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Abstract

In this paper we review some classical algorithms for fluid-structure

interaction problems and we propose an alternative viewpoint mutuated

from the domain decomposition theory. This approach yields precondi-

tioned Richardson iterations on the Steklov-Poincaré nonlinear equation

at the fluid-structure interface.

1 Introduction

Fluid-structure interaction problems are of utmost importance in applied math-
ematics. They range from aeroelastic problems, such as airflows around rigid
structures, to haemodynamics, including for instance blood flow in large arteries.
From the numerical viewpoint, fluid-structure interactions require the solution
of coupled fluid and structure models. In aeroelastic simulations (see [1; 2; 3]),
where the inertia of the structure is much greater than the one of the fluid, the
computation does not require sub-cycling to achieve convergence (see [4; 5; 6]).
However, this is not the case in blood flow simulations: here, since the density
of the structure is comparable to the density of the fluid, the stability of numer-
ical simulations of fluid-structure interactions relies heavily on the accuracy in
solving the nonlinear coupled problem at each time step [7; 8; 9; 10; 11]. Con-
sequently, implicit schemes must be used in order to achieve energetic balance
and stability.

An investigation of these aspects was presented in [12], where a numerical
analysis of a simplified fluid-structure interaction problems has been carried out
for implicit and staggered algorithms taking into account the so-called added-
mass effect. The authors show why numerical instabilities may occur under these
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combinations of physical parameters when using loosely coupled time advancing
schemes.

Standard strategies to solve the nonlinear strongly coupled problem are fixed
point based methods [13]. Unfortunately, these methods are very slow to con-
verge (even if several acceleration strategies may improve their efficiency) and
in some cases may fail to converge [10; 12; 14].

Recent advances suggest the use of Newton based methods for their fast con-
vergence [14; 15; 16; 17]. They rely on the evaluation of the Jacobian associated
to the fluid-solid coupled state equations. More precisely, the critical step con-
sists in the evaluation of the cross Jacobian [18], which expresses the sensitivity
of the fluid state to solid motions. This differentiation can be made using finite
difference approximations (see, e.g., [18]), or by replacing the tangent operator
of the coupled system by a simpler one [19; 20; 21]. However, in both cases these
approximations may deteriorate or prevent the overall convergence. A Newton
method with exact Jacobian has been investigated both mathematically and
numerically in [15].

In this paper, we present another possible strategy: to adopt numerical algo-
rithms based on domain decomposition techniques, which exploit the physically
decoupled structure of the problem itself, and allow its solution, at a given time
step, to be obtained through a sequence of independent solves involving each
subproblem separately.

A first approach in this direction can be found in [11; 22], where the coupling
between Stokes equations and a linearized shell model is considered. The global
problem is reduced to a linear interface equation where the only unknown is the
displacement of the interface separating the fluid and the structure. The analy-
sis of the Steklov-Poincaré operators associated to the fluid and shell models is
developed, and a Richardson scheme with the shell operator acting as precon-
ditioner is proposed and tested.

Another instance is presented by Mok and Wall [23], who proposed an iter-
ative substructuring method requiring, at each step, the independent solution
of a fluid and a structure subproblem, supplemented with suitable Dirichlet or
Neumann boundary condition on the interface.

One of the advantages of such an approach is that the whole problem is re-
duced to an equation involving only interface variables. In this respect, it can be
regarded as a special instance of heterogeneous domain decomposition problems
which arise whenever in the approximation of certain physical phenomena, two
(or more) different kinds of boundary value problems hold within two disjoint
subregions of the computational domain (see, e.g., [24]).

The outline of this paper is as follows. We will first describe the general
formulations for the fluid and the structure. Then, we will define the numerical
methods associated with these formulations. The third part will be dedicated
to the interface equations associated with the coupled problem. Finally, we
will show some numerical results produced by a 3D research code for blood-
wall interaction in a simple 3D cylindrical vessel as well as in a more complex
bifurcating channel representing the human carotid artery.
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2 Problem setting

When dealing with fluid-structure interactions under relatively large displace-
ment, to describe the evolution of the fluid and the structure domain in time,
we adopt the ALE (Arbitrary Lagrangian Eulerian) formulation for the fluid
(see [25; 26]) and a purely Lagrangian framework for the structure. We denote
by Ω(t) the moving domain composed of the deformable structure Ωs(t) and
the fluid sub-domain Ωf(t). The evolution of Ω(t) can be described using an
injective mapping (see fig. 1):

x : Ω0 × R
+ −→ R

3. (1)

The position of any point x0 ∈ Ωf
0 and x0 ∈ Ωs

0 at a time t is given by
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Figure 1: ALE mapping

xf(x0, t) = x|Ωf
0

and xs(x0, t) = x|Ωs
0
. In particular, if we denote by ds(x0, t)

the displacement of the solid at a time t, we can define the following mapping:

∀t , Ωs
0 → Ωs(t),

x0 → xs(x0, t) = x0 + ds(x0, t), x0 ∈ Ωs
0.

(2)

Likewise, we can define the mapping for the fluid domain:

∀t , xf
t : Ωf

0 → Ωf(t),

x0 → xf(x0, t) = x0 + df(x0, t), x0 ∈ Ωf
0.

(3)

Since the fluid displacement and velocity must match on the interface Γ0 with
the structure ones, the fluid domain displacement df can be defined as an ex-
tension of the solid interface displacement d

s
|Γ0

:

df = Ext(ds
|Γ0

).

Ext can be chosen, e.g., as the harmonic extension operator. In that case, the
fluid displacement is computed by solving

{

−κ∆df = 0 in Ωf
0

df
|Γ0

= ds
|Γ0

,
(4)
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where κ is a properly chosen diffusion coefficient. However, we have to ensure
that the mapping xf

t is a diffeomorphism for all t and that xf
t(x0) is differentiable

with respect to t for all x0 in Ωf
0. In other cases, different extension strategies

may be pursued see e.g., [27; 28], and [29]. Finally, we introduce the following
notations:

wf =
∂xf

t

∂t
=

∂df

∂t
, (5)

F =
∂xf

t

∂x0
, (6)

J = det F , , (7)

∂u

∂t

∣

∣

∣

∣

x0

(x, t) =
d u(xf

t(x0), t)

dt
with x0 = xf

t

−1
(x), (8)

which represent the velocity and the deformation gradient of the domain.
We assume the fluid to be Newtonian, viscous and incompressible, so that its

behavior is described by the following fluid state problem: given the boundary
data uin, gf and f f , as well as wf and the forcing them df , the velocity field u

and the pressure p satisfy the momentum and continuity equations:


























ρf

(

∂u

∂t

∣

∣

∣

∣

x0

+ (u − wf) · ∇u

)

− div[σf(u, p)] = f f in Ωf(t),

div u = 0 in Ωf(t),
u = uin on Γin(t),

σf(u, p) · nf = gf on Γout(t),

(9)

where ρf is the fluid density, µ its viscosity, σf(u, p) = −pId + 2µε(u) the
Cauchy stress tensor (Id is the identity matrix, ε(u) = (∇u + (∇u)T )/2 the
strain rate tensor). Note that (9) does not univocally define a solution (u, p) as
no boundary data are prescribed on the interface Γ(t).

Similarly, for given vector functions gs, f s, we consider the following struc-
ture problem whose solution is d:







ρs
∂2ds

∂t2
− div|x0

(σs(d
s)) = f s in Ωs

0,

σs(d
s) · ns = gs on ∂Ωs

0 \ Γ0,
(10)

where σs(d
s) is the first Piola–Kirchoff stress tensor, γ is a coefficient account-

ing for possible viscoelastic effects, while gs represents the normal traction on
external boundaries and nf and ns are the outward normals of respectively the
fluid and the solid domain. Similarly to what we have noticed for (9), prob-
lem (10) can not define univocally the unknown ds because a boundary value
on Γ0 is missing.

As a simple example, in our numerical simulations we have used the Saint-
Venant Kirchhoff three-dimensional elastic model (see, e.g., [30]) where the solid
stress is defined as

σs = 2µlε(ds) + λl div(ds)Id.
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Here, ε(ds) =
1

2

(

∇ds + (∇ds)T
)

, µl and λl are the Lamé constants. Other

models could be chosen for the structure depending on the specific problem at
hand. The reader may refer, e.g., to [31; 32; 33].

When coupling the two problems together, the “missing” boundary condi-
tions are indeed supplemented by suitable matching conditions on the reference
interface Γ0. More precisely, if we denote by λ(t) the interface variable corre-
sponding to the displacement ds on Γ0, at any time t the coupling conditions
on the reference interface Γ0 are















xf
t = x0 + λ

u ◦ xf
t =

∂λ

∂t
,

(σf(u, p) · nf) ◦ xf
t = −σs(d

s) · ns.

(11)

The system of equations (3), (9)-(11) identifies our coupled fluid-structure prob-
lem.

3 Decoupled weak formulation

We suppose the problem to be discretized in time. When the solution is available
at time tn, we look for the solution at the new time level tn+1 = tn + δt. If no
ambiguity occurs, all the quantities will be referred to at time t = tn+1.

If we are given a displacement of the interface λ(tn+1) at the time tn+1, we
can find its harmonic extension on the fluid domain by solving the following
variational formulation of (4):

find df
tn+1 ∈ H1

0 (Ωf
0) such that







∫

Ωf
0

∇df
tn+1 · ∇φ = 0 ∀φ ∈ H1

0 (Ωf
0)

df
tn+1 = λ(tn+1) on Γ0.

(12)

Then we set wf ,n+1
|Γn+1 = (df

tn+1−df
tn)/δt to compute the velocity of the structure

domain and we compute the velocity and pressure of the fluid at time tn+1 by
solving:

find (un+1, pn+1) = (u(tn+1), p(tn+1)) ∈ V f(tn+1) × Qf(tn+1) such that






























1

δt

∫

Ωf (tn+1)

ρfu
n+1vf +

∫

Ωf (tn+1)

ρf [(u
n+1 − wf ,n+1) · ∇un+1]vf

+µ

∫

Ωf (tn+1)

σf(u
n+1, pn+1)vf =

1

δt

∫

Ωf (tn+1)

ρfu
nvf +

∫

Γout(tn+1)

gfvf

∫

Ωf (tn+1)

qf div un+1 = 0

(13)
for all (vf , qf) ∈ V f(tn+1) × Qf(tn+1), with

V f(t) =
{

vf |vf ◦ xf
t ∈ H1(Ωf

0)
3, vf = 0 on Γt

}

,

Qf(t) =
{

qf | qf ◦ xf
t ∈ L2(Ωf

0)
}

,
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and where the fluid domain Ωf(tn+1) is given by:

Ωf(tn+1) = xf
tn+1(Ωf

0).

We can then compute (σf(u
n+1, pn+1) ·nf) ◦xf

t on Γ0, which by (11) has to
be equal to the structure normal stresses. We are assuming uin = 0, otherwise
the modification is straightforward.

On the structure side, given the same displacement λ(tn+1), we can define
the structure variational problem as:

find (ds,n+1, ws,n+1) = (ds(tn+1), ws(tn+1)) ∈ V s(tn+1) × V s(tn+1) such
that



















2

δt2

∫

Ωs
0

ρsd
s,n+1vs −

2

δt2

∫

Ωs
0

ρs(d
s,n+1 + δtws,n+1)vs +

∫

Ωs
0

σs(d
s,n+1) · ∇vs = 0

ws,n+1 =
2

δt
(ds,n+1 − ds,n − ws,n)

ds,n+1 = λ(tn+1) on Γ0,
(14)

for all vs ∈ V s, with V s =
{

vs ∈ H1(Ωs
0)

3|vs = 0 on ∂Ωs
0 \ Γ0

}

. As for the
fluid, we can then compute the structure normal stresses on the interface as
σs(d

s,n+1) · ns on Γ0.
If for a given interface displacement λ(tn+1) the fluid and structure normal

stresses are at equilibrium, it means that the fluid-structure problem has been
correctly solved. In general we impose the equilibrium in weak form, i.e., (for
t = tn+1):

∫

Γ(t)

σf(u, p) · nfv
f +

∫

Γ0

σs(d
s) · nsv

s = 0 ∀(vf , vs) ∈ V f(t) × V s

such that vf ◦ xf
t = vs on Γ0. Both integrals can be computed as residuals of

the weak form of the equations.

4 The interface equations associated to the cou-

pled problem

We consider the coupled problem at a particular time t = tn+1. In order to
write the interface equation associated to the global fluid-structure problem, we
introduce a fluid and structure operator as follows.

Let Sf be the Dirichlet-to-Neumann (D-t-N) fluid map such that to any given
interface displacement λ it associates the normal stress

Sf(λ) = σf := (σf(u, p) · nf) ◦ xf
t on Γ0,

where (u, p) is the solution of the Navier-Stokes problem (13). On the other
hand, we denote by Ss the D-t-N operator associated to the structure in Γ0 such
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that to any given displacement λ of the interface Γ0 associates the normal stress
exerted by the structure on Γ0:

Ss(λ) = σs := (σs(d
s) · ns) on Γ0,

where d
s is the solution of (14).

Remark that in general Sf and Ss are nonlinear and their definitions involve
also the terms due to the boundary conditions and the forcing terms.

Concerning the inverse of the solid operator, we can define S−1
s as a Neumann-

to-Dirichlet (N-t-D) map that at any given normal stress σ on Γ0 it associates
the interface displacement λ(tn+1) = ds,n+1 by solving a structure problem
analogous to (14), but with the Neumann boundary condition

σs(d
s) · ns = σ on Γ0

and then computing the restriction on Γ0 of the displacement of the structure
domain.

Moreover, we denote by S ′
s the tangent operator associated to the structure

problem and by (S′
s)

−1 its inverse. The latter is a N-t-D map that to any given
normal stress σ on Γ0 associates the corresponding displacement λ(tn+1) of the
interface by solving the linearized structure problem with boundary condition
σs(d

s) · ns = σ on Γ0. Analogously, by (S′
f)

−1 we denote the inverse of the
tangent operator S ′

f . This is also a N-t-D map that for any given normal stress σ
on Γ0 computes the corresponding displacement λ(tn+1) of the interface through
the solution of linearized Navier-Stokes equations with the boundary condition
(σf(u, p) · nf) ◦ xf = σ on Γ0.

Using the definitions of the operators Sf and Ss and of their inverses, we
can express the coupled fluid-structure problem in terms of the solution λ of a
nonlinear equation defined only on Γ0. More precisely, we can envisage three
possible formulations for the interface equation which are all equivalent from a
mathematical point of view, but give rise to different iterative methods.

First, we have the fixed-point formulation:

find λ such that S−1
s (−Sf(λ)) = λ on Γ0. (15)

This is a classical formulation in fluid-structure interaction problems, but it is
worth pointing out that here the fixed point is the displacement of the sole inter-
face, whereas the classical fixed point algorithm is applied to the displacement
of the whole solid domain (see, e.g., [10]).

The second possible approach is a slight modification of the previous equa-
tion (15):

find λ such that S−1
s (−Sf(λ)) − λ = 0 on Γ0, (16)

which is more suitable for setting up a Newton iterative method. Again, this is
applied solely to the interface displacement, instead of the whole solid displace-
ment (see, e.g., [15]).

Finally, we have the Steklov-Poincaré equation:

find λ such that Sf(λ) + Ss(λ) = 0 on Γ0. (17)
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4.1 Fixed point iterations

A standard algorithm to solve problem (15) is based on relaxed fixed point
iterations. One iteration of the fixed point algorithm reads: for a given λk,
compute

λk+1 = λk + ωk
(

λ̄k − λk
)

, (18)

where
λ̄k = S−1

s (−Sf(λ
k)).

The choice of the relaxation parameter ωk is crucial for the convergence of the
method (see [12] for a recent analysis). An effective strategy for computing ωk

is given by Aitken’s method (see [13; 23; 34]).
The fluid and structure problems are solved separately and sequentially. In

fact, each step k of the algorithm (18) implies:

1. apply Sf to a given displacement λk, i.e., compute the extension of λk to
the entire fluid domain, solve the fluid problem in Ωf(t) with boundary

condition u|Γ(t) ◦ xf
t = (λk − d

f,n
|Γ(t))/δt on Γ0; then compute the stress

σk
f = (σf(u

k, pk) · nf)|Γ(t) ◦ xf
t on the interface;

2. apply the inverse of Ss to −σk
f , i.e., solve the structure problem in Ωs

0

with boundary condition σs(d
s,k) · ns = −σk

f on Γ0; then compute the
correction λ̄k of the displacement at the iterate k.

In general, the main drawback of this method is its slow convergence rate.

4.2 Newton algorithm

The Newton algorithm exploits the formulation (16). Let J(λ) denote the Jaco-
bian of S−1

s (−Sf(λ)) in λ. Given λ0, for k ≥ 0, a step of the Newton algorithm
associated to problem (16) reads:

(J(λk) − Id)µk = −(S−1
s (−Sf(λ

k)) − λk),
λk+1 = λk + ωkµk.

(19)

In general, the parameter ωk can be computed, e.g., by a line search technique
(see [35]). Note that the Jacobian of S−1

s (−Sf(λ
k)) in λk has the following

expression:

J(λk) = −
[

S′
s

(

S−1
s (−Sf(λ

k))
)]−1

· S′
f(λ

k) = −
[

S′
s

(

λ̄k
)]−1

· S′
f(λ

k). (20)

The solution of the linear system (19) can be obtained using an iterative matrix-

free method such as GMRES. We remark that while the computation of
[

S′
s

(

λ̄k
)]−1

·
δσ (for any given δσ) does only require the derivative with respect to the state
variable at the interface, the computation of S ′

f(λ
k)·δλ implies also shape deriva-

tives, since a variation in λ determines a variation of the fluid domain. This is
a non-trivial task. In the literature, several approaches have been proposed to
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solve exactly the tangent problem [15], or else to approximate it by either sim-
pler models for the fluid [19; 21], or through finite differences schemes [9; 16; 18]
(however, the lack of a priori criteria for selecting optimal finite difference in-
finitesimal steps may lead to a reduction of the overall convergence speed [21]).

4.3 Domain decomposition (or Steklov-Poincaré) formu-
lation

A common drawback of the algorithms presented so far is that their implemen-
tation is purely sequential, while the domain decomposition formulation may
allow us to set up parallel algorithms to solve the interface equation (17). Let
us consider for example the preconditioned Richardson method.

Since the Steklov–Poincaré problem (17) is nonlinear, the Richardson method
must be interpreted in a slightly different way than what is done in the literature
for the linear case (see, e.g., [24]). Given λ0, for k ≥ 0, the iterative method
reads:

P
(

λk+1 − λk
)

= ωk
(

−Sf(λ
k) − Ss(λ

k)
)

(21)

with appropriate choice of the scalar ωk. Every equation should still be intended
on Γ0. The preconditioner P , that must be chosen appropriately, maps the in-
terface variable onto the space of normal stresses, and may depend on the iterate
λk or more generally on the iteration step k. In these cases we will denote it by
Pk. The acceleration parameter ωk can be computed via the Aitken technique
(see [34]). At each step k, algorithm (21) requires to solve separately the fluid
and the structure problems and then to apply a preconditioner. Precisely,

1. apply Sf to λk, i.e., compute the extension of λk to the entire fluid do-
main, solve the fluid problem as already illustrated for algorithm (18), and
compute the normal stress σk

f ;

2. apply Ss to λk, i.e., solve the structure problem with boundary condition
d

s,k
|Γ(t) = λk on Γ(t) and compute the normal stress σk

s ;

3. apply the preconditioner P−1 to the total stress σk = σk
f + σk

s on the
interface.

Note that steps (1) and (2) can be performed in parallel. The crucial issue is
how we can set up a preconditioner (more precisely, a scaling operator) in order
for the iterative method to converge as quickly as possible. We address this
problem in the next sections.

4.4 Preconditioners for the domain decomposition formu-
lation

In this section we discuss some classical choices of the preconditioner for the
Richardson method applied to the domain decomposition approach. We also
compare the proposed preconditioners to the fixed point and Newton strategies
that we have illustrated in Sects. 4.1 and 4.2.
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4.4.1 Dirichlet–Neumann and Neumann–Neumann preconditioners

We define a generic linear preconditioner (more precisely, its inverse):

P−1
k = αk

f S′
f(λ

k)−1 + αk
s S′

s(λ
k)−1, (22)

for two given scalars αk
f and αk

s . From (22) we retrieve the following special
cases:

• If αk
f = 0 and αk

s = 1, then

P−1
k = P−1

DN = S′
s(λ

k)−1.

We call it a Dirichlet-Neumann preconditioner, and

P−1
DN (σk) = S′

s(λ
k)−1

(

−Sf(λ
k) − Ss(λ

k)
)

;

• If αk
f = 1 and αk

s = 0, then

P−1
k = P−1

ND = S′
f(λ

k)−1.

We call PDN a Neumann-Dirichlet preconditioner and

P−1
ND(σk) = S′

f(λ
k)−1

(

−Sf(λ
k) − Ss(λ

k)
)

;

• If αk
f + αk

s = 1, then

P−1
k = P−1

NN = αk
f S′

f(λ
k)−1 + αk

s S′
s(λ

k)−1

and we call it Neumann-Neumann preconditioner.

In the Dirichlet–Neumann (or the Neumann–Dirichlet) case the computational
effort of a Richardson step may be reduced to the solution of only one Dirichlet
problem in one subdomain and one Neumann problem in the other.

It is possible to choose the parameters αk
f , αk

s and ωk dynamically using a
generalized Aitken technique.

Remark 1 If we consider a linear structure model and if we choose αk
f = 0 and

αk
s = 1, the algorithm (21) is equivalent to the fixed-point algorithm (18) (see

Sect. 4.1). Indeed, from (21)

µk = (S′
s(λ

k))−1
(

−Sf(λ
k) − Ss(λ

k)
)

= S−1
s

(

−Sf(λ
k)
)

− λk ,

hence λk+1 = λk + ωk(λ̄k − λk), which coincides with the last equality of (18).
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4.5 The Newton algorithm on the Steklov-Poincaré equa-
tion

The genuine Newton algorithm applied to the Steklov-Poincaré problem (17) is
retrieved by using the algorithm (21) (with ωk = 1) and choosing at the step k

Pk = S′
f(λ

k) + S′
s(λ

k). (23)

Note that in order to invert Pk one must use a (preconditioned) iterative method
(e.g., GMRES) and may approximate the tangent problems to accelerate the
computations. The resolution algorithm now reads:

[

S′
f(λ

k) + S′
s(λ

k)
]

µk = (−Sf(λ
k) − Ss(λ

k)) (24)

λk+1 = λk + ωkµk.

As for the classical Newton approach, µk can be computed using an itera-
tive matrix-free method. Given a solid state displacement λk , the domain
decomposition-Newton method thus reads: for k ≥ 0,

1. update the residual Sf(λ
k) + Ss(λ

k) by solving the fluid and the structure
sub-problems;

2. solve the linear system (24) via the GMRES method in order to compute
µk;

3. update the displacement λk+1. In our application we take ωk = 1, but in
some cases it may be necessary to adopt a linesearch or an Aitken strategy.

The GMRES solver should be preconditioned in order to accelerate the con-
vergence rate. To this aim, one can use the previously defined domain de-
composition preconditioners. In our numerical tests, we have considered the
Dirichlet-Neumann preconditioner S−1

s , so that the preconditioned matrix of
the GMRES method becomes:

[S−1
s (λk)] · [S′

f(λk) + S′
s(λk)] (25)

4.5.1 Comparison with the Newton algorithm (19) on problem (16)

The Richardson algorithm (21) for the Steklov-Poincaré formulation (17) with
preconditioner given by (22) (with αk

f = αk
s = 1) is not equivalent to the Newton

algorithm (19) applied to problem (16). In fact, the Newton algorithm (19)
could be regarded as a Richardson method (21), choosing however a nonlinear
preconditioner defined as

Pk(µ) = Ss

(

S′
s(λ̄

k)
−1

·
(

S′
f(λ

k) + S′
s(λ̄

k)
)

· µ
)

, (26)

where λ̄k = S−1
s (−Sf(λ

k)).
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In this case, for σk = −(Sf(λ
k) + Ss(λ

k)), we would obtain

P−1
k

(

σk
)

=
(

S′
f(λ

k) + S′
s(λ̄

k)
)−1

· S′
s(λ̄

k) · S−1
s

(

−Sf(λ
k) − Ss(λ

k)
)

=
(

[

S′
s(λ̄

k)
]−1

· S′
f(λ

k) + Id
)−1

(

S−1
s (−Sf(λ

k)) − λk
)

.

We see that this is equivalent to (19). In fact (20) is equal to the first bracket
in the last line.

Remark 2 Note that if (only) the structure is linear, the preconditioner defined
in (26) is also linear and becomes

Pk = S′
f(λ

k) + S′
s(λ

k),

which is exactly (23). This is a Newton method applied to (16) or (17). How-
ever, we would like to remark that the domain decomposition approach allows
us to set up a completely parallel solver. In fact, the fluid and the structure
subproblems can be computed simultaneously (and independently) for both the
residual computation (operators Sf and Ss) and the application of the precondi-
tioner (operators S ′

f and/or S′
s).

5 Numerical results

5.1 Straight cylindrical vessel

We compare the domain decomposition algorithms with the classical fixed point
and Newton methods. We consider three different preconditioners:

1. the Dirichlet-Neumann preconditioner (here denoted as ‘Steklov-Poincaré
DN’), i.e., the preconditioner is equal to the structure tangent operator
S′

s;

2. the Neumann-Neumann preconditioner (here denoted ‘Steklov-Poincaré
NN’), i.e., a linear combination of the structure problem S ′

s and an ap-
proximation of the linearized fluid problem S ′

f . In particular, the last one
is linearized by neglecting any shape derivative;

3. the domain decomposition-Newton method illustrated in Sect. 4.5 (‘DD-
Newton’). The fluid tangent problem is considered as in [15] in its exact
form. To invert (24) we apply the GMRES method either unprecondi-
tioned, or preconditioned by ‘Steklov-Poincaré DN’.

The simulations were performed on a dual 2.8 Ghz Pentium 4 Xeon with 3
GB of RAM. The fluid is discretized by P1-bubble/P1 finite elements and the
solid by P1 finite elements. All the methods give the same solution up to the
tolerance required.

We simulate a pressure wave in a straight cylinder of length 5cm and radius
5cm at rest. The structure, whose thickness is 5mm, is considered linear and

12



clamped at both the inlet and the outlet. The fluid viscosity is set to µ = 0.03,
the Lamé constants to µl = 1.15 · 106 and λl = 1.73 · 106, the densities to ρf = 1
and ρs = 1.2. We impose zero body forces and homogeneous Dirichlet boundary
conditions on ∂Ωs

0 \ Γ0.
The fluid and the structure, both three dimensional, are initially at rest and

a pressure (a normal stress, actually) of 1.3332 · 104 dynes/cm2 is set on the
inlet for a time of 3 · 10−3 s. We used two meshes:

• a coarse mesh with 1050 nodes (4680 elements) for the fluid and 1260
nodes (4800 elements) for the solid (fig. 2);

• a fine mesh with 2860 nodes (14100 elements) for the fluid and 2340 nodes
(9000 elements) for the solid (fig. 3).

A comparison with the classical coupling formulation have been conducted and
results are displayed in tables 1 and 2. In these tables, ‘FS evals’ stands for
the average number of evaluation per time step of either (15) or (17), while
‘Tangent evals’ represents the average number of evaluations of the correspond-
ing linearized system per time step. We can see that, using the preconditioned
Richardson method (21), a decrease in the number of FS evaluations with respect
to the classical fixed point algorithm is obtained. However, the computational
time of the domain decomposition formulation is slightly higher than that of the
fixed point formulation. The reason is that the domain decomposition formula-
tion requires to solve, at each iteration, the fluid and the structure subproblems,
as well as the associated tangent problems, while the latter are indeed skipped
by the fixed point procedure. Furthermore, since the solid operator is linear, the
two approaches are very similar and since our research code is sequential, the
parallel structure of the Steklov-Poincaré formulation (17) is not capitalized.

Figure 2: Coarse fluid (left) and structure (right) meshes
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Figure 3: Refined fluid (left) and structure (right) meshes

Table 1: Comparison of the number of sub-iterations for the fixed point algo-
rithm and the domain decomposition algorithm (coarse mesh)

Coarse mesh, ∆t = 0.001

Method FS evals Tangent evals CPU time

Fixed point 19.8 0 1h16’
Steklov-Poincaré DN 19.8 19.8 1h17’
Steklov-Poincaré NN 17.9 17.9 1h42’

∆t = 0.0005

Method FS evals Tangent evals CPU time

Fixed point 32.1 0 3h27’
Steklov-Poincaré DN 29.2 29.2 3h50’
Steklov-Poincaré NN 22 22 4h20’

We compare now the Newton method (16) and the domain decomposition--
Newton algorithm (see Sect. 4.5). In both cases, the Jacobians (20) and (23) are
computed exactly (cf. [15]) and inverted by a GMRES method. The number of
Newton iterations is equivalent, although the inversion of the Jacobian in ‘DD-
Newton’ needs more GMRES iterations. Preconditioning GMRES by ‘Steklov-
Poincaré DN’ reduces these iterations to the same as in ‘Newton’ and the CPU
time is then equivalent. As before, the reasons reside in the linearity of the
structure model and in the fact that our code is sequential.

The next steps are therefore to set up more sophisticated preconditioners for
the Jacobian system, derived either from the classical domain decomposition
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Table 2: Comparison of the number of sub-iterations for the fixed point algo-
rithm and the domain decomposition algorithm (fine mesh)

Refined mesh, ∆t = 0.001

Method FS evals Tangent evals CPU time

Fixed point 19.9 0 4h28’
Steklov-Poincaré DN 19.5 19.5 4h40’
Steklov-Poincaré NN 17.7 17.7 6h12’

∆t = 0.0005

Method FS evals Tangent evals CPU time

Fixed point 33 0 12h40’
Steklov-Poincaré DN 29.6 29.6 12h50’
Steklov-Poincaré NN 22.1 22.1 15h44’

theory or from lower dimensional models (in a multiscale approach, cf. [36]),
and to consider a non-linear structure. The latter is of particular interest for
example in haemodynamics when dealing with complex realistic geometries with
relatively large displacements.

Table 3: Convergence time comparison between the exact Newton and the do-
main decomposition-Newton methods (coarse mesh)

Coarse mesh, ∆t = 0.001

Method FS eval Tangent evals CPU time

Newton 3 12 0h56’
DD-Newton 3 24 1h30’
DD-Newton DN precond 3 12 0h58’

∆t = 0.0005

Newton 3 17 1h55’
DD-Newton 3 29 3h30’
DD-Newton DN precond 3 17 2h10’

∆t = 0.0001

Method FS eval Tangent evals CPU time

Newton 3 19 11h41’
DD-Newton 3 35 16h21’
DD-Newton DN precond 3 19 12h39’

Figure 4 shows the pressure wave propagation computed on the coarse mesh
with a time step of δt = 1e−3s at time t = 0.005s, 0.01s, 0.015s, and 0.02s. The
deformation is amplified by a factor 12. We can see that, at time t = 0.01s,
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Table 4: Convergence comparison of the computational time for the exact New-
ton and domain decomposition-Newton methods (fine mesh)

Refined mesh, ∆t = 0.001

Method FS eval Tangent evals CPU time

Newton 3 12 3h39’
DD-Newton 3 30 4h56’
DD-Newton DN precond 3 12 3h45’

∆t = 0.0005

Newton 3 14 8h31’
DD-Newton 3 35 10h50’
DD-Newton DN precond 3 14 8h40’

∆t = 0.0001

Method FS eval Tangent evals CPU time

Newton 3 19 26h40’
DD-Newton 3 37 40h26’
DD-Newton DN precond 3 19 27h01’

the deformation reaches the end of the tube. Afterwards, at time t = 0.015s
and t = 0.02s, a backward wave propagation is observed. This phenomenon
can be explained by the fact that we clamped the structure and that we impose
a vanishing fluid normal stress at the outlet. Setting proper boundary condi-
tions in the case of physiological simulations is beyond the scope of this paper.
The interested reader may refer, e.g., to the multiscale geometrical approach
advocated in Quarteroni and Formaggia [36].

5.2 Carotid bifurcation

We simulate a pressure wave in the carotid bifurcation using the same fluid and
structure characteristics as in the previous simulations. We solve the coupling
using our ‘DD-Newton DN precond’ algorithm. The mesh that we have used was
computed using an original realistic geometry first proposed in [37]. The cast
was produced by D. Liepsch (Fachhochschule München) and the computational
model was developed by K. Perktold (Technische Universität Graz) (see [37] for
more details).

The fluid and the structure are initially at rest and a pressure of 1.3332 ·
104dynes/cm2 is set on the inlet for a time of 3 · 10−3s. The average inflow
diameter is 0.67cm, the time step used is δt = 1e − 04 and the total number
of iterations is 200. Figure 5 displays the mesh used for the computations,
Figure 6 the deformation at different time steps, while figures 7 to 10 show the
displacement of the lower part of the carotid (the displacement is amplified 12
times). In these last figures, the vectors represent the velocity of the structure.
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Figure 4: Fluid and solid solutions at time t = 0.005s (upper left), t = 0.010s
(upper right), t = 0.015s (lower left), t = 0.020s (lower right) (coarse mesh)

Figure 11 represents the inflow flux computed at each iteration. We can observe
three distinct reflections: After iteration 30, i.e., after 3 · 10−3s, no pressure is
imposed in the inflow, resulting in the decrease of the inflow flux. We can see
that shortly after this phase, the blood flows backward for a short period of
time. The same phenomenon is observed between iteration 108 and 150 (i.e.,
at time 0.0108s and 0.015s). This happens after the pressure pulse enters the
bifurcation, and the carotid wall shrinks at the intersection. The third reflection
is caused by the pressure wave leaving the computational domain. The second
reflection is physiological and is relevant in haemodynamics. The two others
could be avoided by considering more sophisticated boundary conditions.

6 Conclusion

We have presented some new strong implicit coupled schemes to solve fluid-
structure interaction problems stemming from a reformulation of the global
problem as a Steklov-Poincaré interface equation (17). With respect to the
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Figure 5: Coarse fluid (left) and structure (right) meshes

classical Newton or fixed point algorithms this approach requires to solve a
nonlinear system whose dimension coincides with the number of degrees of free-
dom of the structural displacement on the interface, instead of those of the
whole solid subdomain.

Firstly, we propose to solve the interface system using Aitken-accelerated
Richardson iterations preconditioned by either Dirichlet-Neumann or Neumann-
Neumann scaling operators (see Sect. 4.3). Numerical results have shown that
the computational costs of these schemes is almost comparable to those of the
fixed point method.

Then, we present a more sophisticated approach derived by combining our
domain decomposition formulation with a Newton method. We obtain a do-
main decomposition-Newton method with a Dirichlet-Neumann preconditioned
Jacobian, which requires the same computational effort as the classical Newton
method, on a physically significant problem.

However, we point out that the results here presented have been obtained
using a fully sequential code which do not exploit the possibility of solving local
subproblems in a fully parallel setting. Indeed, this is a major advantage of the
domain decomposition strategy, since the evaluation of the residual Sf(λ

k) +
Ss(λ

k) at each Richardson iteration does not require to consider the structure
and fluid operators in any specified order, as for the classical formulations (18)
and (19).

In our simulations the computational cost for the solution of the structure
problem is negligible with respect to that for the fluid. A parallel setting would
be a real advantage when the effort to solve the structure problem becomes
comparable to that needed for the fluid, e.g., for nonlinear structure models.

Moreover, the choice of suitable preconditioners which exploit, e.g., reduced
models for the fluid part, is currently being investigated and it should lead to a
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Figure 6: Carotid deformation at time t = 0.005s (upper left), t = 0.010s (upper
right), t = 0.015s (lower left), t = 0.020s (lower right)

further reduced computational cost of the preconditioning step.
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Figure 7: Structure deformation and velocity at time t = 0.005s

References

[1] C. Farhat, M. Lesoinne, P. L. Tallec, Load and motion transfer algorithms
for fluid/structure interaction problems with non-matching discrete inter-
faces: Momentum and energy conservation, optimal discretization and ap-
plication to aeroelasticity, Comput. Methods Appl. Mech. Engrg 157 (1998)
95–114.

[2] C. Farhat, G. van der Zee, P. Geuzaine, Provably second-order time-
accurate loosely-coupled solution algorithms for transient nonlinear com-
putational aeroelasticity, Comput. Methods Appl. Mech. Engrg. (in press).

[3] S. Piperno, C. Farhat, Partitioned procedures for the transient solution of
coupled aeroelastic problems - Part II: Energy transfer analysis and three-
dimensional applications, Comput. Methods Appl. Mech. Engrg. 190 (2001)
3147–3170.

[4] G. Fourestey, S. Piperno, A second-order time-accurate ALE Lagrange-
Galerkin method applied to wind engineering and control of bridge profiles,
Comput. Methods Appl. Mech. Engrg. 193 (2004) 4117–4137.

20



Figure 8: Structure deformation and velocity at time t = 0.010s

[5] S. Piperno, Explicit/implicit fluid-structure staggered procedures with a
structural predictor and fluid subcycling for 2D inviscid aeroelastic simu-
lations, Int. J. Num. Meth. Fluids 25 (1997) 1207–1226.

[6] S. Piperno, Numerical simulation of aeroelastic instabilities of elementary
bridge decks, Tech. Rep. 3549, INRIA (1998).

[7] S. Deparis, M. Fernández, L. Formaggia, Acceleration of a fixed point algo-
rithm for fluid-structure interaction using transpiration conditions, M2AN
37 (4) (2003) 601–616.

[8] H. Matthies, J. Steindorf, Partitioned but strongly coupled iteration
schemes for nonlinear fluid-structure interaction, Computer & Structures
80 (2002) 1991–1999.

[9] H. Matthies, J. Steindorf, Partitioned strong coupling algorithms for fluid-
structure interaction, Computer & Structures 81 (2003) 805–812.

[10] F. Nobile, Numerical Approximation of Fluid-Structure Interaction Prob-
lems with Application to Haemodynamics, Ph.D. thesis, École Polytech-
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des Ponts et Chaussées (2002).

[29] M. Lesoinne, C. Farhat, Stability analysis of dynamic meshes for transient
aeroelastic computations, AIAA, Proceedings of the 11th AIAA Computa-
tional Fluid Dynamics Conference, Orlando, Florida. Paper 93-3325.

24



[30] P. G. Ciarlet, Mathematical elasticity. Vol. II, Vol. 27 of Studies in Math-
ematics and its Applications, North-Holland Publishing Co., Amsterdam,
1997, theory of plates.

[31] D. Chapelle, K. Bathe, The Finite Element Analysis of Shells - Fundamen-
tals, Springer, New York, 2003.
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