on the Gauss-Lobatto Leg-
endre (GLL) quadrature formulas ([4]). In each element T} of the partition we define a local
GLL grid of (N +1)? points and a local Gauss Legendre (GL) grid of (N — 1)? points. The last
grid is staggered with respect to the former one and it is internal to T%. Therefore, we denote
by N, (resp. N,) the total number of GLL (resp. GL) grid points in €.

We define the finite dimensional spectral element spaces:

Vi = [Pr(Q)?, VI = [Px(Q) N HE(Q))

9)
Qn=A{qn € L*() : qnk = qnyr, € Pn—2(T), YTk € Tn},

so that the finite dimensional counterpart of (2) reads: for n > ng, given uj, € Vg, look for the
solution (uf*, p;!) € Vi x Qp, with: u};"!(x) = g"1(x) for any x of the GLL mesh which

Uy Py
belongs to 052, p?fl known in one point of the GL mesh, such that

@ *
~ (W vidro + (VW Vvado + (i V)ug vi)se

—(y Y v = (B v e Vv € VY, (10)
(V-ul ™ g1 =0 Vg € Qn.

We denote by U € R?Mv the array of the velocity grid function evaluated on the GLL mesh at
time t”, and by P" € R™» the array of the pressure grid function evaluated on the GL mesh at
time t".
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Denoting by M the mass matrix, K the stiffness matrix, and B (resp. N(U*) the matrix
related to the discretization of —V- (resp. of the convective term), we rewrite system (10) as

L MU L KU 4 N(UH U 4 BTPHL = Byt
At (11)
BU™! =0,

where f‘?“ is thg array generated by the term (f'"“, VH)H.Q-
We set C' = EM + vK + N(U"). The right hand side is modified accordingly, taking into
account the contributions that the boundary nodes give to internal nodes. This step generates

a right hand side [F7*!, F5 !¢ that is non zero also for the second equation of (11).
At each time level the system has the following matrix form:

cutt 4 pTprtt = Ftt (12)
BU™tt = FiHt (13)
or
AW — prtl (14)
with
(5 h) e [E] e[

From now on, for the sake of simplicity, we will drop the index n + 1 from all the vectors.

To solve system (14) one could use a global approach such as a preconditioned Krylov method
with either algebraic or differential preconditioners or again with Schwarz type domain decom-
position preconditioners ([25]) or a pressure Schur complement approach ([9]).

Alternatively, system (14) can be solved by a block LU factorization with

—1pT
C 0 }, U:[ICB].

L=|p _Bc-ipr 0 I

(15)

The matrix
> :=—-BC 'BT (16)

is the so called pressure Schur complement matrix.
Solving system (14) through the block LU factorization (15) consists in finding the solution of
the following subsystems:

L—Step:ﬁndfj,f): CP:Fl ~
P =Fy,— BU,
~ (17)
P=P

U —step: find U, P : N
b me {C(U—U):BTP.

This is sometimes called the pressure matriz method (see e.g. [30]). It is worthwhile noting that,
when a semi-implicit treatment of the convective term is considered, matrix C' is time-dependent
and the construction of matrix ¥ at each time step is quite expensive. An effective way for
reducing computational costs is to suitably approximate X: this is the basic idea underlying to
the Yosida scheme (and to the algebraic reformulation of the Chorin-Temam method proposed
by Perot see [26], [29]) that we are going to introduce.
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3 The Yosida scheme

The Yosida scheme it is characterized by replacing the factors L and U of A, given in (15) with
an inezxact LU factorization of the form A= LU where

. At
L:[g —BIO{BT] and Ho=—M" L (18)

At each time-step, system (14) is replaced by

~

AW =F with W= g (19)

where F is the right hand side which takes into account the approximate solutions of previous
steps. Matrix
S:=—-BHBT (20)

is an approximation of the Schur complement ¥ and it can be obtained by a zero-order truncation
of the Neumann expansion of C™1 in ¥ (see [6, 39, 40]).

The computational convenience in solving (19) at a generic time step, relies to the fact that
we have actually to solve the following (smaller) subsystems:

j)—step: ﬁndﬁ,f’: CU = Fl
SP = FQ_BU

(21)

NP P=P
U —step: find U, P: { C(ﬂ'—ﬁ):BTf’.
Remark 3.1 (Computational cost of Yosida scheme) At each time step we have to solve
two linear systems whose matrix is C' and we can make use of preconditioned Krylov methods
(such as Bi-CGStab or GMRES) with incomplete LU preconditioner ([33]) or finite-element
preconditioner ([31, 7]), or again Schwarz domain decomposition methods. Moreover we have
to solve a linear system whose matrix is S = —BHBT. If the inf-sup condition is satisfied,
then the matrix B is a full-rank matrix and S is symmetric, negative definite. Then, for 2D
implementations, we can resort to a Cholesky factorization obtained by a suitable QR splitting of
H'Y?BT (see [40]), while for 3D implementations we can refer to either preconditioned conjugate
gradient algorithm or multigrid scheme (see [39]). Observe that S can be factorized once at all
at the beginning of the time loop since it is time independent.

The computational convenience with respect to the pressure matriz method is evident by the
fact that the matrix S is considerably easier to solve than ¥, especially when M is a diagonal
matrix (as it is in spectral methods with numerical integration). Moreover the two steps (21)
have to be solved once at each time level, while other iterative schemes, such as the Uzawa
one, require the iterative solution of systems in C' and in the pressure mass matrix. On the
other hand, while both pressure matrix and Uzawa method compute the solution of the unsplit
discretized problem, Yosida method computes an approximate solution affected by the splitting
error. When the time discretization is obtained with a first order scheme, it has been proved
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in [28] that the first order accuracy is maintained by the split solution. For higher order time
discretizations we need to resort to more accurate splitting schemes such as the ones that we
are going to consider in the next Sections.

Finally, we quote that a comparison of the Yosida scheme with other splitting schemes
(Chorin-Temam projection method or its algebraic reinterpretation), which introduce a splitting
error as well, can be found in [29].

3.1 Numerical results

In this section we illustrate the performances of the Yosida scheme (21) coupled with a spectral
element space discretization and we do a comparison with a classical unsplit method, namely
a Bi-CGStab solver on system (14), preconditioned with an incomplete LU factorization. The
comparison will be done from both accuracy and computational points of view. Since systems
(14) and (17) are equivalent, the unsplit approach will be referred to also with the term exact LU
factorization in contrast with the Yosida method that will be named inexact LU factorization.

Following the same notation of Section 2, we denote by (%, p},) € Vi X Q3 the numerical
solution at time t" obtained by the Yosida scheme. We define the velocity and pressure errors
in L2(H')— and L2(L?)— discrete norms respectively:

1/2

Ny 1/2 Ny
By = (Athu(tn)—wmp(m) . B (At2||p<tn>—q%n%a(m) @
n=0 n=0

where either w}, = 0%, ¢, = p}, when we use the Yosida method or w3, = u},, ¢f, = p}, when
we use the unsplit approach.

Here and in the sequel we will consider two different test cases with a given exact solution.
As a first test case, we consider the computational domain Q = (—1,1)2 and ¢ € [0, 1], while the
forcing term, the boundary conditions and the initial conditions are set in such a way that the
exact solution is

u(z,y,t) = [sin(z)sin(y + t), cos(x) cos(y + )]

p(z,y,t) = cos(x) sin(y + t). (23)

On the same computational domain we will consider a second test solution where the depen-
dence with respect to the space and time variables is factorized, that is:

u(z,y,t) = [e@HY), —e@+0]T gin(27t)

p(x,y,t) = —(2? + y?) sin(2nt). (24)

For BDF schemes with order greater than 1 we need further initial data that in our cases will
be provided by the exact solution. For general cases, initial data could be provided by suitable
explicit schemes (e.g. Runge Kutta) of the same order of the BDF used.

Accuracy. In Figures 1 and 2 we report the errors (22) for both velocity and pressure for different
values of the time-step At. The curves marked with BDF'I, BDF2, and BDFS3 refer to the
solution of system (14) obtained with first, second and third order BDF scheme (respectively),
by solving the linear system by a global preconditioned Bi-CGStab.

The curves marked with BDF1+ Yosida, BDF2+ Yosida and BDF3+ Yosida refer to the solution
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) o || == BDFIl+Yosida

10" 11 & BDF2+Yosida
—— BDF3+Yosida
_> | —e— BDFI
—=— BDF2
— BDF3

o || == BDFIl+Yosida
10" 11 &~ BDF2+Yosida
—— BDF3+Yosida
_> | —— BDFI1
—=— BDF2
—— BDF3

107 10 107 107 107 107 107 10 107 107
At At

Figure 1: The errors (22) for the exact solution (23). v =1073, N = 16 and N, = 1.

of system (14) obtained with first, second and third order (respectively) BDF scheme and the
Yosida method (21).

First of all we compare the convergence lines of BDF1 and BDF1+ Yosida and we note that
for At < 1073 the two errors coincide. This means that for small time-steps (i.e. At < 1073) the
Yosida method introduces an error (the so called splitting error) that is o(At) for both velocity
and pressure. The splitting error affects the computations with a BDF2 time discretization on
the pressure: the comparison of BDF2 and BDF2+ Yosida curves shows that the velocity error
of the Yosida scheme is higher than in the unsplit solution, even if the accuracy is still of second
order. The pressure is more affected by the splitting error and, in particular, a BDF2 time
discretization coupled to the Yosida scheme exhibits an order of accuracy equal to 3/2. This can
be theoretically justified (see Remark (4.1)). Finally, we note that we don’t gain any advantage
from using the Yosida scheme joined with BDFS.

In conclusion we can write the global velocity error in time as the sum of two errors, the first
one due to the BDFp scheme and the second one due to the Yosida scheme:

err(At) = egprp AtP + Cyos AL, (25)

where cgpr, and cy,s are two positive constants independent of At. When p = 1 the Yosida
scheme introduces a splitting error that is smaller than the BDF1 error. When p = 2 the Yosida
scheme introduces a splitting error of the same order of BDF2, so that BDF2+ Yosida is second
order accurate, even if the error of BDF2+Yosida is considerably greater than the error of the
pure BDF2.

If we want to use an algebraic fractional step method with a BDF scheme of order p > 2
and, at the same time, we want to preserve the accuracy obtained with the pure BDFp scheme,
we have to introduce more accurate inexact LU factorizations which produce smaller splitting
errors. Two different more accurate inexact LU factorizations will be described in the next
Section.

Remark 3.2 In the context of differential splitting schemes such as the Chorin-Temam projec-
tion method (see e.g. [18], [27], [32]), an important issue is the prescription of pressure boundary
conditions. Actually, in solving a differential problem for the pressure, unphysical boundary con-
ditions are prescribed, which can induce boundary layers on the behavior of the pressure error.
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3 100 1 —o— BDFl+Yosida

—&— BDF2+Yosida
—— BDF3+Yosida
> || e~ BDFI
—=— BDF2

o || == BDFIl+Yosida
10" 11 &~ BDF2+Yosida
—— BDF3+Yosida
_> | —— BDFI1
—=— BDF2
—— BDF3

107 10 107 107 107 107 107 10 107 107
At At

Figure 2: The errors (22) for the exact solution (23). v =107°, N =16 and N, = 1.

In the context of algebraic fractional-step schemes no auxiliary boundary conditions for the
pressure are needed since the splitting is performed on the algebraic problem, which already
include all the (physical) boundary conditions and this usually reflects in a better behavior of
the pressure solution on the boundary (see e.g. [29]).

This circumstance is confirmed in Figure 3 where we show the pressure error at 7' = 1 for
the solution (23) and we can see that no boundary layers occur either if the uniqueness of the
pressure is forced by fixing the pressure in one point of the computational domain (on the left)
or by setting a null-average condition on the pressure (on the right).

Another relevant point concerning the accuracy of the scheme refers to the mass conservation
equation. As we have already pointed out, the consistency error of the Yosida splitting affects
only the continuity equation. We investigate the time dependency of this error, that means that
we consider the behavior of the divergence of the velocity in time. In Figure 4 we show the
behavior of ||V - %[ (q), versus time, for three different values of the time step (on the left
for the test case featuring the exact solution (23) and in the middle for (24)). On the right of
Figure 4 the norm ||V - Gip|| foc (0 (2)) versus the time step At is plotted. We observe that the
behavior of ||V - 03|~ () depends on the considered test problem, and in particular on how
the velocity field depends on the time.

The picture on the right highlights that the norm ||V - ﬁHHLoo(Loo(Q)) < ¢At?, which confirms
the theoretical results of [28] and similar results in the context of finite elements discretization.

Computational cost. In Tables 1-3 the CPU-time (in seconds), needed to execute 100 time
steps, is shown for both unsplit approach (marked with BDF1 and BDF?2) and inexact LU
factorization (marked with BDF1+ Yosida and BDF2+Yosida). The squared computational
domain is subdivided in N, = n. X n. equal squared elements and N denotes the polynomial
degree in each direction, on each element. With one spectral element and a high polynomial
degree N, the Yosida scheme is about ten times faster than the unsplit solver, in the other cases
it is even more convenient in terms of CPU times. All programs were run on an Intel Pentium
4 processor with a frequency of 2.8 GigaHertz under an IEEE754 standard mode operation.
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0.0001 0.0001

0004 0988 04008 0.988

-0988  -0.988 -0.988  -0.988

Figure 3: The error field pyy — p on the Gauss-Legendre grid at 7' = 1 for the test case fea-
turing the exact solution (23), » = 10™°. The numerical solution is computed with the scheme
BDF2+Yosida, At = 1073, N = 16 and N. = 1. On the left the numerical solution is obtained
by fixing the pressure in one node of the computational domain, while on the right the numerical
solution is obtained by fixing the average of the pressure.

—— solution (23)
—=— solution (24)
|| --- At?

0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 11957 102
t t At

Figure 4: The behavior of ||V - 0}|[ 1< (q) versus time (on the left for the test case featuring the
exact solution (23), in the middle for (24)) and the behavior of ||V - Q|| g (o)) Versus the
time step (right). The discretization parameters are N = 16 and N, = 1, v = 107°.

| N=16 | N =24

BDF1 33.03 | 374.81
BDF1+Yosida 3.61 46.97
BDF?2 29.34 | 323.03
BDF2+ Yosida 3.91 46.26

Table 1: CPUtime (sec) for 100 time-steps, At = 1074, v = 1075, N, = 1.
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| Ne =16 | N. =36 | N. =64 | N, =100

BDF1 18.42 55.21 107.47 181.16
BDF1+Yosida 1.41 3.68 .77 14.31
BDF?2 29.79 61.60 135.10 241.10
BDF2+Yosida 1.31 3.58 7.53 13.91

Table 2: CPUtime (sec) for 100 time-steps, At = 1074, v = 107°, N = 6.

[ N=4|N=6|N=8|N=10

BDF1 22.42 7.18 8.65 21.90
BDF1+Yosida 0.07 0.27 0.79 1.89
BDF?2 23.20 7.56 | 10.25 22.85
BDF2+Yosida 0.08 0.27 0.74 1.80

11

Table 3: CPUtime (sec) for 100 time-steps, At = 1074, v = 1075, N, = 4.

4 Improved Yosida methods: pressure correction strategy

We begin by noting that at each time-step, the final pressure P of the Yosida scheme coincides
with the pressure computed at the j)—step, that is P = f’, and it induces a difference in the
treatment of velocity and pressure deteriorating the accuracy of the scheme (see [38], [34]). In
[34] a strategy for improving the accuracy by performing a correction step for the pressure is
proposed. This corresponds to modify matrix U in (15) with a new matrix U featuring a matrix
Q. More precisely we define:

- I ¢ 'BT
U= [ L5 ] , (26)
so that the matrix approximating A is
;e C BT
i[9 ] an
Therefore, system (21) is replaced by
I:—step:ﬁndﬁ,f’: CP:FI ~
SP = F, — BU,
(28)

U—step: find fj, P: { QP~: PA ~

C(U—-U)=DB"P.
A first possible choice for @ is given in [34], in this Section we will reconsider this choice of @
and the numerical results will show that the resulting scheme (which will be named improved
Yosida of order three, briefly Yosida3) is third order accurate in time for the velocity and of
order 5/2 for the pressure, provided it is associated to a third order BDF scheme. Moreover
we will introduce a new choice of @ for which the resulting scheme (named improved Yosida of
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order four, briefly Yosidaj) is fourth order accurate in time for the velocity and of order 7/2 for
the pressure, provided it is associated to a fourth order BDF' scheme.

Observe that if we choose Q = I we recover the Yosida scheme described in the previous
section.
In general, matrix @ is chosen in such a way that

IZ - SQ|| < eAr, with p > 3, (29)

and where | - || is the 2-matrix norm.
Setting D = BHCHBT | if we choose

Q'l=1-8'D=-5'BHCHBT =-5"'D (30)
we obtain the Yosida3 scheme introduced in [34].

Remark 4.1 It is worthwhile pointing out that the idea of introducing a pressure correction
step has been introduced at first in the framework of differential splitting (projection) schemes
(see [13], [38]). In this context, it has been recently analyzed by Guermond and Shen (see e.g.
[19], [17] and [16] for an overview). We would like to stress the fact that the loss of 1/2 in the
order of accuracy for the pressure, that we observe in our numerical experiments, is theoretically
justified by the fact that the operator ¥ — S@, acting on the pressure and introduced in (27)
even for @) = I, has a coercivity constant which depends on At in a linear way [11]. This fact
has been verified also at the differential level, as it results by the rigorous analysis (limited to
the order 2 for the velocity and 1/2 for the pressure) carried out in [19] (Theorem 4.1).

Yosida4 scheme. Let us now introduce a new possible definition of Q.
We set
L=H"'+C
W1 = -BHLHB"
Wo = -B(HL)?HBT”,

under the assumption that p(S™t(W; + Wa)) < 1 (p(-) denotes the spectral radius of a matrix)
we can exploit the Neumann expansion of C ™1, so that

Y= -BUI+H)'HB" =S5 - W, — Wy + At*Z, (31)

where Z denotes a generic matrix of the same order of () independent of At. By their definition,
if ¢ denotes a positive constant, it holds that ||[W1i| < cAt? and |[Wa|| < cAt3. A natural
candidate for yielding with S@Q a fourth order approximation of ¥ is to set therefore

Q=1-S"1tW+Wy). (32)

This is again an unfeasible solution from the computational viewpoint. However, we could try
to find a suitable approximation of Q! starting from (32). Exploiting again the Neumann
expansion we have:

Q=T+ (Wit Wa)+ (ST Wi+ Wa))” + (S (W +W2))  + ..
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and, if we consider the time dependence of each factor on At, we can rewrite:
Q' =T+S1 (Wi +Wa)+ ST'WiS™'Wy + At Z. (33)
Now, by setting again D = BHCHB?, we have
Wy =D-S5
and neglecting the terms that behave like At? we obtain
Ql=-S"'D+(S7'D)?+ 5 'BHC)*HBT. (34)
By using this matrix in (28) we obtain the Yosida/ method.

Proposition 4.1 If Q is defined as in (34) and p(S~Y (W1 + Wa)) < 1, there exists a positive
constant ¢ independent of At such that

|2 - SQ| < cAt?,
Proof. Let us compute SQ explicitly. By exploiting again the Neumann expansion we have:

SQ:S(I—S_l(W1+W2)—I—S_l(W1+W2)S_1(W1+W2)+...) =
S—Wi — Wy — W15_1W1 + W15_1W1 + At4Z,

where again, Z denotes a generic matrix independent of At. By comparing this expression with
the Neumann expansion (31) the thesis holds. o

Since in the Yosida pressure corrected schemes it holds BU = (2 — SQ) P, the immediate
corollary of the previous Proposition is that the discrete divergence of the velocity field computed
by the Yosida4 scheme behaves like At* when At vanishes.

This will be verified by numerical experiments.

A detailed analysis of both accuracy and stability of the Yosida4 method is carried out in [11].

Remark 4.2 The computational effort required by either Yosida3 or Yosida4 methods increases
mildly with respect to the cost of the Yosida method. As a matter of fact, at each time-step of
Yosida3 (or Yosidad) we have to solve an additional linear system of type Ql/5 — P. This means
to solve the system R

SP = —DP (35)

in the Yosida3d scheme, and to do the following steps

compute Pp = —DP
solve SPs=Pp
solve SP = —Pp — DPg + B(HC)?HBTP

in the Yosida4 scheme.

We remind that (see Remark 3.1), matrix S can be factorized before the time loop and then,
in order to implement Yosida3, only two triangular systems have to be solved more, as well as
to compute the matrix-vector product DP. Otherwise, to implement Yosida4, four triangular
systems have to be solved more, as well as to compute two matrix-vector products involving
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matrix D.

From Tables 4-6 we observe that, when the number of elements N, < 36, the cost of both
Yosidad and Yosida4 is comparable with that of Yosida, while for higher N, each iteration of
Yosidad is half as much more expensive than Yosida, and each iteration of Yosidad is twice the
cost of an iteration of Yosida.

In summary, the computation of both U and P through the improved Yosida schemes can
be done with the following algorithm:

Algorithm 4.1 (A step of the improved Yosida algorithm) For two given vectors F1 and
Fo

i)  solve CU=F,

solve SP = Fy — BU
compute Pp=—DP
solve SP =Pp

i) compute Pp=—Pp— DP+ B(HC)>HBTP
solve SP =Pp

iii)  solve C(U-TU) = BTP.

Observe that, when the implementation of the scheme is considered, the Yosida3d scheme is
immediately obtained by dropping step 4i). This could be of some interest in devising a general
purpose code featuring different schemes.

4.1 Numerical results

In this Section we presents numerical results about the schemes Yosida3 and Yosida4 on the test
cases given by the exact solutions (23) and (24).

Accuracy. In Figure 5 we report the errors (22) versus the time-step At. We have chosen the
fourth order BDF/ scheme for the temporal approximation and the fourth order extrapolation
formula for the non linear term since our aim is to capture the splitting error introduced by the
inexact LU factorizations. The Yosida scheme introduces an error on the velocity of order two
with respect to the time-step (confirming the numerical results reported in Section 3), Yosida3
an error of order three and Yosida4 an error of order four. The errors on the pressure are scaled
of half order with respect to the errors on the velocity.

In Figure 6, the errors (22) for the exact solution (24) are shown for the schemes BDF3+ Yosida3,
BDF3+Yosidaj, BDF3 and BDF) versus the time-step, with viscosity v = 1075.

The error on the velocity is third order accurate with respect to At for both BDFS3 and
BDF3+Yosida8, while it is fourth order accurate for BDF4. The order of accuracy on the
pressure is three for BDF3, four for BDF/ and 5/2 for BDF3+ Yosida3.

In Figure 7 the errors (22) are shown for the schemes BDF2+ Yosida, BDF3+ Yosida3,
BDF/+ Yosida4 versus the time-step. A discretization in N, = 10 x 10 equal spectral elements
is considered with N = 6.

When At is small enough, the schemes BDF2+ Yosida, BDF3+ Yosida3 and BDF/+ Yosida/
are of second, third and fourth order accurate in time, respectively.
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—e— BDF4 —e— BDF4

—< BDF4+Yosida —< BDF4+Yosida
N —8 BDF4+Yosida3 1 -2 || =8 BDF4+Yosida3
-v— BDF4+Yosidad -v— BDF4+Yosida4

Figure 5: Errors (22) for the test case (23) with BDFJ (unsplit approach), BDF/+ Yosida, and
the improved Yosida schemes BDF/+ Yosida3, BDFj+ Yosidaj. The viscosity is v = 107°, the
space discretization corresponds to N, =1 and N = 16 .

—8— BDF3+Yosida3 —6— BDF3+Yosida3
100 —4— BDF3+Yosida4 ] 100 —4— BDF3+4Yosida4
—a— BDF3 —a— BDF3
, || + BDF4 || + BDF4
10 :
107
=
= -6
10°}
107"
10—107
_12 _12
10 10 :
10 10 10° 107 107

Figure 6: Errors (22) for the exact solution (23) with BDF3+ Yosida3, BDF3+ Yosida4, BDF3
and BDFJ. The viscosity is v = 107°. Spectral elements with N = 16 and N, = 1 are considered.
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T T r
—e— BDF2+Yosida —e— BDF2+Yosida

—<4 BDF3+Yosida3 —<4 BDF3+Yosida3
—8— BDF4+Yosida4 -2 || —a— BDF4+Yosida4

Figure 7: Errors (22) at T' = 1 on the test case (24) with BDF2+ Yosida, BDF3+ Yosida3 and
BDF/+Yosida4. The viscosity is v = 107, N, = 10 x 10 equal spectral elements are considered
with N = 6.

In Figure 8 we report the error field pyy—p at T' = 1 for both BDF3+ Yosida3 and BDF/+ Yosida4
when the viscosity is ¥ = 1075. We observe that no boundary layers on the pressure are intro-
duced by the improved Yosida schemes. In [32], Rannacher supposed that the boundary layer
on the pressure error produced by the Chorin-Temam differential fractional-step scheme is of
the same order of vvAt. We have carried out a simulation with viscosity » = 107! and, as
we can see in Figure 9, also in this case the BDF/+ Yosidaj produces an error on the pressure
without boundary layers. Analogous results have been obtained with both BDF2+Yosida and
BDF3+Yosida3 schemes.

It is worthwhile to note that, when Py — Py _o spectral elements are considered, the nodes of
the Gauss Legendre grid, on which the discrete pressure is defined, are internal to the domain
Q and the pressure is discontinuous on the interfaces between two adjacent elements.

In Figure 10 (left) we show the behavior of ||V - || (q), versus the time ¢ for three different
values of the time step for the Yosida3 scheme; the picture in the middle shows the behavior of
the same norm for the Yosida4 scheme and, finally, the picture on the right shows the behavior
of the norm ||V - @[ oo (10 ()) Versus the time step At. The oscillations in the case of Yosida4
(middle) are possible due to instability reasons. The picture on the right highlights that the
norm ||V - G| poo (o0 () < cAt? for Yosida3 and ||V - Ul oo (zoo () < cAt* for Yosidad.

Stability. We present now some numerical simulations aiming at investigating the stability
properties of the Yosidad scheme. In Figure 7 we observe that BDF4+ Yosida/ requires a stability
condition on the time-step more restrictive of those of both BDF2+ Yosida and BDF 3+ Yosida3.
Surely, BDF) has a stability region smaller than both BDF2 and BDF3, but also the inexact
LU factorization introduces a more restrictive stability condition on the time-step. Moreover,
also the extrapolation formula can induce a stability restriction [34, 11]. In order to highlight
the stability bound required by the inexact LU factorizations, we consider the time-dependent
Stokes problem and the scheme BDF2, which is unconditionally stable. Then, we compare
BDF2+Yosida, BDF2+Yosida3 and BDF2+ Yosidaj and in Figure 11 we show the errors (22)
for the exact solution (24) on the time interval (0,7°) = (0,100). We observe that, when the
viscosity is v = 107! (first column), both Yosida3 and Yosida4 needs a stability bound, which
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Figure 8: The error field py — p for the test case featuring the solution (23) at 7" = 1 for
BDF3+Yosida3 (top) and BDFj+ Yosidaj (bottom). The viscosity is v = 107°. N, = 6 x 6
equal spectral elements are considered with N = 6, At = 1073. On the left the numerical
solution is obtained by fixing the pressure in one node of the mesh, on the right the numerical
solution is obtained by fixing the average of the pressure.
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Figure 9: The error field |py — p| for the test case featuring the solution (23) at 7" = 1 for
BDFJ+Yosida4. The viscosity is v = 107'. N, = 6 x 6 equal spectral elements are considered
with N = 6, At = 1073, The numerical solution is obtained by fixing the average of the pressure.
The error peaks near to the corners of the domain (which is Lipschitz, but not more regular)
are due to analytical reasons and they do not depend on the fractional step scheme.
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Figure 10: The behavior of ||V - 4| 1 (q) versus time for the exact solution (24) (on the left
for Yosida3 and at middle for Yosida4) and the behavior of ||V - @[ oo (100 (q)) Versus the time
step (right). The discretization parameters are N = 16 and N, = 1, v = 1075,



Algebraic fractional step schemes with spectral methods 19

| N=16 | N =24
BDF2+Yosida 3.91 [ 46.26
BDF3+ Yosida3 3.89 | 46.65
BDF}+Yosidaj 3.80 | 47.32

Table 4: CPUtime (sec) for 100 time-steps, At = 1074, v = 1075, N, = 1.

| No=16 | N. =36 | N. =64 | N. = 100

BDF2+Yosida 1.31 3.58 7.53 13.91
BDF3+Yosida3 1.52 4.12 9.32 18.19
BDF4+Yosida4 1.67 4.73 11.23 22.60

Table 5: CPUtime (sec) for 100 time-steps, At = 107%, v = 107°, N = 6.

depends mildly on the spectral elements size H. Otherwise, when the viscosity is smaller (second
and third columns), both Yosida and its variants require the same stability condition (At < 0.5),
independently of both the mesh size and the Yosida scheme.

Computational cost. In Table 4-6 the CPU-time (in seconds) needed to execute 100 time
steps for BDF2+ Yosida, BDF3+ Yosida3 and BDF/+ Yosidaj are shown. These results show
that, when the number of elements is small, the computational cost of both Yosidad and Yosida4
is comparable with that of Yosida, whereas, when the number of elements N, grows up, the time
needed by Yosidad tends to be about half as much again the time needed by Yosida, while the
time needed by Yosida4 tends to be about twice the time needed by Yosida.

5 Conclusions

We have considered the algebraic fractional-step Yosida scheme and two improved reformula-
tions (Yosida3 and Yosida4) for the numerical solution of incompressible Navier-Stokes equations
coupled to the spectral elements discretization. Yosida and Yosida3d have been previously in-
troduced and experimented in the context of finite elements discretization. Yosida4 has been
proposed in this paper for the first time.

Numerical results show that the high accuracy in time of the above schemes combines quite
well with the high accuracy of spectral methods. The pressure corrected Yosida schemes exhibit
significant accuracy improvements with respect to the original one. Moreover, as for all the
algebraic fractional step schemes, the pressure solution is not affected by error boundary layers.

[ N=4|N=6|N=8|N=10
BDF2+ Yosida 008 027] 074 1.80
BDF3+Yosida3 | 0.07 | 028 | 0.86 1.94
BDF{+Yosidaj | 0.07 | 0.31] 088 2.11

Table 6: CPUtime (sec) for 100 time-steps, At = 1074, v = 1075, N, = 4.
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Figure 11: The error E, defined in (22) on the exact solution (24) for the generalized Stokes
problem and the schemes BDF2+ Yosida, BDF2+ Yosida3 and BDF2+ Yosida/. The viscosity is
v = 107! on the left, v = 1073 in the middle and v = 107> on the right. N, = n. x n. equal
spectral elements are considered with N = 6; n. = 4 at top, n. = 6 in the second line, n, = 8
in the third line and n. = 10 in the last line.
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As it has been already pointed out in [34] for the finite element discretization, stability could
be a problem, since stability bounds of the time discretization scheme can be reduced by the
splitting. An extensive theoretical analysis of the properties of these schemes is therefore in
order.
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