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Abstract

In this paper we address the approximation of a linear output functional
J(u), where w is the solution of an elliptic problem, through suitable dual-
ity arguments. In particular, moving from the adaptive Uzawa algorithm
proposed by E. Bénsch et al. and S. Dahlke et al., we first cast the original
problem in a saddle-point formulation and then we provide two new algo-
rithms for computing an approximation up, to u, such that |J(u) — J(up)|
be below a prescribed tolerance 7. Some test cases are included to assess
the reliability of the proposed method in the 1D case together with some
preliminary two dimensional results.

1 Introduction

It is well known that, when dealing with a partial differential problem, the
computation of its solution requires a cost which gets higher and higher as the
demand on accuracy, and the complexity of the problem increase. For a given
accuracy, an efficient technique to minimize the computational cost is mesh
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tific Computing and Advanced Applications”.



adaption driven by either heuristic criteria (for instance, the control of the gra-
dient or the control of the Hessian of the solution) or by proper a priori or a
posteriori error estimators. In the sequel, we focus on this last approach. An
a posteriori error estimation typically considers a suitable energy norm induced
by the underlying differential operator and is expressed in terms of computable
local quantities (the residuals). However, this kind of estimate does not provide
any information useful to control the error associated with physical quantities
of real interest in applications, such as, e.g., the drag or the lift in aerodynamics
or the wall shear stress in haemodynamics. To this end, using duality argu-
ments, several procedures have been developed by R. Becker and R. Rannacher
[2, 3], M.B. Giles and N.A. Pierce [9], M.B. Giles and E. Siili [10], Y. Maday
and A.T. Patera [13], L. Machiels et al. [12], J.T. Oden and S. Prudhomme
[16], M. Paraschivoiu et al. [17, 18], D.A. Venditti and D.L. Darmofal [19]. In
more detail, a dual (adjoint) problem associated with the (primal) problem un-
der examination is exploited to bound the error on the functional of interest in
terms of the residual with respect to the primal problem and the solution of the
adjoint problem.

In this paper we present an adaptive algorithm, that stems from an equivalent
saddle-point formulation of the primal problem, aiming to approximate the goal
quantity (together with the corresponding approximation of the primal problem)
within a given tolerance. The exact solution u to the saddle-point problem and
thus the exact value of the goal quantity J(u) may be in principle obtained by
an application of the Uzawa algorithm. Our approximation to J(u) is computed
as J(up), where up, is the approximate solution to the saddle-point problem,
obtained via the adaptive Uzawa algorithm introduced in [1, 8].

Based on suitable approximations to the saddle-point problem, we introduce
two new algorithms. The first one (ago) may be considered as the basic version:
given an approximation zy to the dual solution, the algorithm, after m itera-
tions, computes an approximation Uy to the primal problem solution u, such
that |J(u) — J(Un)| < 7, where 7 is a user-defined accuracy. Notice that the
number m of iterations can be determined a priori, as a function of the data
only. However, this number can be sensitive to the choice of the approximation
zg. The second algorithm (nago), and actually the feasible one, improves on
the first one in the following sense. In ago most of the work is supported by the
approximation to the primal problem, as the dual problem is solved only once,
in the beginning. Algorithm nago tries to equilibrate the work load between the
primal and dual problems. To obtain this balance, a fractional step method is
introduced, so that the tolerance 7 is diluted through a user-defined number of
iterations, each hinging on the ago algorithm.

The outline of the paper is as follows. In Sec. 2 we introduce the model prob-
lem, the duality framework and the basic idea of the algorithm proposed in this
paper to estimate the goal quantity J(u) within a precision 7. In Sec. 3 we show
how to reformulate the primal problem as a constrained minimization prob-
lem, where the constraint is trivially satisfied by the primal solution u. This



constraint depends also on a given approximate solution, say zz, of the dual
problem. Then the equivalence between the primal problem and the constrained
minimization one is proved after introducing a suitable saddle-point formulation
of the minimization problem, for which the existence and uniqueness of the so-
lution is proved, as well. In Sec. 4 we prove that to estimate the quantity J(u)
within the tolerance 7, it suffices to solve in an inexact way the saddle-point
problem introduced in the previous section. With this aim we provide the basic
version of our adaptive goal-oriented algorithm, named ago, discussing its main
building blocks: an adaptive solver (ads) for the dual problem and an adaptive
Uzawa algorithm (aua) to approximate the saddle-point problem. In particular
we establish under what conditions the approximate solution to the saddle point,
obtained via the ago algorithm, guarantees that the accuracy 7 is met. Such
an analysis provides us with an estimate for the maximum number of iterations,
say m. In Sec. 5 we introduce and analyze a new algorithm, named nago, im-
proving on ago in terms of flexibility, as it does not require any more a priori
a fixed approximate solution zz. The nago algorithm may be interpreted as a
fractional step method, the primal and dual problem being solved successively
in an iterative fashion until the accuracy 7 on the goal-quantity J(u) is reached.
Finally, in Sec. 6 we present some numerical tests assessing the reliability of both
the algorithms ago and nago on one-dimensional problems. Some promising 2D
results are also provided.

2 The Model Problem

Let X be a Hilbert space endowed with norm || - ||x and with duality pair
x'< -,- >x, X' denoting the dual space of X, that is the space of linear and
continuous functionals defined on X, equipped with norm ||-|| x,. Let A : X — X’
be a linear self-adjoint elliptic operator on X and let f € X'. Let u € X be the
solution of the differential problem

Au = f. (1)
The bilinear form a : X X X — R defined by
a(u,v) = x< Au,v >x, Yu,veX,

can be associated with the operator A. Thus, the variational formulation of
problem (1) reads as: find u € X such that

a(u,v) = x1< f,v >x, VovelX. (2)

We assume that the bilinear form a(-,-) is continuous and coercive on X x X,
i.e., we have

la(u,v)| < Callullx|lv]x and a(u,u) > allulk, VuveX, (3)



with C4 > 0 and a > 0 being the continuity and the coercivity constants,
respectively. These two requirements guarantee the existence and the uniqueness
of the solution u of the weak problem (2).

Let us introduce the adjoint differential operator A* of A, such that A* :
X — X' is defined by the Lagrange identity [14]
x< A'v,u >x= x1< Au,v >x, Vu,veX,
or, equivalently, by the relation
a*(v,u) = a(u,v), Vu,veX, (4)
a*(-,-) being the bilinear form associated with the operator A*, identified by the
relation a*(v,u) = x< A*v,u >x, Yu,v € X.

Let J : X — R be a linear goal functional given by J(v) = x < G,v >x,
with G € X' its Riesz representant. Throughout, we are concerned with the
approximation of the goal quantity J(u), where u is the solution of (2). An
equivalent way of computing J(u) is to evaluate the quantity x» < f,z >x,
where z € X satisfies the adjoint equation

Az =G, (5)
or, likewise, the relation
a*(z,v) = x< G,v >x, VoveX. (6)

The equivalence stated above is an immediate consequence of the definition (4),
as
x'< fyz>x=a(u,z) = a*(z,u) = x1< G,u >x= J(u).

To approximate the goal quantity J(u) within a given accuracy, we look for
an approximation up € X of u such that

|[J(en)| < 7, (7)

where e, = u — uy, is the approximation error, while 7 denotes a user-prescribed
tolerance. Thanks to the linearity of the functional J and to (2) and (6), it
immediately follows that

Jep) = x1< f,z >x —a(up, 2). (8)

Let zg € X be an approximation of the dual solution z and let {¢,} and {¢x}
two bases of suitable finite dimensional subspaces of X, such that

up =Y urdr and zg= Y zZpex (9)

AEA(up) AeA(zm)



with #(A(up)) = Np, #(A(zg)) = Ng. Notice that this framework is quite
general since it allows for different approximation spaces for the primal and dual
problems. For example, in the case of finite elements, the discrete solutions up,
and zg may be characterized by different degree and/or computed on different
meshes.

Let us now introduce the residual operator r;, € X' defined as

x'<Th,v >x= x'< f,v >x —a(up,v), VoelX.

Since, from (8)
J(ep) = x1<rhz>x= x<Th,2— 20 >x + x*<Th,2H >X,
via the Cauchy-Schwarz inequality it follows that
|J(en)| < lIrnllxellz — zrllx + | x' <Th, 20 >x |- (10)

The right-hand side of (10) is employed in Sec. 6 as an a posteriori error estimator
for the quantity J(ey), provided that ||z — zg||x is suitably estimated in terms
of computable quantities.

Remark 2.1 We move from the same framework as in [10]. However, while in
this latter paper it is suggested that the computable term x< rh,zg >x may be
considered as a correction to the actual value of the approzimation J(up), in our
approach it is part of the error bound for J(ep). Moreover, while the approach
in [10] can be considered as a post-processing of the quantity J(uy), providing us
with the improved value J for J(uyp), it does not furnish an explicit expression for
the approzimation uy corresponding to the corrected value J. On the contrary,
the analysis below guarantees that the approzimate value for the functional J(u)
is always computed as J(up), up being now a computable quantity. However, in
the numerical tests considered in Sec. 6 we show both types of approrimations.

To introduce the basic idea of the algorithm proposed in this paper, let us
make the following

Assumption 2.1 For a given tolerance ng > 0, let the approzimation zg de-
fined in (9) be such that

lz — zullx < nu. (11)

We remark that relation (11) is just an accuracy requirement.

Thus, in order to satisfy (7), thanks to (10), it suffices to find uy, such that
T

Irallxr < 60—, (12)
nH

|x'<rhzm >x| < (1-0)r. (13)

Notice that, so far, 0 < € < 1 is a user-defined parameter to be chosen according
to an optimality criterion in Remark 4.4.



Remark 2.2 In Sec. 5 we remove Assumption 2.1 while providing an alternative
algorithm where the dual problem is iteratively solved within a variable tolerance
via a suitable adaptive strategy.

In the next section we show how to reformulate problem (2) as a constrained
minimization problem, where the constraint is trivially satisfied by the primal
solution u. This constraint depends on the approximate solution zg of the dual
problem (5). In Sec. 4, we will show that solving this minimization problem in an
approximate manner guarantees that both relations (12) and (13) are satisfied.

3 The Constrained Minimization Problem

Let us first show that problem (2) is equivalent to solving ezactly the following
(trivial) constrained minimization problem:

find the argmin | x/< f,- >x —a(w,)|x, (14)
weWw

where W ={w € X : x/< f,zyg >x —a(w,zg) = 0} coincides with the space
of functions for which the primal residual is equal to zero when tested against
zp. With this aim, we split the proof in two parts: ) we show that the solution
u to (2) is also the unique solution to (14); 4i) after introducing a suitable
saddle-point formulation of the constrained minimization problem (14), we first
prove the existence and the uniqueness of the solution (u, p) of this saddle-point
problem and then we show that it coincides with the solution of (2), p being
equal to 0.

Concerning point 7), the statement follows trivially by observing that, zy € X.
Now we deal with point 7). For this purpose we rewrite the constrained mini-
mization problem (14) as a saddle-point problem. With this aim, let us introduce
the energy functional

1
BW) = ga(v,0) ~ xi< fro>x,  YueX.

and the Lagrangian multiplier ¢ to enforce the constraint x< f,zg >x —a(v,zg) =
0, so that the corresponding Lagrangian functional £ : X x R — R is given by

L(v,q) = E(v) +®(v,q), VY (v,q9) € X xR, (15)
with @ : X x R — R defined as
q)(vaq):q(X’<fazH >X_a'('UaZH))’ V(’an)eXXR'

We aim to minimize £ over v and maximize it over ¢, i.e., we look for the
saddle-point (u,p) € X x R of L, such that

L(u,q) < L(u,p) < L(v,p), VYV (v,9) € X xR (16)



Let us now discuss the existence and the uniqueness of a saddle-point of the
Lagrangian £ defined in (15). To this end, we need to reformulate (16) as a
system of variational equations. Let us introduce the operator B : X — R,
such that Bv = a(v,zy),Vv € X. Such an operator defines the bilinear form
b: X xR — R given by

b(v,q) = r< Bv,q >r= q B, vV (v,q9) € X xR

The adjoint operator BT : R — X' is identified by the relation x»< BTq,v >x=
r< Bv,q >gr,Vv € X. Hence it follows that

x'< BTq,v >x=qa(v, zn).

Letting ¢ = x/< f,zm >x, then problem (16) becomes equivalent to the follow-
ing variational one: find (u,p) € X x R, such that

a(u,v)+ blv,p) = x< f,v>x, VoveX, (17)
b(uaq) = Rr< 9,9 >R, A4 qc R. (18)

Thanks to the continuity of the bilinear form a(-,-), it can be checked that b(-,-)
is continuous too, i.e.,

b(v,9)| < Crlvllxlgl, V(v,9) € X xR, (19)

with Cp = Ca||zm||x and |g| denoting the absolute value of the Lagrangian
multiplier q. Moreover

a(v,v) > allv|%, VveKer(B) CX,

i.e., the bilinear form a(-,-) is coercive on the kernel of B, while the form b(-, )
satisfies the inf-sup condition

b
inf  sup 229 5 s (20)
9€R, ¢#0 ye X, v£0 l|lv]| x|q]

with C = a||zm||x, provided that zg # 0. Indeed, taking v = zg/q and using
the coercivity of a(-,-), we get

ot sup b(v,q) _ alzm,zn)
9€R,¢#£0 e x,v20 |[vlxlg] = lzmllx

> af|zullx-

Thanks to the properties (19)-(20), problem (17)-(18) admits a unique solu-
tion (u,p) € X x R (see [5]).

It is now possible to prove the last statement of point 47), that is:



Proposition 3.1 If (u,p) is the unique saddle-point of the Lagrangian L defined
in (15), then u is the solution of (2) and p = 0.

Proof 3.1 If (u,p) is the unique saddle-point of the Lagrangian L, then from
(15)-(16), ®(u,q) < ®(u,p), Yq € R. In particular, taking g = 0 and g = 2p, we
get

®(u,p) =0. (21)

On the other hand, if (u,p) is such a saddle-point, then from (16)
E(u) + ®(u,p) < E(v) + ®(v,p), VveW.

Thus, thanks to (21), the definition of the space W, and that u = argmin, x FE(v) =
argmin, vy E(v), it holds E(u) < E(v), V v € X. Hence u is the solution of
(2). Moreover, from relations (17) and (2), it follows that b(v,p) =0, Yv € X,
thus, thanks to condition (20), that p = 0.

The desired equivalence between problems (2) and (14) is thus established.

Finally, to simplify the notations in the following, we rewrite problem (17)-(18)
in block form: find U = (u,p) € X x R such that

w3 E)G) (D e

Thanks to (19)-(20), A is an isomorphism from X x R into its dual X’ x R, i.e.,
there exist two positive constants 034, ci‘ such that, VU € X x R,

c(llulk + 1p)'7 < |AU | xxr < Ellulk + )72, (23)

| - || x’xr being the norm defined on the dual space X' x R.

4 An Adaptive Goal-oriented Algorithm: the Basic
Scheme

In this section we come back to the aim of this paper, i.e., to the estimation of
the goal quantity J(u) within a prescribed tolerance 7. In more detail, we prove
that to satisfy conditions (12) and (13) it suffices to solve inezactly the saddle-
point problem (22), where the level of inexactness depends on 7 itself. With this
aim, let us first introduce a basic version of our adaptive goal-oriented algorithm,
coupling an adaptive solver (ads) for the elliptic dual problem (5) together with
an adaptive Uzawa algorithm (aua) to approximate the saddle-point problem
(22).

According to Assumption 2.1, let ng be a given tolerance and let zg be the
corresponding approximate solution of the dual problem (5). Thus the procedure
ads, via an iterative algorithm, returns an approximate solution [zy] = ads(ng)



satisfying condition (11).

Once the approximation zg is computed, the procedure aua, still through an
iterative algorithm, provides us with an approximate solution [uy| = aua(zg, 7)
of the saddle-point problem (22) verifying relations (12)-(13), and thus (7).
The following adaptive goal-oriented (ago) algorithm can thus be identified:

given ng and 7, find zgy and uy as

1. [zg] = ads(ng);

2. [up] = ava(zg, 7).

Remark 4.1 In Sec. 5 we remove Assumption 2.1 while providing an alternative
algorithm where the dual problem is iteratively solved within a variable tolerance
via a suitable adaptive strategy.

4.1 The aua

Aim of this section is to analyze in more detail the adaptive Uzawa algorithm
aua. Concerning the adaptive solver ads, we refer to [4, 6, 7, 15].

For simplicity, let us first describe the ezact Uzawa algorithm, that is an
iterative procedure to solve the (dimensionally infinite) saddle-point problem
(22). It reads as:

>> Input: po € R, w>0;
>> fori>1

1. Find u; € X such that Au; = f — BTp; 4 ;
2. Update: p; =ps 1+ w(Bus — g);

end

Let S = BA™!B7 be the Schur complement associated with the operator A in
(22). Then it follows that [|S||zw;r) = a(2m, 2r) and, due to the continuity and
the coercivity of the bilinear form a(-,-), S is an isomorphism on R, i.e.,

alzrlklal < 1Sql < Callzrliklal,  VaeR (24)

We recall that with £(R;R) we mean the space of the real-valued linear and

continuous functionals defined on R, with corresponding norm || - || ;(g;r)- The
iteration of the exact Uzawa algorithm can be written in terms of S as

pi= (I —wS)pi-1 +w(BATf —g), (25)

where I is the identity operator. Therefore, if 0 < w < 2/||S]z(g;x), then

B=I-wSl|cmgr <1, (26)

9



i.e., the iterative method (25) is convergent and it turns out that

Ipi — p| < B |po — p|-

Remark 4.2 The quantity w = 1/a(zy,zg) represents the optimal value for
(25), because we are dealing with a scalar problem, since p € R. By exploiting the
expression provided by system (22) for the exact value p together with Proposition
3.1, it is straightforward to verify that, if we choose w = 1/a(zy,zm) in (25),
then p1 = 0, Vpy € R, and uo = u. Thus, with this choice for w, we get the
ezxact values for both u and p after only two iterations. This is no longer true by
considering an inezact version of the Uzawa scheme.

Moving from the theory developed in [1] and [8], we consider the inexact
Uzawa algorithm, called the adaptive Uzawa algorithm (aua). The main idea is
to replace in the exact Uzawa algorithm the equation Au; = f — BTp,_; with a
suitable approximation, to get rid of the dimensionally infinite quantities.

The aua consists of three main ingredients: i) the approximate primal solver
(aps); ii) the compression algorithm (comp) and #i%) the update procedure (update).
Let us analyze separately these three steps.

i) Let ¢; be an error tolerance and let P;_; be a tentative value for the
Lagrange multiplier p. Then the procedure aps, identified formally by

[U'L] :aps(e,', fa -Pifl)a

yields, via an adaptive algorithm, a dimensionally finite approximate so-
lution U; to the elliptic problem

Au; = f - BTP_,, (27)
within the prescribed tolerance ¢;, that is we have,
Ui — willx < e,

in the worst case up to a constant C independent of .

ii) Let ; be a second error tolerance. The compression step

[Qi] =comp(vi, Ui)

returns a dimensionally finite approximation ); for the dimensionally in-
finite quantity BU;, such that

|Qi — BU;| < i,

the inequality being verified up to a constant independent of i.

10



i1i) The Lagrange multiplier update is performed by the procedure
[P;] =update(Fi-1,9,w, Qi),
consisting of evaluating the new approximation P; for the multiplier p as
Pi=P_1+w(Qi—g). (28)
The aua can thus be summarized as:

>> Input: 0 <& <1, €9, 70 >0, B €R, 0<w<2/||S|z(wr);

>> for i=1:m

1. es +€es1;
2.7 &y
3. Approximation : [U;] =aps(es, f, Pi—1);
4. Compression : [Qi] =comp(yi,U;);
5. Update : P; =update (Pi_1,9,w,Qi);
6. i+ i+1

end

>> Output : Uy.

Concerning the input parameters, notice that the quantity £ is an error reduction
factor governing the update of the error tolerances ¢; and ;. Moreover, we
remark that no stopping criterion controls the for loop: it will be repeated
exactly m times, m being an integer related with the fulfillment of the inequalities
(12) and (13) and whose value will become clear in the next section. Finally,
the output Uy, represents the desired approximation of the solution u of problem
(2) such that relation (7) is verified (we refer to Proposition 4.1 for the proof of
this result).

Remark 4.3 As for the comp step, note that as BU; = a(U;, zi) is actually an
integral, Q; is obtained thanks to a suitable quadrature rule. The main difficulty
of such a step is related to the fact that U; and zg are a priori associated with two
different computational grids, independently of the choice of the shape functions
éx and @y in (9), which may also be different (see Sec. 6 and [10] for more
details).

We end this section by recalling the following result providing us with an error
estimate for the aua procedure [1, 8].

11



Theorem 4.1 Let zy be an approximate solution to the dual problem (5) and
let U; be an approximation to the solution u; of the elliptic problem (27), such
that .

Ui = uil x < &€, (29)

where €g > 0 is a prescribed tolerance while 0 < ¢ < 1 is an assigned error
reduction factor. Let @); be an approximation of the quantity BU; such that

|Qi — BU;| < & ¢ (30)

Then the inequalities
lp— Pl < Cud, (31)
If — AUillx < Dy &, (32)

hold for some positive constants Cy and Dy depending on zz only, and for a
suitable parameter ¢, with 0 < £ < § < 1.

For the reader’s ease we provide the proof of this result in A.

4.2 Analysis of ago

Now we are in a position to state our main result: we prove that, given an
approximation zg for the solution z of the dual problem (5), m aua iterations
suffice to get an approximation uy for the solution u of the primal problem (2),
such that (7) is fulfilled. In particular, m depends on the tolerance 7 in (7) and
on ng in (11).

Proposition 4.1 Let zy be an approzimation of the solution z of the dual prob-
lem (5) such that Assumption 2.1 is satisfied. Let T be a user-defined tolerance.
Then after m iterations of the aua, the approrimation Uy is such that

| J(u—Un)| <, (33)

m—[lo ( T min{(l_e) i})—i—l-‘
= | %\ Ca(Cu llzu[x +e0) leallx " ni ’

and all the constants being defined as in Theorem 4.1.

with

Proof 4.1 Thanks to relations (12)-(13) and Assumption 2.1, it suffices to
prove the inequalities

-
If — AUnll x 9n—H, (34)

|x< f—AUn,zg >x| < (1-0)7. (35)

IA

12



First notice that, due to relation u = A~ f — AL BTp and problem (22), we get
BA'f —g=BA'f — Bu=BA 'BTp. (36)
Thus, by exploiting the definition of the Schur complement, it follows that
Buy—g = BA'f—¢g—BA'B'P, ;
BA'BT(p— P 1) = S(p— Pa_), (37)

un denoting the exact solution of (27) for i = m.

Let us begin by proving inequality (35). Using the definitions of B and g, rela-
tions (19), (37) and (24), together with the error estimate (29), for i = m, and
the estimate (31), we have

| x'< f — AUn, 2z >x | |BUp — g|

|Bun — g| + |B(Un — tn)|

|S(p — Pu-1)| + CB ||Un — un| x
Callzul% [p — Pac1| + Cpeo &

Cy ||ZH||§( Cy omt + Cgeg 5m_1,

IA N IN DA

the quantities & and 0 being defined according to Theorem 4.1, so that 0 < £ <
d < 1. Now, in order to satisfy relation (35), it suffices to choose m such that

(CaChr zullk + Cpeg) " < (1-0)7,
i.e.,
6m—1 < (1 — 0) T
— CaCqy ||ZH||§( +Cpg 60’
Cy being explicitly defined in A.
Now, let us prove inequality (34). Thanks to the error estimate (32) and the
definition of Dy, also provided in A, we have to guarantee that the quantity

CsCH
0

(38)

Dy &® = ( +Cy 60> ™ < (CpCph +Cagy) ™1

be less than or equal to 6 7/ny, i.e., we have to choose m such that

0t
o< .
~ (CCu +Caco)nu

(39)

Thus, in order to satisfy simultaneously relations (34) and (35), we have to
combine inequalities (38) and (39), namely to choose the integer m such that

st < T . {(1 -0) 0 }
min s (s
~ Ca(CH ||lzallx + €0) lzmllx’ nE

m210g5< T min{M i})—l—l. (40)

Ca(Cnx llzullx + €0) lzallx’ nu

that is

13



Remark 4.4 So far no suggestion has been provided to choose the parameter 0
characterizing both the relations (12) and (13). Mowving from result (40), it is
easy to verify that an optimal choice for 0, minimizing the number m of the aua
iterations, is @ = ng/(||z|| + ne). In such a case the integer m has to satisfy
the relation

T 1
m> lo +1. 41
2 logs (0A<0H||ZH||X+60) ||zH||X+nH) (4D

Remark 4.5 Relation (41) establishes a link between the target tolerance T on
the goal quantity J(u) and the accuracy ng for the approzimation zp of the
solution of the dual problem (5). Thus, once the dual problem has been approz-
imated, i.e., the quantities ng and ||zg||x are known, the number m of the aua
iterations guaranteeing relation (33) can be determined a priori.

5 An Alternative ago Algorithm

In this section we generalize the basic scheme of Sec. 4 to design an improved
adaptive goal-oriented algorithm, where no a priori choice is made for the toler-
ance 7 associated with the dual problem. This new algorithm turns out to be
more versatile than the basic one ago, though in the numerical Sec. 6 we provide
results obtained with both the algorithms.

Let us briefly explain the idea behind the new algorithm. We aim to meet
the tolerance 7 on the target quantity J(u) via a fractional step-like method (see
Fig. 1), after, say, knax iterations. For this purpose we introduce the intermediate
tolerance Cpp¥, where k is the iteration counter, Cy a given constant and p
a suitable error reduction factor. Thus ky.y will be determined by requiring
that Cpp*== = 7. In more detail, at each iteration, given the approximation
Ux 1 for the primal solution u with associated residual r,(lk_l), let zg) be the
approximation to the dual solution z such that

1z — 28 N1x < ¥,

with ng) = Cop*/ ||r,(1k_1)|| x'- Then the ago algorithm is applied to compute the

approximation Uy such that

C k
Pl < 69, (42)
Uy:s

N

| x1< T;(lk),zg) >x | < (1—-6k)Cop",

0 < 6 < 1 being a dynamic acceleration parameter. Notice that, using the value

ng), relation (42) guarantees that
IS e < Oullrs ™ e,
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ago

Figure 1: Schematic representation of the nago algorithm.
guaranteeing a strictly monotone reduction of the primal residual. Thus the new
adaptive goal-oriented (nago) algorithm can be sketched as

>> Input: 7, 0< p<1, Cy >0, Ug;

>> for k=1: kpax

k
1. [zg)] = ads ((f%) ;
Iy llxe

2. [Ux] = aua (zg), Co pk> ;
end
>> Output: Uy, .

The number of the iterations necessary to guarantee (7) is given by kpax =
[log, (7/Co)]1-

Thanks to Proposition 4.1, it is easy now to prove the following

Proposition 5.1 Let 7 > 0 be a given tolerance and let knax = [log, (7/Co)],
with Cy a given constant and p an error reduction factor. Then after kyay it-

erations, the approzimation Uyx,, yielded by the nago algorithm is such that
|J(u - Ukmax)' S T.
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Proof 5.1 At each iteration k, since for computing Ux we use the ago algorithm,
we can exploit Proposition 4.1 with

Cy p*
(k1
h

ZH = zg) and ng =

2

This yields
lz = 28 Ix Il + | xr< i, 25 >x | < Co g,

that is the desired result after kpay iterations, as Cy p™> = T.

The main advantage of the nago algorithm with respect to the basic ago
version is that now we are relieved from choosing a priori the tolerance for the
dual problem. Only the quantities 7, p, Cy and Uy have now to be provided by
the user, where Uy is just an initial guess for the primal solution, convergence
being guaranteed independently of Uy, after knax iterations.

6 Numerical Validation

In the sequel, one- and two-dimensional test cases are considered in order to
validate the algorithms ago and nago proposed in Sec. 4 and 5, respectively.
Throughout, the differential operator A in (1) coincides with the Laplacian
on the unit interval (0,1), or unit square (0,1)?, completed with homogeneous
Dirichlet boundary conditions, while piecewise linear finite elements are used to
approximate both the primal » and dual z solutions.

6.1 Implementation issues

Before delving into the numerical results, let us address some details concerning
the implementation of the algorithms ago and nago, both in one and in two
dimensions.

The numerical 1D code is entirely based on Matlab routines. For the procedures
aps and ads, starting on a uniform mesh consisting of 100 elements, a mesh
adaptive algorithm is employed for computing the trial solutions Uy and zg),
respectively. In particular, at each iteration, the algorithm computes the optimal
mesh density function which, by suitably distributing the mesh nodes, minimizes
the number of elements while at the same time satisfying the accuracy constraint
on the numerical solution, as driven by the global procedure. This choice allows
for both refining and coarsening of each mesh during computation.

As for the comp procedure, and for all the computations involving both the primal
T, and the dual 7z meshes, we extend the quantities involved to the union mesh
Tr U Tg. Given the choice of the operator A and of the finite elements, this
technique allows us to compute exactly the quantity BU; in the comp procedure
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of the aua algorithm, so that the tolerances 7; are actually not necessary. The
Matlab procedure quadl, implementing an adaptive Lobatto quadrature with
tolerance 1078, is used to approximate all the integrals at hand.

The evaluation of the quantity ||rp||x is approximated via the estimate ||rp||x: ~
|hflL2(q2), where h = h(z) is the function describing the variation of the mesh
size.

As far as the numerical tests in two dimensions are concerned, the software is
based on the C++ code FreeFem++ [11]. One of the key features of this software
is the possibility of dealing simultaneously with different meshes and/or different
degrees of finite elements easily. On the other hand it is not under control of
the user what is actually being done in the interpolation process of one finite
element solution onto another mesh.

In particular, we base both the algorithms ads and aps on the function adaptmesh
with error control driven by an isotropic mesh adaption procedure, while for the
comp algorithm a high-order Gaussian quadrature is employed, so that, also in
this case, the tolerances ~y; are not necessary. To deal with the integrals involving
quantities associated with different meshes, we resort to the following strategy.
Both the primal and dual solutions are interpolated on a uniform triangular
structured mesh consisting of 80000 elements, and the integrals are computed
on this mesh via a high-order Gaussian quadrature.

Now, let us describe the numerical tests, starting with the one-dimensional val-
idation.

6.2 One-dimensional test cases

Let us consider two test cases. For both of them it holds that the primal and
dual solutions are the same, i.e., u = z. Concerning the data identifying the
primal and dual problems (1) and (5), for the first test case we choose

eC(L‘

ec—1’

.f:G:CQ

with ¢ > 1 and z € Q = (0, 1), with associated solutions given by

e —1

ec—1"

® U=2=T—

and

CcT

e —1

o J(v) = x1< c? v >x, Yove HY0,1),

while, for the second test case, we have
o f=G = n?sin(rx),

that is

17



o u =z =sin(nzx),
and
o J(v) = xv< w¥sin(nz),v >x, Vv € HY(0,1).

Throughout, for the first test case, the value ¢ = 100 is assumed, so that
J(u) =49, up to O(ce™¢) terms that are neglected. Let us first consider the ago
algorithm.

The ago algorithm
The following values of the parameters are set: 7 = 102,69 = 1,6 =0.5,Py =0
and ny = 1072. Tables 1-2 gather the results of the successive iterations of

i ] [J(u—Uy)] s #7500 | |J(w) = Ji
1]1.944-1072 | 2.424-1072 48 | 1.799 . 107°
2 1.377-1072 | 1.623-10~2 85 | 1.173-.107°
314.203-1072 | 5.450-10~3 158 | 7.456 - 10~©
411.039-10"% | 1.664-1073 305 | 2.937-107°
512963-10% | 6.075-10* 599 | 4.987-107
6| 1.415-107%* | 2.970-10~* | 1187 | 4.855-10"7
715518-107% ] 6.303-10"% | 2362 | 3.911-10""7
8]3226-107% | 3.616-10"% | 4714 | 1.696 - 108
92162-10* | 2.357-10~* | 9417 | 2.135-1078
10 | 1.135-10* | 1.265-10~* | 18823 | 2.709 - 10~8
11 | 6.289-107° | 6.936-10~° | 37635 | 2.723-10~8
12 | 4.143-107° | 4.465-107° | 75259 | 2.640 - 10~8

Table 1: First 1D test case: some relevant quantities for the ago algorithm.

the ago algorithm, corresponding to the different rows in the tables, for the first
and second test cases, respectively. Notice that the meaning of the quantities
through the columns, from left to right is: the current iteration i (1 < i <m),
the error on the goal quantity |J(u — Uj)|, the a posteriori estimator defined as
N = ||r,(li)||Xf na + | x < r,(li),zH >x |, the cardinality of the meshes 7;l(i) for
the primal problem, and the error on the target quantity J(u) with respect to
the corrected functional J; = J (Ui)+ x' < r,(li), ZH >X, r,(li) being the residual
associated with the approximation U;. Moving from Remark 2.1, in the last
column we particularize the modified functional proposed in [10] to the case
when different meshes are used to approximate the primal and dual solutions.

The cardinality #7g of the mesh associated with the dual problem is 1848 and
595, for the first and the second test case, respectively. Note that in both the
test cases, the tolerance on the goal quantity is met at the third iteration, and
this information is also captured by the estimator n;. Moreover the estimator
turns out to be reliable and quite sharp throughout all the iterations, the values

18



i | |J(u—Uy)| ns #Ty | 1 (u) — Ji|
1]1.964-1072 | 2.448 - 102 13 | 2.656-107°
211.181-107%2 | 1.379- 1072 25 | 4.414-107*
315937-1073 | 7.223-1073 48 | 3.909-107°
411.803-1072 | 2.389-1073 96 | 3.531-107°
5| 3.583-10~* | 6.616-10~* 191 | 8.499-107°
6 |1.170-10°° | 1.726 - 10 * 381 | 4.925-10°°
7 14.285-107° | 1.218-10~* 762 | 1.017 .10
8 |4.236-107° | 8.271-10"° | 1523 | 1.370-10°
912236-107° | 4.342-10~° | 3044 | 1.565-107°
10 | 1.088-107° [ 2.213-107° | 6088 | 1.504 -10°
11 | 4.956-107% | 1.133-107° | 12175 | 1.5028 - 10~

Table 2: Second 1D test case: some relevant quantities for the ago algorithm.

predicted by 7); being always greater than but very close to the actual error.
The behavior of the errors in the last column is remarkable: in particular in the
first test case, a higher accuracy with respect to the corresponding values in the
first column is shown. This agrees with the theory in [10].

The approximate solutions zg and Uy and the mesh nodes (superimposed to the
solutions) are shown in Fig. 2. Notice that, as a result of the adaptive procedure,
for the first test case, the mesh spacing in both the primal and dual mesh, is
smaller close to the sharp boundary layer of the solution. For the second test case
the mesh nodes density increases around the maximum of the solutions u and
z, where the second derivatives are larger. Moreover, for the sake of graphical
clarity, in the figure on the bottom-left, the circles have been shown only one
out of every 25.

The nago algorithm

Let us now consider the nago algorithm applied to the same test cases as above.
The values of the parameters are chosen as 7 = 1072, p = 0.5, Cp = 1, so
that kpax = 7, while for the inner ago algorithm we let ¢ = 1,£ = 0.5, and
Py = 0. Tables 3-4 collect the results corresponding to the successive iterations
for the first and second test case, respectively. The meaning of the quantities
through the columns, from left to right is, the current iteration k (1 < k < kyayx),
the quantity Cop*, the error on the goal quantity |J(u — Ug)|, the a posteriori

estimator defined as n, = ||7",(Lk)|| X 771(51;) + | x < Tgk),zg) >x |, the cardinality

of the meshes 7;L(k) and 'Tb([k) for the primal and dual problem, respectively, the

() (k)
H

tolerance n;,” for the approximate dual solution z;,’, and finally, the error on the

target quantity J(u) with respect to the corrected functional Ji = J(Ux) + x'<
r,(lk), zg) >x, r,(Lk) being the residual associated with the approximation Uy. We
observe that, in both tables, for any rows, the errors on the goal quantity in the
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Figure 2: Computational meshes for the first (top) and second (bottom) 1D test
case and for the primal (left) and dual (right) problem for the ago algorithm.

third column are always less than the corresponding tolerances in the second
column, thus assessing the reliability of the whole procedure. The error with
respect to the corrected functional Jx behaves similarly to the ago algorithm,
showing again a higher accuracy, compared to the corresponding values in the
third column. We point out the the cardinalities of the dual meshes, shown
in the sixth column, are virtually constant through the iterations, and smaller
than the corresponding values for the ago algorithm (1848 and 595 in the two
test cases, respectively). This is a consequence of the more flexibility of the
nago algorithm. Moreover, also the meshes for the primal problem show a far
less growing rate than in the ago algorithm case, and even a higher accuracy is
obtained. The approximate solutions and the mesh nodes, superimposed to the
solution are shown in Fig. 3. Analogously to the ago algorithm, as a result of
the adaptive procedure, the mesh nodes crowd in correspondence with the sharp
boundary layer of the primal/dual solution in the first test case, and around the
maximum of the solution in the second test case. For the sake of clarity, in the
figure on the bottom-left, the circles have been shown only one out of every 26.
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k| Gt | [J(u—Uy) M #T [ #TF | oy | 1w =
15.000-10"[2.001-10% | 5423-10 47| 274 | 7.000-10 ° | 3.543-10°
2[2500-10"1 | 1.217-10"% | 1.378 - 10! 85 47 | 5.108-10"" | 7.174-10~*
3]1.250-10"" | 4.321-10°° | 6.740-10 158 47 [ 5.111-10 ' | 2.928-10 *
416.250-10"2 | 9.921-10"" | 3.237-1072 | 305 48 | 5.040-10"" | 2.024-107°
5[3.125-107* | 2.866-10* | 1.595-10* | 599 48 | 5.022-10" | 1.269-107°
6 | 1.562-107% | 1.426-10~" | 7.959-10° | 1187 48 [ 5.012-10~" | 4.734-10°°
7]17812-107% | 5.539-10~" | 4.465-107 | 2362 48 [ 5.006 - 10" | 1.700 - 10~°
Table 3: First 1D test case: some relevant quantities for the nago algorithm.

k] Cop* [ We-U ] m  [#TO[#TP ] o 1w - K
1]5.000-10 * | 1.455-10 ° | 4.421-10 * 96 10 | 7.092-10° | 6.391-10°
2 ]2.500-10"" | 2.788-10~* | 1.257 - 10" 191 10 | 4.023-10° | 3.277-10~°
3]1.250-10"" | 5.807-107° | 6.257-10~* | 381 10 | 4.009 -10° | 2.422-10°°
416.250-10"* | 2.330-10° | 3.125-10"% | 762 10 | 4.005-10° | 2.343-10°
513125-107% | 1.947-107° | 1.567-10"% | 1523 10 | 4.010-10° | 2.332-10°
6| 1.562-107% | 1.326-10° | 7.839-10~% | 3044 10 | 4.009 - 10° | 2.406 - 10~°
7]17812-107% | 1.189-107° [ 3.918 - 107 | 6088 10 | 4.007-10° | 2.385-107°

Table 4: Second 1D test case: some relevant quantities for the nago algorithm.

6.3 Two-dimensional test cases

The main overhead characterizing the 2D numerical validation is due to the
necessity of merging the information coming from two different computational
grids at the comp step of the aua algorithm. This undoubtedly yields extra

computational effort while introducing additional approximation errors.

Let us show in the sequel some preliminary results related to two different test
cases. The operator A in (1) is identified with the Laplacian on the unit square,
while piecewise linear finite elements are used to approximate both the primal
u and dual z solutions.
For the first test case, the exact solution is u = sin(7z) sin(7y), so that f = 272u,
while the dual solution is given by

o z =10 exp(—102) u,

corresponding to

e G =20 exp(—10x) sin(ry) [(x2 — 50) sin(7x) + 107 cos(7 )],

2

4 -10) -1
) J: X’< G,’U, >X: _W_M

25 + 72
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Figure 3: Computational meshes for the first (top) and second (bottom) 1D test
case and for the primal (left) and dual (right) problem for the nago algorithm.

Concerning the second test case, the following choices are made for the primal
and dual solutions

. u=4eXP(—(g[;1_()7O'25)2)y(1—y),

(z—0.5)%+ (y — 0.1)2)
104 ’

namely, the forcing terms of the primal and dual problems and the target quan-

tity are given by

o z:10exp<—

o f=2800exp(—25(2x—1)%)[49y(y —1) +200zy (1 — y) (1 — )],

(r —0.5)2 + (y — 0.1)2)

o 6= 410°[1-10* (2~ 0.5)2 +(y—0.1)2)] exp (- e

o J= x<G,u>x=2477-107!,
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respectively. Let us move from the basic ago algorithm.

The ago algorithm

For the first test case, the parameters £ and ¢y of the ago algorithm are both
set equal to 0.5, while the tolerances ny and 7 are chosen equal to 10~! and
1073, respectively. Moving from the value Py = 1, we get the results collected
in Table 5. The number of actual iterations is 4, while the cardinality #7y
of the dual mesh is 49977. The meaning of the quantities in the five columns
is the same as in the one-dimensional case. The algorithm turns out to be

[ (u—Us)| s #T | | (u) — i
1.331-107" [ 1.328 - 107" | 1738 | 4.396 - 102
1.493-107t | 1.565 - 101 1281 | 2.258 - 103
1.458 -10~2 | 1.915-10"2 | 5242 | 1.144-10~*
3.986-10~* | 2.619-10~3 | 21636 | 5.806 - 10~°

Al ool | =] e

Table 5: First 2D test case: some relevant quantities for the ago algorithm.

reliable, as the tolerance on the target functional is met. Moreover, the corrected
functional J; turns out to be more accurate, though not as much as in the
one-dimensional case. This is probably related to the difficulty cited above of
accurately computing the term a(Uj, zy) involving the primal and dual meshes
simultaneously.

We show in Fig. 4 the four meshes yielded by the ago algorithm (top-bottom
left-right). Notice that, until the value P; is relatively large, the i-th mesh takes
both the primal and dual solutions into account and, in particular, this is evident
in the first mesh. On the other hand, when P; gets smaller and tends to the
exact value p = 0, the contribution of the dual solution is gradually lost.

As for the second test case, the choices £ = 0.8, ¢g = 0.5, ng = 1 and
7 = 1072 are made for the ago parameters and tolerances, respectively, while
the value Py = 1 is adopted as initial value for the approximate Lagrange mul-
tiplier.
Table 6 gathers the results associated with these values. The number of actual
iterations is now 10 while the cardinality #7y of the dual mesh is 21742. Re-
marks analogous to the ones made for the previous test case hold also for Table
6, both about the reliability of the proposed algorithm, and the behaviour of the
corrected functional J;. Notice that the estimator 7; is almost always an upper
bound for the true error |J(u — U;)|. The slight discrepancies are possibly due
to the tunable constant pertaining the residual estimator by which the quantity
||r,(li) |lx is approximated.
Finally, in Fig. 5 four out of ten meshes yielded by the ago algorithm are fur-
nished. The influence of the dual problem can be still appreciably detected until
the iteration i = 5 (that is for values of the approximate Lagrange multiplier P;
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Figure 4: First 2D test case: the four computational meshes yielded by the ago
algorithm.

not too small), while it is completely missed in the further iterations.

The nago algorithm
Let us now consider the results on the second test case obtained via the nago
algorithm. The parameters are the same as for the ago case, except for the initial
value adopted for the approximate Lagrange multiplier now chosen as Py = 0.
Finally, both the values Cy and p are set equal to 0.5, and thus ky.x = 6.
Tables 7-8 gather the main quantities provided for this choice of parameters
from the ago and nago algorithms, respectively. Note that the nago algorithm is
reliable and that the final computational mesh is coarser than the corresponding
final mesh for the ago case, though this save is obtained at the expenses of a
much finer dual mesh. However, this test case represents an extreme situation
where the dual solution is nonsmooth, thus the cardinality of the associated
mesh turns out to be very sensitive even to small variations of the tolerance ng.
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i |J(u—Us)l ns #T) | |J(u) = Ji)
1] 3.135-1072 | 2.648 - 1072 | 16483 | 4.880 - 101
2 148921011 | 4.222- 101! 299 | 7.607 - 1010
3 17.307-1079 | 6.341-101° | 2373 | 1.156 - 1079
4 7597-10"1 | 7.807-101 | 3344 | 1.302- 107"
5] 47961071 | 6.958-10~1 | 5034 | 9.424 - 102
6]1934-1071 [ 2293-10"1 | 7550 | 3.239 10!
712272.107T | 1.661-10~" | 11259 | 3.132-10!
8 2.357-1072 | 1.021-1071 | 20494 | 1.942-10~2
911.610-1072 | 6.409-10~2 | 30838 | 1.520-10~*
10 | 2.360-1073 | 4.277-10"2 | 46278 | 1.189-1073

Table 6: Second 2D test case: some relevant quantities for the ago algorithm.

[J(u— Uy)| ns #Tp0 | |J(w) = Ji|
5.714-10° | 3.077-10~" 950 | 5.725-10°
1.056 - 10" | 2.778-10~' | 1440 | 1.052-10'
8.809 -10° | 2.541-10"1 | 2213 | 8.875-10°
1.068 - 10 | 1.788-10"' | 3334 | 1.096 - 10°
1.625-1071 | 1.269- 1071 | 4996 | 1.585- 107!
1.976-1072 | 1.228-10~1 | 7588 | 4.390 - 102
2.001-10"2 | 9.372-10"2 | 11457 | 6.232-1073
2.079-1072 | 6.896 - 102 | 20534 | 3.065 - 10~2
9.505-10~* | 5.299 - 102 | 30818 | 3.900 - 103

O OO NSO x| W DN |

Table 7: Second 2D test case: some relevant quantities for the ago algorithm.

Finally Fig. 6 compares the final grid provided by the two algorithms: note
how the mesh associated with the nago algorithm, though consisting of about
the two thirds of the elements of the mesh corresponding to the ago algorithm,
provides an approximation for the target quantity of like accuracy. As a final
observation, we compare our approach against the one based on the following
pure “primal” argument. From the definition of the target quantity, we have

|T(U —up)| = | x:< Gru—up >x | < ||Glx[lu = unllx,

from which it follows that, in order to have |J(U —uy)| < 7, it suffices to require

that ||u — up|lx < W Thus, to compute the approximation uy, one could
XI

employ a primal solver with a tolerance equal to However, when the

r
. o . . 1G] o
term @ is rough, i.e., its norm is large, this tolerance may become prohibitively
small. For example, for the two 2D test cases, it holds ||G||x is approximately
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Figure 5: Second 2D test case: four computational meshes yielded by the ago
algorithm. 7;1(1) (top-left), 7;1(3) (top-right), 771(7) (bottom-left) and 771(9) (bottom-
right).

-3
equal to 80 and 3500, respectively. This yields the tolerances =1.25-107°
—2
and 3500 ~ 2.85-10 % in the first and second case, respectively. These values

are some order of magnitude smaller than the tolerances employed for solving
the primal problem in both the ago and nago algorithms, and this would likely
produce a much larger number of elements.
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k] Cop* [ Ww-U [ m  [#TO [ #TP] oy 1) - i
1]2500-1071|9425-102 | 8.528-10"2 | 3324 | 35850 | 5.106-10"! | 8.636 - 102
211250-107% | 1.216-10"1 | 1.121-10"1 | 4982 158 | 8.247-1071 | 1.102-107 1
316.250-1072 | 4.900-1072 | 7.573-102 | 5048 | 38720 | 5.116-10"* | 3.580-102
413125-1072 | 2.385-1073 | 1.783-10=2 | 17225 | 237792 | 2.556- 10" | 1.075-103
5 1.562-1072 | 8.878-1073 | 1.325-102 | 30732 287 | 2.417-107' | 7.279-1073
6| 7.812-1072 | 1.020-1073 | 1.520- 102 | 20532 | 373792 | 1.619-10~" | 4.585-1073

Table 8: Second 2D test case: some relevant quantities for the nago algorithm.
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Figure 6: Second 2D test case: computational mesh provided by the ago (left)
and nago (right) algorithms.

A Proof of Theorem 4.1

We start by proving (31). From equalities (28) and (27) and from the definition
of the Schur complement S, we have

P,

Asp

P_i+w(Qi—g)
= (I-wBA™'B")P, 1 +wBA™'BTP, | + w(BU; — g) + w (Q; — BU;)
= (I-wS)P, 1 +w(BA™'f — Bu;) + w (BU; — g) + w (Q; — BU;)

: — BU).

= (I-wS)P,_1+w(BU; — Bu;) +wBA™'f —wg+w(Q

=T -wS)p+w(BA™If —g), it follows that

p—PF=U-wS)(p— Pi-1)+w(Bu — BU;) + w (BU; — @),
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that is

lp — P Blp — Pi—i| + w|Bu; — BU;| + w |BU; — Qi
Blp— Pio1| +wCp ||U; — il x +w|BU; — Q;

Blp— P 1| +w(1+4CB)eg

IANIN A

where relations (19) and (26) together with assumptions (29) and (30) have been
exploited. By recursion, we obtain

i—1

p—P|<B'lp—Pol+w(l+Cp)e Y B (43)
=0

Taking n = max{/3,£} and recalling Proposition 3.1 yields
p— Bl <n'lp—Po| +w(1+Cp)eoin’ < (|Po| +w(1+Cp)eo)d’,  (44)

for a suitable § = §(n), with 0 < n < § < 1. Hence (31) holds, with Cy =
|P0| —|—w(1 +CB) £0-

Let us now prove inequality (32). Using the equality A(u;—u) = BT (p—P;_1)
and thanks to inequalities (19) and (3), we get

If = AUilx = [|A(uw—Ts)|x
< N A(w = wi)l|xr + | A(u; — Us) | x-
< 1BT(p - Picy)llx + | A(ui — Uyl x»
< Cglp— P + Callui — Uil x.

From (43) and assumption (29), it follows

1—2

If — AUi||x» < Cg (ﬂi_l lp— Pyl +w(1+Cg)eo Zﬁl EH> +Caeoé’.
1=0

Now by using inequality (44), we get

If = AU xr < Cp O 67 4+ Caeo & < (=20

+Cy 80) &,

CsCu

that is result (32) with Dy = + Cy ep. O

Conclusions

In this paper we have addressed the approximation of a linear output functional
J(u), typically representing physical meaningful quantities, associated with the

28



(primal) problem at hand, through a suitable duality framework. For this pur-
pose, we first rewrite the primal problem as a saddle-point formulation depend-
ing on the approximate solution of a suitable dual problem. Then the adaptive
Uzawa algorithm proposed in [1, 8] is employed as a building block of two new
iterative algorithms, named ago and nago, with the aim of computing an ap-
proximation up to u, such that |J(u — up)| be less than a given tolerance 7.
The ago algorithm, moving from a given approximation zyg to the dual solution,
yields, after m iterations, m being estimated a priori from the data only, an ap-
proximation, Uy to the primal solution u, such that it holds |J(u — Uyp)| < 7.
The nago algorithm improves on the ago one in terms of flexibility, as it may
be interpreted as ago combined with a fractional step method. In more detail,
it does not require anymore zg to satisfy any accuracy demand a priori . Both
the algorithms are theoretically analyzed and numerically investigated. The nu-
merical results address in detail the 1D case. The two dimensional setting is still
under investigation though the preliminary results considered are promising.
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