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Abstract

In the last two decades, the level set method has been extensively used for the
numerical solution of interface problems in different domains. The basic idea is to
embed the interface as the level set of a regular function. In this paper we focus on
the numerical solution of hyperbolic interface advection equations which appears in
free-surface fluid dynamics problems, where naive finite element implementations
are unsatisfactory. As a matter of fact, practitioners in fluid dynamics often com-
plain that the mass of each fluid component is not conserved, a phenomenon which
is therefore often referred to as mass loss. In this paper we propose and compare
two finite element implementations that cure this ill-behaviour without the need
to resort to spurious strategies (such as, e.g., particle level set). The first relies on
a discontinuous Galerkin discretization, which is known to give very good perfor-
mance when facing hyperbolic problems; the second is a stabilized continuous FEM
implementation based on the stabilization method presented in [1], which is free
from many of the problems that classical methods exhibit when applied to unsteady
problems.

1 Introduction

The problem of interface evolution is one of tracking the motion of an interface
as it evolves. Many techniques have been developed to this purpose. Among
these we recall: particle tracking, which consists in following a finite number
of particles and reconstructing the front as an interpolation of particle posi-
tions at each time step; volume-of-fluid technique, which stems from the field
of multi-fluid CFD, and accounts for the fraction of the two fluids in each
volume rather than explicitly tracking the interface; level set technique, which
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embeds the front at time ¢ as the zero level set of a regular function defined
all over the integration domain. Under some assumptions on the dependence
of the velocity, the level set method requires the solution of a Hamilton-Jacobi
equation.

All these methods suffer from particular problems. A major difficulty in par-
ticle tracking techniques is the handling of topological changes of the front
(coalescence and splitting). A critical point in volume of fluid technique is
front reconstruction, since the only available information is the fraction of
both fluids inside each volume. Inaccuracy in front reconstruction may lead to
even greater inaccuracy in the computation of physically significant quantities
like the normal and the curvature of the interface. While solving these prob-
lems in a very elegant way, the level set method too has some drawbacks. As a
matter of fact, many of the techniques employed in the solution of Hamilton-
Jacobi or hyperbolic problems prove inadequate when applied to the level set
equation. In particular, when considering finite element discretizations, it is
widely known that a certain amount of numerical viscosity has to be added in
order to stabilize the numerical solution. While acceptable in other cases, this
artificial diffusion might be too big to achieve sufficient accuracy in following
the evolution of a certain level set of a function. The related phenomenon is
often referred to as mass loss because its most remarkable consequence is that
the amount of one fluid diminishes, violating mass conservation. Many mod-
ifications of the original scheme have been proposed, often combining finite
element discretizations with other techniques: we just recall the particle level
set method introduced in |2].

In this work we investigate a cure for the problems outlined above which
preserves the original simplicity and mathematical elegance of the level set
idea. As regards the first method, the good properties of discontinuous fi-
nite element (DG-FE henceforth) approximation of hyperbolic problems are
exploited. Many examples in the literature have shown that the amount of
artificial viscosity introduced in upwind treatment of interface terms is much
smaller than the one needed by stabilization techniques normally applied to
continuous element discretizations (see, e.g., [3] and the references therein).
In addition, discontinuous Galerkin discretization allows for straightforward
implementation of p-adaptivity and non-conforming h-adaptivity. The second
method borrows some ideas from the framework of DG-FE methods, achieving
stabilization by weakly enforcing a higher regularity on the numerical solution.
This is done by penalizing the gradient jumps on inter-element boundaries.
Finally, we will report a set of numerical tests that have been carried out to
assess the accuracy and robustness of the numerical schemes introduced.



2 The level set method

The idea underlying the level set approach was first proposes by Dervieux and
Thomasset in [4], where the interface between two fluids was defined as the zero
level set of a pseudo-density function. The level set method was introduced
by Osher and Sethian in [5] for the numerical solution of front propagating
problems with curvature-dependent motion and later extended to a variety of
physical applications (a complete introduction can be found in [6]). Consider
a boundary moving in a direction normal to itself with a speed F. The key
idea is to embed the front at time ¢ as the zero level set of a function ¢ (x,t)
defined all over the domain 2. An evolutive equation is then written for ¢ by
imposing that:

e The level set of a point x belonging to the front at time ¢ > ¢, be 0, i.e.
o(x(t),t)=0 vVxeTl|(t),

being I' (t) = {x € Q: ¢ (x,t) = 0} the front.
e The level set of each point belonging to the front at time ¢ still be 0 at time

t+ dt: 1 96

Deformation of the front is therefore only due to the normal component of
velocity. Hence, by definition we have that x - n = F'. Being the front a level
set, of function ¢, the normal can be evaluated at each point from:

H—L(X) xel(t).

Vo)l

The level set problem therefore becomes:

%L FIVe=0x€Q, t>0,
¢ (x,t=0) = ¢y x € Q.

(1)

To understand the connection between the level set problem (1) and the
Hamilton-Jacobi equation, suppose that the velocity F' depends only upon
the position x and on the first derivatives of ¢, i. e. F' = F (x, D¢). Problem
(1) can be recast in the following form:

¢+ H(x, Dp) =0x€Q, t>0,
¢(X7t:0):¢0 XEQ,

(2)

where H (x, D¢) is the Hamiltonian defined as:

H(x, D$) = F Vo).



A special case is obtained when the Hamiltonian is a linear function of V¢:
H(x, D§) = b(x,t) - Vo (3)

since (2) becomes a linear hyperbolic problem. The physical interpretation
of such a problem is that of an interface advected by an given velocity field
b (x,t). This case is of particular interest in free-surface CFD, since the solu-
tion of Navier-Stokes equations and of the front advection problem are often
split to reduce complexity. Had the velocity b depended upon ¢ (but not on
its derivatives), we would get a non-linear hyperbolic problem.

Though several choices are possible for the level set function ¢, the only re-
quirement being that a fixed level set of ¢ coincides with the front at each
time ¢, a common choice is the signed distance from the front. Let us denote
Q" and Q~ the subsets of the domain separated by the front, Io+ (x) be the
indicator of set Q* and be d (x; I') the distance of point x from the front. The
signed distance is the function defined by:

dy (%) = Io+ (x)d (x; T) — I (x)d(x; T). (4)

Written as in eq. (4), ds (x) is positive in Q" and negative in 2~. Unfortu-
nately, the property of the level set function being a distance function is not
preserved during advection. To enhance the accuracy, it is common to resort
to reinitialization procedures. Numerical experiments presented hereafter will
show how the techniques introduced in this work have less strict needs in terms
of regularity of the level set function: we would like to point out that all tests
were run without any kind of reinitialization.

3 Discontinuous Galerkin Approximation

3.1 DG-FE Formulation of Level Set Problem

Discontinuous Galerkin methods were originally developed for the numerical
solution of hyperbolic conservation laws. Basically, the intent was to provide
an approximation exhibiting a better behaviour in the presence of discontinu-
ous solutions. Experience has proven, however, that also in the presence of a
regular solution one can profit from it in terms of a reduction of the amount
of numerical viscosity necessary for the purpose of stabilization. The essential
feature of DG-FE methods is to decouple the degrees of freedom belonging
to every element and to achieve element coupling weakly through the intro-
duction of inter-element boundary terms. In the sequel we give a short and
intuitive introduction for the case under study, referring the interested reader



to the literature (a complete review can be found in [3]). First consider the
linear hyperbolic problem obtained from (2) when (3) holds:

¢t +b(x,1) Vo =0 (5)

For the moment we assume that the advection field b is continuous. Let 7;,
be a 1-irregular triangulation of the domain 2. A 1-irregular mesh is a mesh
with at most one irregular (“hanging”) node per side. With the aim of writing
the discontinuous Galerkin approximation of the original problem, we proceed
formally multiplying eq. (5) by a test function v, € V}, and integrating over
an element K € 7j:

/ Uh%dx—i‘/ th (X, t) . V¢h dx =0 Vvh S Vh.
K Ot K

We take V), as the space of functions whose restriction to every element K of
the triangulation is a polynomial of degree at most k, possibly discontinuous
on OK. In symbols:

Vi ={on € L*(Q) | vali € P (K) VK € T, }.

Summing over K € 7, we get:

Z /th% dx + Z /thb(x,t)-vm dx =0 VYo, € V.

KeTy, KeT,

Application of Green’s formula to the second integral on the right hand side
gives:

/vhb-ngShdx:/ vhqshb.nda—/ ¢hb~Vvhdx—/ vtV - b dx,
K oK K K

where the dependence of b was dropped for the sake of brevity. In all test
cases we’ll assume that:

V-b=0

will invariably hold. At this point we can introduce the jump and average
operators defined as in [8]. Be e an internal edge shared by elements Kt and
K~ and let

2= f®)lges 05 = @ (0)|gs
be the restrictions of a generic scalar or vector function to one of the two

elements. Naming n* (x) , x € e the normal to an internal edge e pointing out
of K* we define:

[f1:=fut+ fom, (b= 2P+ ),
[e]:=¢* 0"+ m, {p} =1



These definitions can be extended to boundary edges, where all functions are
single-valued:

[f]:=fm, {f}:=1,

where f* accounts for weak imposition of Dirichlet boundary conditions, as
will be discussed later in this section. The sum of boundary integrals over the
elements of the triangulation can be re-written as a sum over the edges. To
this purpose, naming £° the set of internal edges, £ the set of boundary edges
we have that:

2:téKlm¢hb'nd7=:E:‘/<v;¢2b-nf—+vg¢;b-n*>da

KeT, ec&0

+ Z vpor b - ndo,

ecgd " °

where:
Oinif b-n <0
én ifb-n>0

being ¢;, the Dirichlet data on the inflow portion of the boundary.

In order to establish weak inter-element links, we notice that F* := ¢i‘b are
the non conservative fluxes of the unknown ¢, through internal side e. The
problem of establishing an interaction between elements can be then solved
by substituting the non-conservative fluxes with the conservative (i.e. single
valued on e) upwind numerical flux defined by:

H () = b {on) + 5 bl [on].

where n is either n™ or n™. In fact, it is not difficult to prove that this substi-
tution corresponds to weakly impose the value of ¢ on the inflow portion of
the element boundary. After this substitution we end up with:

£ [b Inl{on + 5 lbnl ] - [od do (6

ec&0 7€

+ Y [b-[ul{si} do=0.

ecg0

The final discrete problem was obtained from the semi-discrete problem by
resorting to a Runge-Kutta method of order k£ + 1 for time discretization. For
the details we once again refer the reader to [3].



Figure 1. An example of 1-irregular mesh.

%‘
Figure 2. Frame for the computation of numerical fluxes on boundary quadrature
point x.

3.2 Non-conforming Triangulations and Isotropic Adaptivity

In this section we wish to point out some interesting features of DG-FE approx-
imation. Assuming that the shape functions can be discontinuous on element
boundary has the important consequence that non-conforming triangulations
and p-adaptivity can be handled with ease. In particular:

e The degree of approximation inside each element is independent, which
allows for p-adaptivity.

e Hanging nodes are allowed. As a matter of fact, consider the example in Fig.
1, where e = e; U ey. Exploiting the additivity of the integral we can write
the integral over e as a sum of the integrals over e; and es. After splitting
the integral over edge e, it will never appear in the sum over element edges
in eq. (6): this simple strategy allows easy handling of 1-irregular meshes.

The last remark is of some importance, because it makes non-conforming
isotropic mesh refinement possible (see again Fig. 1). The advantage of isotropic
mesh refinement is that the quality of the initial mesh is preserved irrespec-
tively from the number of refinements and that the mesh generation is failure
free. In §5 we will outline an adaptive method based on hierarchical elements
on unstructured meshes.

To close this section, we give a trace for the case when the velocity field is
discontinuous. The problem is now that both the velocity field and the un-
known are discontinuous: in order to compute the flux on a generic interface
node x € e, e € £ we move to the frame centered in x with x-axis parallel
to n' (x) as depicted in Fig. 2. The upwind flux is then chosen by solving



the one-dimensional Riemann problem obtained by projecting in the nt di-
rection the original problem. This method automatically allows weak handling
of boundary conditions, since they can simply be treated as one of the states
of the Riemann problem.

4 Subgrid edge stabilization for cFEM approximation

It is well known that the standard Galerkin method fails when the solution of
advection dominated equations or pure advection equation is considered [9].
As discussed in the previous section, one remedy consists in resorting to dis-
continuous Galerkin methods, for which stability and local mass conservation
is built into the method. On the other hand, if a continuous finite element
approximation is used, a suitable stabilization of the Galerkin formulation is
required. The discontinuous Galerkin method takes the form of an interior
penalty method whereas for the continuous case a Petrov-Galerkin approach
is used. This dichotomy was questioned in a recent paper [10] and it was shown
that it is possible to construct interior penalty methods which are stable for
the transport equation and of optimal order for both conforming and non-
conforming finite element spaces. In the case of continuous approximations
a term must be added to the standard Galerkin formulation penalizing the
jump of the gradient over internal element boundaries. In the present work,
we consider a local version of this interior penalty stabilization approach, that
will be referred to as subgrid edge stabilization. This method was introduced
and analysed in [1].

We consider a family of quasi-uniform triangulation (7 )y, of the domain €,
where the parameter H = maxy,c7, Hi characterizes the mesh refinement.
From each triangle Ky € 7y, four triangles are created by connecting the
midpoints of the edges. We set h = H/2 and denote by K, € 7, the resulting
finer triangulation. A two-level piecewise linear finite element approximation
is defined by introducing the following two spaces:

Xp={ou € W NH Q)| duik, € P1(Kn), YKy € Ty},
Xn={on € WY Q) NH'(Q)) | dnx, € P1(Kn), VK, € Tp},

where the functional space W} is given by
Wy(Q) = {¢ € L*(Q) | (b(z,t) - Vip) € L*(Q) | ¥[oa- = 0},
with 002~ = {x € 900 | b(x,t) - n(x) < 0}.

The subgrid edge stabilization consists in adding a term which penalizes the
jump of the gradient only over the edges of the subtriangles K}, internal to



Figure 3. Subgrid internal edges (dashed line) where the stabilization term is added.
Ky (see Fig. 3), defined on each Ky as

52<KH) = {ei € 8Kh | €i §é 8KH,\V/K}L S KH}

The continuous finite element discretization of problem (5) then reads: find
on € X3, such that

0 .
/th%dx + /thb (x,t) - Vo, dx + j(vp, o) =0, Vo, € X,

where we have introduced the stabilization term j(vy, ¢5) defined by

Honndn) =30 3 [ 0[]V do.

Ky e, €&; e
with [f] :== fT — f~ denoting the standard jump operator.

It has been shown in [1] that the subgrid edge stabilization can be cast in the
framework of the subgrid viscosity stabilization proposed in [11]. In particu-
lar, stability and optimal error estimates have been proven based on a norm
equivalence argument.

The same approach can be extended to higher order finite elements. For
quadratic approximations, it is possible (see [1]) to derive a subgrid edge sta-
bilization with optimal error estimates by adding the following term

Hon o) =32 X [ (2 [V0[¥0] + K [D0r][D,]) do.

Ky e;€E; e

where D?(-) denotes the Hessian operator. Note that in this case an additional
term controlling the jump of the second derivatives is required.

One of the major advantages of interior penalty methods, as opposed to
Petrov-Galerkin type stabilizations such as SUPG, relies in the complete free-
dom in the choice of time discretization. Since the stabilization term is in-
dependent of time, we may use lumped mass and high order time-stepping
schemes. In the present work, the fully discretized problem is obtained by



considering a second order Backward Difference Formula (BDF2) scheme for
the time discretization.

The subgrid edge stabilization has been found to guarantee good mass con-
servation properties, as shown in the numerical results reported in §6. Indeed,
given the local nature of the proposed technique, the stabilization is only
present on the finest scales and hence on the macro scale the method will
have the same conservation properties as the standard Galerkin method.

5 Mesh Adaptivity and Refinement Criteria for DG-FEM Approx-
imation

As mentioned before, the DG-FE approximation makes mesh adaptivity easy
to handle. In order to adapt the mesh, however, a local error estimate is neces-
sary: we then look for a local error estimate which is computable from known
quantities and which can drive the choice of elements to refine or derefine.

Several techniques to derive a posterior: error estimates have been presented
in the literature. In [13]| an a posteriori error estimate for linear and non lin-
ear hyperbolic problems is developed using a duality argument. In that work
the authors suggest that the estimate obtained by solving the dual problem
is remarkably more accurate than the one obtained by further bounding it
so to eliminate the dual solution. When applied to unsteady problems, how-
ever, this requires solving the dual problem at each time step. Moreover, the
approximation space for the dual problem must be denser than that for the
primal. Other error estimates, like those developed in [14] or [15], are appli-
cable only to certain classes of problems or are compatible only with special
and less generalizable solution methods.

In consideration of the previous remarks, and recalling the aim of the present
work, we preferred to rely on a more heuristic approach, which proved effective
in all the numerical experiments. As will be shown in §6, the behaviour of DG-
FEM approximation rapidly enhances when increasing the order of polynomial
space k. This observation suggested us to employ a more accurate solution
vf € VI to estimate the local error of a less accurate solution v} € V| p < q.
Suppose that the exact solution u has Sobolev regularity s, i.e. u € H* (Q),
s > 2, and two approximate solutions u} and u] are available corresponding
respectively to approximations of order p and ¢, with s—1> ¢ =p+o0, 0 > 1.
Then:

lu = upll 2y < b — whllpagrey + 1 — Wil 2y » (7)
where we use ||.[|;2x for the spatial L? norm. Since at every time step the

coarser solution is obtained by evolving the projection of the finer solution to
the space V', we can concentrate on a single step. We now exploit the fact

10



that (see, e.g., [16]):

o= ]

k41/2
iy < OHF 2 g
which tells us that, having assumed p < ¢, the first term in the right hand
side of (7) scales with 2P*'/2 while the second scales with h9*1/2, We therefore

assume that:

Ju— UZ“LQ(K) < lup — qum(K) ;
and that:

Ju— U};LHB(K) ~ [luj, — UZHB(K) :
We would finally like to point out that in most of the works dealing with level
set, techniques mesh adaptation is done only in the neighbourhood of the front:
in our case this strategy would not prove effective since we decided to avoid

using any form of reinitialization, and, had we only refined around the front,
error could be brought in from other regions of the domain.

In order to reduce the computational cost of the higher order solution, hierar-
chical bases were used, so that the local matrices corresponding to the lower
polynomial degree can be extracted from those corresponding to the higher
polynomial degree. Moreover, at every time step the restriction of the more
accurate solution to the less dense space was used to advance the less accurate
solution. Grid adaptation was handled by resorting to a nested mesh structure.

6 Numerical Results
6.1 Non Adaptive Methods

In this subsection we compare the results obtained with the methods presented
above in the non-adaptive version. In order to assess the mass conservation
properties, we consider the rotating square and the Zalesak notched disk test
cases. Besides conserving the mass, an interface tracking method should be
accurate in the presence of thin tails. In this respect, to evaluate the perfor-
mance of the proposed methods, we considered the deformation and stretching
of a circular bubble under the effect of a shear flow. In the sequel we give a
short description of all the test cases.

Rotating square. The first test case we consider the rigid body rotation of
the signed distance function from a 0.2 x 0.2 square due to a constant vorticity
field centered in (0.8,0.2):

u:g(y—O.Q), v:—g(x—OB).

11



The main difficulty in this test is that the advected interface has sharp cor-
ners, which are smeared out by dissipative methods. We used it both as an
indicator of the mass conservation properties of the methods proposed and as
a benchmark against classic stabilization methods.

Zalesak disk. The Zalesak test case consists in predicting the rigid body ro-
tation of the signed distance function from a notched disk. The initial interface
is a circle centered at (0.5,0.75) with a radius of 0.15 and notch dimensions
of 0.05 x 0.25 ([W x H]J). The velocity field is vortex centered in the midpoint
of the unit square [0, 1]*, defined by:

u=2mr(y—05), v=-=2mr(x—0.5),

where normalization was applied so that one revolution per unit time is per-
formed. This test case is somehow more severe than the previous one, since
it has two difficulties: the presence of sharp corners, which are smoothed out,
and the notch, which tends to disappear when the numerical dissipation is too
high.

Shear flow. In the last test case we consider the deformation of a circular
bubble of radius 0.15 centered in (0.5,0.75) due to the velocity field given by:

u = sin(27y) sin(rz)?, v = —sin(27z) sin(7y)>.

The main difficulty of this test consists in the progressive formation of a thin
tail, which requires high accuracy to be followed correctly. In order to have an
estimate of the accuracy of the method, the velocity field is reverted for ¢ > 1
and the solution is deformed back. The comparison with initial conditions
serves as a qualitative measure of the results.

The tests were run on different meshes and, for the DG-FE approximation,
different polynomial degrees were used. In order to make the comparison fair
we used two discretizations with roughly 5000 and 13000 degrees of freedom
respectively and compared solutions with a similar computational cost. To
better appreciate the results, comparison was provided with a cFEM imple-
mentation stabilized with SUPG method.

All numerical tests show that the methods proposed in this paper behave
well in terms of both mass conservation and accuracy, even in the presence
of sharp corners or large deformations. Data related to the mass conservation
properties are given in Tab. 6.1, while all solutions are plotted in Fig. 4-9. As
regards DG-FE approximation in particular, for a given number of unknowns,
increasing the polynomial degree enhances the performance in all considered
test cases. The results obtained with the IP stabilized cFEM approximation
clearly show the advantages of the proposed method when compared to classi-
cal stabilization approaches such as SUPG, both in term of accuracy and mass

12
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Figure 4. DG-FE solution of rotating square problem (FE space, Number of elements,
Number of DOFs). Solution plots at times 0, 0.5, 1.
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Case t SUPG IP-cFEM P; DG-FE P, DG-FE P3s DG-FE
Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine
0 100 100 100 100 100 100 100 100 100 100
Rot. Sq. 0.5 89.74 93.84 100.10 100.00 101.32 98.58 101.79 101.08 100.61 96.82
1 78.90 87.78 100.08 100.01 101.14 98.99 99.48 100.53 99.13 100.2
0 100 100 100 100 100 100 100 100 100 100
0.2 109.25 107.09 98.32 98.78 104.80 99.17 103.53 101.21 98.55 99.89
Zalesak 0.4 108.01 99.84 97.04 99.16 100.3 107.56 101.33 104.52 97.77 99.81
0.6 88.15 102.64 100.22 98.45 111.49 101.09 104.58 101.30 97.54 99.27
0.8 76.76 96.08 100.91 99.34 114.50 102.02 106.24 100.74 97.76 98.79
1 66.23 89.24 101.44 100.16 118.45 102.91 104.89 100.42 99.49 99.76
0 100 100 100 100 100 100 100 100 100 100
0.2 109.25 107.09 98.32 98.78 104.80 99.17 103.53 101.21 98.55 99.89
Shear 0.4 108.01 99.84 97.04 99.16 100.3 107.56 101.33 104.52 97.77 99.81
0.6 88.15 102.64 100.22 98.45 111.49 101.09 104.58 101.30 97.54 99.27
0.8 76.76 96.08 100.91 99.34 114.50 102.02 106.24 100.74 97.76 98.79
1 66.23 89.24 101.44 100.16 118.45 102.91 104.89 100.42 99.49 99.76

Table 1
Percentage of mass preserved at chosen times (non-adaptive methods).

‘ | t ‘ Ng | P2-DOFs | mean (ex ) ‘ var (ex) | % mass |
0.5 1196 7176 0.76 0.41 104.49
Rot. Sq.
1.0 1187 7122 0.74 0.41 99.53
0.2 1274 7644 0.78 0.34 99.38
0.4 1214 7284 0.80 0.32 99.47
Zalesak 0.6 1196 7176 0.80 0.33 99.41
0.8 1238 7428 0.78 0.34 98.90
1.0 1214 7284 0.80 0.32 98.45
0.5 1031 6186 - - 99.57
1.0 1067 6402 - - 100.55
Shear
1.5 1187 7122 - - 99.58
2.0 1175 7050 - - 98.82

Table 2

Number of elements, Po-DOFs, mean and standard deviation of the effectivity indices
(where analytical solution is available) and percentage of mass preserved (adaptive
DG-FE method).

conservation. It should be noted that better results can be obtained if a fully
consistent SUPG implementation is used in the framework of space-time finite
element approximations. For a detailed discussion on this subject, and for an
analysis of the dependence on the stabilization parameter for both subgrid
edge and SUPG stabilizations, we refer to [1].

6.2 h-adaptive DG-FEM

In this section we report the results of the numerical test for the adaptive
DG-FE method. We set px = 1 and qx = 2 for all the elements. A maximum
number of 1300 elements is fixed. To test the efficiency of our estimator we
introduce the effectivity index ex as the ration between the L?-norm é, of
our estimator and the L?-norm e, of the true error: ex = Z—Z In Tab. 2 are
reported some results about the numerical tests described above: number of

14
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Figure 5. cFEM solution of rotating square problem with SUPG and IP stabilization
(Stabilization method, Number of DOFs).Solution plots at times 0, 0.5, 1.

elements, number of P, degrees of freedom (DOFs), mean and standard de-
viation over the grid elements of the effectivity index (where an analytical
solution is available) and percentage of mass preserved at chosen time steps.
Plots of the solutions are given in Fig. 10.

7 Conclusions

In this paper we presented two mass-preserving finite element implementations
of the level set method, one based on a DG-FE approximation, the other on
a continuous FE approximation with an interior penalty subgrid edge stabi-
lization. Both methods achieve stability by weakly imposing suitable features
on the solution, and cure the illnesses of classical FE approximations. The
methods were tested on a set of widely known problems, showing their good
behaviour both in terms of mass conservation and accuracy. For the DG-FE
approximation an h-adaptive version was presented, whose aim was to enhance
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Figure 6. DG-FE solution of Zalesak rotating disk problem (FE space, Number of
elements, Number of DOFs). Solution plots at times 0.2, 0.4, 0.6, 0.8, 1.
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Figure 7. cFEM solution of Zalesak rotating disk problem with SUPG and IP sta-
bilization (Stabilization method, Number of DOFs). Solution plots at times 0.2, 0.4,
0.6, 0.8, 1.

the results and to lower the computational cost. Comparison between the IP
and the various flavours of the DG-FE method was made fair by running the
test cases on discretizations with roughly the same number of unknowns. In all
cases the methods behaved well, giving similar results and thus proving that
mass conservation and accuracy can be achieved without the need to resort
to spurious strategies.
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Figure 8. DG-FE solution of shear flow problem (FE space, Number of elements,
Number of DOFs). Solution plot at times 0, 1, 2.
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(Stabilization method, Number of DOFs).Solution plot at times 0, 1, 2.
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