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Abstract Efficiency and flexibility are often mutually ex-
clusive features in a code. This still prompts a large part of
the Scientific Computing community to use traditional pro-
cedural language. In the last years, however, new program-
ming techniques have been introduced allowing for a high
level of abstraction without loss of performance. In this pa-
per we present an application of the Expression Templates
technique introduced in [13] to the assembly step of a finite
element computation. We show that a suitable implementa-
tion, such that the compiler has the role of parsing abstract
operations, allows for user-friendliness and gain in perfor-
mance with respect to more traditional techniques. Both the
cases of conforming and discontinuous Galerkin finite ele-
ment discretization are considered. The proposed implemen-
tation is finally applied to a number of problems entailing
different kind of complications.

Keywords Galerkin methods, Finite elements imple-
mentation, Object-Oriented programming, Expression
templates

1 Introduction

Object-Oriented (OO) programming has become an impor-
tant approach in Computer Science for solving complex prob-
lems in an effective and elegant way. One of the most rele-
vant features is the high level of abstraction (generic pro-
gramming) supported by OO languages like C++ (see [12]).
Abstraction together with encapsulation and operator over-
loading can make the implementation of a problem closer to
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its mathematical formulation and, at the same time, improve
the maintainability of a code.

In principle, these features are very well suited for ap-
plications in Scientific Computing, and in particular for the
approximate solution of Partial Differential Equation (PDE)
problems arising in different fields (Mathematical Physics,
Biology, Economy, etc.). The difficulty of implementing a
general purpose solver in this context lies in the difference
between the mathematical formulation of a differential prob-
lem and its implementation (see [9]). The support for user-
defined types therefore appears the ideal tool for the imple-
mentation of mathematical structures. However, what seemed
to be a “natural union has historically been more of a stormy
relationship” ([4]). The application of OO programming has
been limited in the context of Numerical Computing by ef-
ficiency concerns: the extensive use of virtual functions and
operator overloading can strongly reduce the performance of
a code. As a matter of fact, resolution of operator overload-
ing is typically done run time, which can be unacceptable
when dealing with complex problems (as e.g. in fluid me-
chanics). All these reasons (and, of course, historical ones)
still compell a part of the Scientific Computing community
to use traditional procedural languages (Fortran and C), en-
suring better efficiency. Nevertheless, several efforts have
been done to provide user-friendly interfaces to general pur-
pose finite elements (FE) solvers. With no claim of com-
pleteness, we quote FreeFem (www.freefem.org),DiffPack
([8]), Open Foam (www.openfoam.org).

In the last years, special programming techniques have
been developed with the goal of providing both elegance and
efficiency in the OO framework. In particular, in [13] a tech-
nique called Expression Templates has been proposed for
the effective handling of mathematical expression passed as
arguments to subroutines and vector operations. The basic
idea is to regard an abstract expression as a template that
can be resolved by the compiler, i.e. not run-time. The ef-
fectiveness of Expression Templates technique in handling
different, quite simple, mathematical problems is illustrated
e.g. in [7]. In this paper, we aim at extending the use of Ex-
pression Templates to the implementation of a finite element
library for PDE. The Expression Templates technique will
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be used to build the discrete version of a differential operator
which can be viewed as the composition of elementary oper-
ators and coefficients. The resulting code is therefore really
user-friendly, since the user can define the problem in a way
close to its mathematical formulation and, on the other hand,
still effective thanks to the Expression Templates approach.

Our main concern will be the so-called assembly step
of the FE solver, where the matrices resulting from the dis-
cretization of the differential operator are built. In this re-
spect, our use of Expression Templates is quite different
from the one proposed in [9], where the so-called matrix-free
approach is considered and the Expression Templates tech-
nique is used as an effective and user friendly tool for man-
aging algebraic operations in solving the discretized prob-
lem. We will address both the case of conforming and non-
conforming FE approximation. Particular importance will
be given to discontinuous Galerkin (DG) methods, which
have received more and more attention in the last years be-
cause of their better properties in hyperbolic and convection-
dominated problems. We will finally show how the Expres-
sion Templates technique can be easily adapted to the imple-
mentation of different kind of FE solvers.

The outline of the paper is the following. In §2.1 we
will recall the basics of the Expression Templates tech-
nique. In §2.2 we will correspondingly recall basics con-
cepts of conforming Galerkin methods focusing on contin-
uous FE. In §3 we actually illustrate how to effectively im-
plement the assembling phase for a generic differential op-
erator oper. For the sake of simplicity, in the exposure we’ll
refer to an advection diffusion problem featuring constant
coefficients (§3.1). We will then illustrate the extension to
the more general case of non-constant coefficients of differ-
ent type (tensors, scalars, etc.) (§3.2). In §3.3 we will extend
the approach for the implementation of advection stabiliza-
tion techniques, which are mandatory for solving advection
dominated problems within the context of Galerkin meth-
ods. In §4 we will extend the Expression Templates tech-
nique to the implementation of DG methods. In particular,
in §4.1.1 we will address some recent development in the
DG framework, namely the Interior Penalty method, and its
Expression Templates coding.

Finally, in §5 we report some numerical results, provid-
ing quantitative confirmation of the effectiveness of the Ex-
pression Templates technique. In §6 we will draw some con-
clusions.

2 Basic Facts

2.1 Basics of the Expression Templates

We briefly recall some basics concept about the Expression
Templates technique. A complete description can be found
in the original paper by Veldhuizen [13] and in [5], [4]. See
also [7]. Suppose that x is a vector of n real numbers storing
the abscissas where you need to evaluate a generic function
f (x). For the linear function f (x) = ax + x/b, the vector

formulation of our task reads:

y = ax+
1
b

x. (1)

The required operation has actually to be interpreted compo-
nentwise and it refers to the execution of n scalar operations,
namely:

yi = axi + xi/b, (i = 1, . . . ,n) (2)

which can be considered as the scalar core of the vector ex-
pression. Now let y, a, x and b be the variables storing all
the terms in (1). The computation of y can be carried in C++
in a generic way (with respect to f) by using a pointer to a
callback function or a suitably defined functor class. Alter-
natively, the task can be accomplished by operator overload-
ing. Once all the involved operations (+,*,/,=) are suitably
defined, the following instruction will be legal:

y = a * x + x / b;

Although this solution is elegant and clear, the operator over-
loading is not effective. The actual meaning of the above in-
struction will be indeed parsed run-time. Moreover, the ex-
pression is decomposed into the binary operations at hand.
A first loop will be devoted to the computation of a * x and
the result will be stored in a temporary vector; another loop
will then compute x / b, storing the result in a second tem-
porary vector; finally, a third temporary vector will receive
the result of the sum of the previous ones. The operation will
end up with the assignment of the third temporary to vector
y. The net result is that an operation which could be effi-
ciently completed with a single loop on the scalar core (2)
will require three loops and three temporary vectors. In ad-
dition, the use of a function pointer or a functor is not really
satisfactory, since the call to the functions will be iterated
inside the loop generating a lot of overhead.

Expression Templates technique is based on the idea of
building suitable classes so that the expression to be evalu-
ated can be considered as a templatized argument. The ex-
pression type will be built by the compiler through an im-
plicit type interpretation. In this way, the only run-time op-
eration will be the computation of the expression for each
value of the index i, that will become a simple call to operator().
This will allow the evaluation of the entire scalar core of the
expression, without temporaries. All these tasks can be ac-
complished through the following steps:

1. Define the fundamental types that are involved in the ex-
pression at hand; in our example, vectors of reals and
scalars (double).

2. Define a wrapper class to make objects of different type
homogeneous, allowing their composition without requir-
ing the explicit definition of all the possible combina-
tions of operands.

3. Define the operations of interest in such a way that they
can be passed as a template argument for building the
expression at hand.
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Fig. 1 Parse tree for the expression f = a * b + x / b.

Every step is extensively illustrated in [13] and [5]. In
the case of our example, we need to instantiate an object of
type:

Expr<BinOp<
BinOp<Expr<Const>,Expr<Vec>,OpMult>,
BinOp<Expr<Vec>,Expr<Const>,OpDiv>,
OpAdd>>

where Expr<A> is the wrapper class, BinOp<A,B,Op> is the
basic class for binary operations, Vec and Const refer to
the fundamental types involved in the expression and Op...
stands for the class defining the corresponding operation.
This class is the inline formulation of the parse tree depicted
in Fig. 1. It is important to point out that the construction of
such class is not matter of the user, nor it is solved run-time,
but it is interpreted from the expression by the compiler.

2.2 Basics of the Finite Element Method

In this section we will give some basic concepts about con-
tinuous Galerkin methods. A comprehensive introduction to
these topics can be found in [10] and [6]. In the exposure we
will refer to a steady advection-diffusion-reaction problem
featuring constant coefficients: most of what follows, how-
ever, can be extended to a general linear (or linearized) dif-
ferential operator. We will therefore consider the following
problem: given a bounded domain Ω ∈ R3, find u(x) such
that:

−µ4u+β ·∇u+σu = f , x ∈ Ω . (3)

For the moment being, we assume that µ,σ are given con-
stants and β is a constant vector. The forcing term f (x) is
assigned too. Different conditions can be prescribed on the
boundary ∂ Ω : for the sake of simplicity, we can assume that
on the boundary we have so called (homogeneous) Neumann
boundary conditions:

µ∇u ·n = 0, (4)

being n the unit outward normal vector to the boundary.
Equations (3) and (4) define the so-called strong formula-
tion of the differential problem. Such a formulation is not
suitable in some real cases, e.g. when the forcing term is

not regular. It is therefore worthwhile resorting to a more
general, weak or variational formulation. Denote by V the
functional space the unknown u is assumed to belong to. The
space V will be, in general, infinite-dimensional. The varia-
tional formulation of the problem reads: find u(x) ∈ V such
that for each function ϕ ∈V

a(u,ϕ) = F (u), (5)

where:

a(u,ϕ) ≡

∫

Ω
µ∇u ·∇ϕ dω +

∫

Ω
β ·∇uϕ dω +

∫

Ω
σuϕ dω,

F (u) ≡

∫

Ω
f ϕ dω.

Equation (5) stems from the application of well known vari-
ational principles and of the Green formula (for the diffusive
term); ϕ is usually called a test function. In order to find a
numerical solution for problem (5), we need to approximate
it with a finite dimensional one. The Galerkin class of meth-
ods is based on the introduction of a finite dimensional sub-
space Vh of V such that Vh ⊂V and Vh →V when h → 0. In
particular, we denote by {ϕi} for i = 1,2, . . .Nh a basis func-
tions set of Vh, such that every function vh ∈Vh can be writ-
ten as a linear combination of the ϕi. The finite dimensional
formulation of problem (5) therefore reads: find uh(x) ∈ Vh
such that, for every function ϕi (i = 1,2, . . .Nh)

a(uh,ϕi) = F (ϕi). (6)

Since uh ∈Vh we can express it in terms of the basis function
as:

uh =
Nh

∑
j=1

U jϕ j. (7)

In view of (7), the discrete problem (5) can be rewritten in
the algebraic form AU = F, where U is the vector of the
unknowns Ui, A is the matrix whose entries are:

ai j =

∫

Ω
µ∇ϕ j ·∇ϕi dω +

∫

Ω
β ·∇ϕ jϕi dω

+

∫

Ω
σϕ jϕi dω,

(8)

while F = [ fi] = [
∫

Ω f ϕi dω].
The construction of the matrix A and vector F, which will

be considered here in the framework of Expression Tem-
plates , is the so called assembly step.

Different methods belonging to the Galerkin class are
obtained by different choices for the basis function set {ϕi}.
In particular, in continuous (or conformal) FE, Vh is given
by the span of piecewise polynomial functions over a suit-
able triangulation (mesh) Th of the domain Ω . Namely, for
a selected polynomial degree k:

Vh ≡
{

vh ∈C0(Ω ) : vh|K j
∈ Pk, ∀K j ∈ Th,

}
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Fig. 2 Map of a generic tetrahedron into the refrence unit 3D simplex.

Matrix A assembling is typically carried out with a loop over
the elements of the triangulation. More precisely, every ele-
ment of the mesh is mapped onto a reference element where
the explicit expression of the basis functions is known. We
denote by {ϕ̂i} the basis function set in the reference frame
Ox̂ŷẑ. For a 3D tetrahedral mesh, e.g., every terahedron is
mapped into the unit 3D simplex (see Fig. 2). Denote by
operi j the function to be integrated in the problem at hand,
i.e.

operi j = µ∇ϕ j ·∇ϕi +β ·∇ϕ jϕi +σϕ jϕi.

The computation of the entry ai j reads

ai j =
∫

Ω
operi j dω =

Ne

∑
k=1

∫

Tk

operi j dω

=
Ne

∑
k=1

∫

T̂
ôperi j|Jk| dω̂

where Ne is the number of elements, Jk is the jacobian of the
map of Tk onto T̂ , |Jk| its determinant and ôperi j is the re-
formulation of operi j with respect to the reference variables
x̂, ŷ, ẑ, namely:

ôperi j = µ
(

J−1∇̂ϕ̂ j

)
·
(

J−1∇̂ϕ̂i

)
+β ·

(
J−1∇̂ϕ̂ j

)
ϕ̂i

+σϕ̂ jϕ̂i.

The assembling of the matrix A is therefore split into a lo-
cal computation over the reference terhaedron, yielding a
Ndof ×Ndof matrix Aloc and a global update of the matrix A,
in which the entries of the global matrix A are updated by the
corresponding entries of the local one. A possible snapshot
of the assembly loop is therefore:

for(int i = 1; i <= mesh.numVolumes(); ++i) {
// compute |J| and J^-1 grad
fe.updateFirstDeriv(mesh.volumeList(i));

// initialize local matrix:
Aloc.zero();

// compute local matrix
compute_mat(Aloc,oper,fe);

// update global matrix
assemb_mat(A,Aloc,fe,dof);

}

The computation of the integrals over T̂ is usually car-
ried out by means of suitable quadrature formulae:
∫

T̂
ôperi j|J|dω̂ ≈

nq

∑
l=1

operi j(x̂l , ŷl, ẑl)wl ,

where nq is the number of quadrature nodes, with coordi-
nates x̂l, ŷl, ẑl and wl is the associated weight. A possible
snapshot of the corresponding loop is:

for(int i = 0; i < fe.nbNode; i++) {
for(int j = 0; j < fe.nbNode; j++) {

s = 0;

for(int l = 0;l < fe.nbQuadPt; l++) {
// (*)
s += oper(i,j,l) * fe.weightDet(l);
// (*)

}
loc_mat(i,j) += s;
}

}

These code is generic with respect to the actual differential
operator oper to be solved. Actually, for the specific prob-
lem at hand, we should substitute the lines of code delimited
by (*) with:

for(int ic = 0; ic < 3; ic++) {
s += mu * phiDer(i,ic,l) * phiDer(j,ic,l) +

beta(ic)* phiDer(i,ic,l) * phi(j,l);
}
s += sigma * phi(i,l) * phi(j,l);

where we assumed that phi(i,l) and phiDer(i,ic,l) store
respectively ϕ̂i (x̂l) and ∂x̂ic ϕ̂i (x̂l). The goal of the present
paper is exactly to show that, thanks to Expression Tem-
plates , we can write a generic code retaining the abstract
operator oper, without loss of efficiency and the parsing of
the portion of code surrounded by (*) can be carried out by
the compiler.

3 Assembly Through Expression Templates

3.1 Construction of the Scalar Core

In this subsection we deal with the expression templates im-
plementation of matrix assembly step. The code line:

s += oper(i,j,l) * fe.weightDet(l);

corresponds to the scalar core of matrix assembly and it’s
therefore the counterpart of the componentwise operation in
the algebraic problem (2). In view of this remark, the first
step to take is to specify the basic types for the leaves of the
parse tree, which we call Elementar Operators. In solving
the reference problem (3), we are interested in three basic
operators which combine to give the differential problem:
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1. stiffness operator (diffusion);
2. gradient operator (convection);
3. mass operator (reaction).

Elementar operators can be implemented as functors: a snap-
shot of the code is given hereafter.

// Diffusion
class Stiff{
public:
Stiff(CurrentFE* fe):_fe(fe) {
}
CurrentFE* fe_ptr() {

return _fe;
}

Real operator()(int i, int j, int l) {
Real s = 0.;
for(int ic = 0; ic < _fe->nbCoor; ic++) {

s += _fe->phiDer(i,ic,l) *
_fe->phiDer(j,ic,l);

}
return s;

}
private:

CurrentFE* _fe;
};

// Convection
template<int coor>
class Grad{
public:

Grad<coor>(CurrentFE* fe):_fe(fe) {
}
CurrentFE* fe_ptr() {

return _fe;
}

Real operator()(int i, int j, int l) {
return _fe->phi(i,l) *

_fe->phiDer(j,coor,l);
}

private:
CurrentFE* _fe;

};

// Reaction
class Mass{
public:

Mass(CurrentFE* fe):_fe(fe) {
}
CurrentFE* fe_ptr() {

return _fe;
}

Real operator()(int i, int j, int l) {
return _fe->phi(i,l) * _fe->phi(j,l);

}
private:

CurrentFE* _fe;
};

Since we want to handle algebraic expressions involving com-
binations of all these operators, we need a wrapper class
EOExpr (Elementar Operator Expression), whose implemen-
tation is given below.

template<typename P, typename A>
class EOExpr{
private:

A _a;
public:

EOExpr(const A& eo):_a(eo) {
}

P operator()(int i, int l) {
return _a(i,l);

}
};

In this code, the type returned by the elementar operator is
passed as a template class. This is not stricty necessary in
the example, where the scalar kernel invariably returns a real
value. However, the abstraction can be useful for the exten-
sion of the approach to vector or even tensor operators. In
the case of constant coefficients, the only possible opera-
tions are the multiplication or the division of an operator by
a scalar coefficient. We therefore introduce abstract opera-
tions involving elementar operators and real numbers. These
operations are coded into specific classes which will be suit-
ably wrapped in order to become nodes of the parse tree.

// Composition of two operators
template <typename P, typename A,

typename B, typename Op>
class EOBinOp{
private:

A _a;
B _b;

public:
EOBinOp(const A& a, const B& b):_a(a), _b(b) {
}

P operator()(int i, int j, int l) {
return Op::apply(_a(i,j,l),_b(i,j,l));

}
};

// Real-Operators operations (Multiply)
template <typename P, typename A, typename Op>
class EORBinOp{
private:

A _a;
Real _b;

public:
EORBinOp(const A& a, const Real b)

:_a(a), _b(b) {
}
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EORBinOp(const Real b,const A& a)
:_a(a), _b(b) {

}

P operator()(int i, int j, int l) {
return Op::apply(_a(i,j,l),_b);

}
};

Now, we need to introduce the actual definition of the oper-
ations by specifying the apply methods:

// Sum
template<typename P>
class EOAdd{
public:

EOAdd(){
}

static inline P apply(P a, P b) {
return a + b;

}
};

// Scalar multiplication
template<typename P>
class EORMult{
public:

EORMult() {
}
static inline P apply(P a, Real b) {
return a * b;
}

};

Finally, operators + and * can be overloaded in a way similar
to the one proposed in [13] for algebraic operations:

// Operator+
template<typename P, typename A, typename B>
EOExpr<P, EOBinOp<P,EOExpr<P,A>,EOExpr<P,B>,

EOAdd<P> > >
operator+(const EOExpr<P,A>& a,

const EOExpr<P,B>& b) {
typedef EOBinOp<P,EOExpr<P,A>,

EOExpr<P,B>,
EOAdd<P> > ExprT;

return EOExpr<P,ExprT>(ExprT(a,b));
}

// Operator*
template<typename P, typename A>
EOExpr<P,EORBinOp<P,EOExpr<P,A>,EORMult<P> > >
operator*(const Real b, const EOExpr<P,A>& a) {

typedef EORBinOp<P,EOExpr<P,A>,
EORMult<P> > ExprT;

return EOExpr<P,ExprT>(ExprT(a,b));
}

For the sake of simplicity, we assume for the moment that
the coefficients β2 and β3 are both zero; the general case

will be discussed later on in this section. An example of code
using the classes described above to assemble problem ma-
trices could be:

// Coefficients
Real mu = 2.;
Real sigma = 0.05;
Real beta1 = 0.1;

// Types for the EO incapsulation of operators
typedef EOExpr<Real, Stiff> EOStiff;
typedef EOExpr<Real, Mass> EOMass;
typedef EOExpr<Real, Grad<0> > EOGradx;

// Operators...
Stiff Ostiff(&fe);
Mass Omass(&fe);
Grad<0> Ogradx(&fe);

// ...and their wrappings into EO
EOStiff stiff(Ostiff);
EOMass mass(Omass);
EOGradx gradx(Ogradx);

assemble(mu*stiff+beta1*gradx+sigma*mass,
mesh, fe, dof, phifct, A, F);

The assemble function builds the problem matrix A and the
right hand side F given an expression for the operator and all
the finite element data, whose exact definition lies outside of
the scope of the present work. The compute mat method is
listed below.

template<typename Oper>
void compute_mat(ElemMat& Aloc, Oper& oper,

const CurrentFE& fe) {
Real s;
for(int i = 0; i < fe.nbNode; i++) {

for(int j = 0; j < fe.nbNode; j++) {
s = 0;
for(int l = 0; l < fe.nbQuadPt; l++) {

s += oper(i,j,l) * fe.weightDet(l);
}
Aloc(i,j) += s;

}
}

}

Method assemble receives an extremely complicated ex-
pression for a simple problem. Actually, the type of oper
for the problem at hand, corresponding to the given parsing
tree, is:

EOExpr<Real,EOBinOp<Real,
EOExpr<Real,EOBinOp<Real,
EOExpr<Real,EORBinOp<Real,EOExpr<Real,Stiff>,

Real,EORMult>>,
EOExpr<Real,EORBinOp<Real,EOExpr<Real,

Grad<0> >,
Real,EORMult>>,
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EOAdd>,
EOExpr<Real,EORBinOp<Real,EOExpr<Real,Mass>,

Real,EORMult>>,
EOAdd>>

However, it is worthwhile remarking that:

1. the type for the expression is not built by the program-
mer;

2. expression parsing is done at compile time, which im-
proves the efficiency of the code.

From the viewpoint of the user this leads to a more read-
able code without efficiency loss with respect to other gen-
eral purpose methods, which typically can pay a higher price
for the abstraction. A more classical way to obtain similar
flexibility, but renouncing the abstraction related to expres-
sion handling, would require the introduction of a set of ba-
sic functions to build Elementar Matrices and then assemble
the desired operator as the sum of such basic bricks:

ElemMat Aloc(fe.nbNode,1,1);
ElemVec Floc(fe.nbNode,1);

for(int i = 1; i <= mesh.numVolumes(); i++) {
fe.updateFirstDerivQuadPt(mesh.volumeList(i));

stiff(mu, Aloc, fe);
grad(0, beta, Aloc, fe)
mass(sigma, Aloc, fe)
source(sourceFct, elvec, fe);

assemb_mat(A, Aloc, fe, dof);
assemb_vec(F, Floc, fe,dof);

}

As an example, we give the implementation of the grad op-
erator:

void grad(const int ic, Real coef,
ElemMat& Aloc, const CurrentFE& fe) {

Real s;
for(int i = 0; i < fe.nbNode; i++) {

for(int j = 0; j < fe.nbNode; j++) {
s = 0;
for(int l = 0; l < fe.nbQuadPt; l++)

s += fe.phi(j,l) *
fe.phiDer(i,ic,l) *
fe.weightDet(l);

Aloc(i,j) += coef*s;
}

}
}

In this case we have an outer loop on the elements and as
many loops on the quadrature nodes as elementar opera-
tors. Expression Templates implementation allows to avoid
this redundancy, since the scalar kernel is indeed a functor
parsed by the compiler. As will be shown later, numerical ex-
periments show that this feature is reflected in performance.
Moreover, as already mentioned, the readibility of the code

is greatly improved and the distance between the mathe-
matical formulation of a problem and its implementation is
strongly reduced, which has been considered by some au-
thors (see [9]) a crucial point in the set up and diffusion of
general purpose libraries for solving PDE.

3.1.1 Vector Operators

The implementation of the gradient operator is not com-
pletely satisfactory yet since every component has to be added
by hand. In this paragraph we give a glance of the modi-
fications needed in order to be able to combine the vector
operator grad in the simple way:

mu * stiff + beta * grad + sigma * mass

Again,for the sake of simplicity we confine the discussion to
the case of constant coefficients, postponing the generaliza-
tion to the next subsection. The handling of such an expres-
sion requires the introduction of two more ingredients, i.e.
vector operators and scalar multiplication. The former can
simply be viewed as functors taking the component as an
argument of operator(), while coefficient-vector products
will be performed inside a suitable binary operation class
(EORVBinOp).

The implementation of operator() in vector gradient
operator is given hereafter.

Real vGrad::operator() (int i, int j,
int ic, int l) {

return _fe->phiDer(j,ic,l) * _fe->phi(i,l);
}

In order for the wrapper class EOExpr to mimic the behaviour
of a vector operator it is necessary to add an overloading of
operator() matching the one above:

template<typename P, typename A>
P EOExpr<P, A>::operator()(int i, int j,

int ic, int l) {
return _a(i, j, ic, l);

}

As mentioned above, we also need a class handling scalar
multiplication of a vector operator times a vector coefficient.
Assuming that a suitable definition of a constant coefficient
vector class RVect is available, the implementation of
EORVBinOp reads:

template<typename P, typename A, typename Op>
class EORVBinOp {
private:

A _a;
RVect _f;

public:
EORVBinOp(const A& a, const RVect& f):

:_a(a), _f(f){
}

EORVBinOp(const RVect& f, const A& a)
:_a(a), _f(f){
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}

P operator()(int i, int j, int l) {
P s = 0.;
for(int ic = 0; ic < NDIM; ic++)

s += Op::apply(_a(i, j, ic, l),
_f(ic));

return s;
}

};

being NDIM the number of dimensions of the problem. The
vector gradient operator will be defined in the main program
by invoking:

vGrad Ograd(&fe);
EOExpr<Real, vGrad> grad(Ograd);

Once a suitable overloading of operator* is provided
following the guidelines given above, the parsed type for the
expression beta * grad will then be:

EOExpr<Real, EORVBinOp<Real,
RVect,
EOExpr<Real, vGrad> > >

3.1.2 Symmetric Operators

Reaction-diffusion problems (see (3) with β = 0) are symet-
ric problems, in which matrix assembly can be effectively
implemented by computing only one half of the local matrix
entries. This feature can be exploited in the framework of
our Expression Templates implementation by introducing a
proper version of the function that computes local matrices:

template<typename Oper>
void compute_mat_symm(ElemMat& Aloc,

Oper& oper,
const CurrentFE& fe) {

Real s;
for(int i = 0; i < fe.nbNode; i++) {

for(int j = i; j < fe.nbNode; j++) {
s = 0;
for(int l = 0; l < fe.nbQuadPt;

l++) {
s += oper(i,j,l) *

fe.weightDet(l);
}
Aloc(i,j) += s;

}
}

}

Suitable mechanisms can be introduced so that the most ap-
propriate version of compute mat is automatically called by
the assemble function, but their description is outside the
scope of the present work.

3.1.3 Boundary condition management

After the assembly step we end up with a matrix A which
is the discrete version of the problem but which doesn’t ac-
count for boundary conditions yet. For homogeneous bound-
ary conditions like (4), no further operation is needed and
the matrix is ready for the linear solver. Other kinds of con-
ditions (non homogeneous Neumann, Dirichlet or Robin) re-
quire further work on A. Since we explicitly build the matrix,
the application of boundary conditions can be done indepen-
tently from matrix assembly. This is not the case in matrix
free approaches, where the matrix is not explicitly stored,
but a method is provided to perform matrix-vector opera-
tions. Such an implementation is considered, e.g. in [9].

3.2 Extension to Space Dependent Coefficients

An important extension is that to space (and possibly time)
dependent coefficients. For the sake of simplicity, let’s ex-
amine the case when the coefficients of our model problem
(3) are space dependent, i.e.:

µ = µ(x,y,z), β1 = β1(x,y,z), σ = σ(x,y,z).

In this case, the scalar kernel of the assembling phase reads:

mu(x,y,z) * stiff(i,j,l) +
beta1(x,y,z) * grad(0,i,j,l) +
slma(x,y,z) * mass(i,j,l)

where x,y,z are the coordinates of the l-th quadrature node.
The coefficients mu, beta and sigma are defined by suitable
functors, e.g.:

class Fmu : public Function {
public:
Real inline operator()(Real x, Real y, Real z){

return 0.05*x;
}

};

In order to handle operations involving a space-dependent
coefficient and a differential operator we need to define a
suitable EOFBinOp class, whose implementation reads:

template <typename P, typename A, typename Op>
class EOFBinOp {
private:

A _a;
Function _f;

public:
EOFBinOp(const A& a, const Function& f) :

_a(a), _f(f) {
}

EOFBinOp(const Function& f, const A& a) :
_a(a), _f(f) {

}

P operator() (int i, int j, int l,
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Real x, Real y, Real z ) {
return Op::apply(_a(i, j, l),

_f(x, y, z) );
}

};

A corresponding overloading of operator() must be
added to EOExpr class so that it can mimic the behaviour
of the EOFBinOp class:

template<typename P, typename A>
P EOExpr<P, A>::operator()(int i, int j, int l,

Real x, Real y,
Real z) {

return _a(i, j, ic, l, x, y, z);
}

The final step to take is again to add a proper overloading
of operator*:

template <typename P, typename A>
EOExpr<P, EOFBinOp<P, EOExpr<P, A>,

EORMult<P> > >
operator*(const Function& f,

const EOExpr<P, A>& a) {
typedef EOFBinOp<P, EOExpr<P, A>,

EORMult<P> > ExprT;
return EOExpr<P, ExprT>( ExprT( a, f ) );

}

In §3.1.1 we outlined the modifications required by the
original scheme in order to handle expressions involving con-
stant vector coefficients and vector operators. Following the
same strategy, and keeping in mind the discussion above, it
is possible to figure out how to handle the case of function
vector or tensor coefficients.

3.3 Stabilization of Advection-Diffusion Problems

The framework we set up allows to introduce any linear op-
erator by simply adding its definition in the Elementar Oper-
ator set. The purpose of this section is to show how strongly
consistent stabilization method can be implemented follow-
ing this strategy.

3.3.1 A Short Introduction to Stabilization Methods

It is well known that Galerkin solution of advection-diffusion-
reaction problems can lead to oscillating solutions when the
convective term is quantitatively dominating (see e.g. [10]).
Let us suppose that ‖β‖ � µ . A general strategy to elim-
inate numerical oscillations is to add a numerical viscosity
to the original formulation (5) of the problem. The so called
stabilized formulation reads:

a(uh,ϕi)+astab (uh,ϕi) = F (ϕi)+Fstab (ϕi) , (9)

where astab (uh,ϕi) and Fstab (ϕi) are the stabilizing terms,
for which several expressions are available. Among the oth-
ers, strongly consistent methods have the property of achiev-
ing numerical stability without significantly affecting the a-
symptotic accuracy of the unperturbed finite element formu-
lation of the problem. As a matter of fact, strongly consistent
schemes share the following feature:

Fstab (ϕ)−astab (uex,ϕ) = 0, ∀ϕ ∈V,

so that the strong consistency or adherence of the numer-
ical approximation to the original problem is maintained.
More precisely, let us denote by L the advection-diffusion-
reaction differential operator in its strong form:

L u ≡−µ4u+β ·∇u+σu.

The original problem therefore reads L u = f . The basic
idea of strongly consistent methods is to introduce a per-
turbation proportional to the residual L uh − f , so that even
for a fixed non-vanishing value of the discretization param-
eter h the perturbation vanishes when applied to the exact
solution. To this aim, let us split the original operator into its
symmetric and skew-symmetric components:

LS = −µ4u+
(

1
2 ∇ ·β +σ

)
u,

LSS = 1
2 ∇ · (βu)+ 1

2 β ·∇u.
(10)

so that we have L = LS + LSS. The expressions for the
stabilization terms in weak formulation read:

astab(uh,ϕi) ≡ ∑
K∈Th

δ
(

Luh,
hK

|b|
(LSS +ρLS)ϕi

)

K
, (11)

Fstab(ϕi) ≡ ∑
K∈Th

δ
(

f ,
hK

|b|
(LSS +ρLS)ϕi

)

K
. (12)

Here K is a generic element of the triangulation Th, with
diameter hK ; (·, ·)K is the L2(K) scalar product (so that the
strong elementwise formulation of the problem is mathemat-
ically well posed); δ > 0 and ρ > 0 are parameters to be suit-
ably tuned. Different methods are obtained according to the
value of the parameter ρ . In particular, for ρ = 0 we recover
the Streamline Upwind/Petrov Galerkin (SUPG) method, for
ρ = 1 the Galerkin Least Squares (GALS) method, while for
ρ = −1 the Douglas-Wang/Galerkin (DWG) method. The
choice is a bit more delicate for the parameter δ , and many
recipes are available in the literature. In our implementation
we took:

δ =

{
hK |β |/2‖β‖0 if PeK > 1
0 otherwise

being PeK the local Peclet number. An analysis of these meth-
ods can be found in [10], §8.4. As for the classic Galerkin
methods, the error estimates show that the accuracy depends
on the polynomial degree.
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3.3.2 Expression Template Implementation

The aim of this section is to show how to implement stabi-
lization techniques in such a way that the following expres-
sion is legal and makes sense:

mu * stiff + beta * grad + sigma * mass + stab

For simplicity of exposition we’ll confine the discussion to
problem (3) with zero right hand side ( f = 0). In this case
Fstab (·) ≡ 0 and we can focus on matrix assembly. More-
over, in order to avoid unuseful complications, we’ll con-
sider the case of constant coefficients: keeping in mind the
discussion above, removing these hypotheses is a simple ex-
ercise left to the reader.

Consider the following Stabilization class:

template<typename mu_type,
typename beta_type,
typename sigma_type,
int rho>

class Stabilization {
public:
Stabilization(CurrentFE* fe,

mu_type mu,
beta_type beta,
sigma_type sigma):

_fe(fe),
_mu(mu), _beta(beta), _sigma(sigma) {
}

CurrentFE* fe_ptr() {
return _fe;

}

Real operator()(int i, int j, int l) const {
Real h_K = _fe->diam;
Real norm_2_beta = norm_2(beta);
Real norm_L2_beta = norm_2_beta *
_fe->meas();

Real Pe_K = fabs( (.5 * h_K * norm_2_beta)
/ _mu);

Real delta_K = Pe_K > 1 ?
(.5 * h_K * norm_2_beta) /
norm_L2_beta : 0.;

Real LPhi_j = 0.;
Real LSPhi_i = 0.;
Real LSSPhi_i = 0.;

for(int ic = 0; ic < _fe->nbCoor; ic++) {
LPhi_j += - _mu *

_fe->phiDer2(j,ic,ic,l)
+ _beta(ic) * _fe->phiDer(j,ic,l)
+ _sigma * _fe->phi(j,l);

LSPhi_i += - _mu *
_fe->phiDer2(i,ic,ic,l)
+ _sigma * _fe->phi(i,l);

LSSPhi_i += _beta(ic) *
_fe->phiDer(i,ic,l);

}

return ((h_K / norm_2_beta) * delta_K *
LPhi_j *
(LSSPhi_i + rho * LSPhi_i));

}

protected:
CurrentFE* _fe;
mu_type _mu;
beta_type _beta;
sigma_type _sigma;

};

The key idea is to introduce a class sharing the same in-
terface as a standard elementar operator but with additional
properties allowing to compute the stabilization contribu-
tion.

In the case of strongly consistent methods, the Stabili-
zation class should store all the coefficients and different
specializations should be implemented according to the co-
efficients’ nature. The resulting class can be used as a stan-
dard elementar operator except for the call to the non-standard
constructor. An example of usage is given below:

// Stabilization type
typedef Stabilization<Real, RVect, 0> SUPG;

// Type for EO incapsulation
typedef EOExpr<Real, SUPG> EOSUPG;

// SUPG operator...
SUPG Osupg(&fe, mu, betaR);

// ...and its wrapping
EOSUPG supg(Osupg);

and, finally:

mu * stiff + beta * grad + sigma * mass + supg

We would like to point out that having parametrized the
class with respect to rho allows to obtain any of the strongly
consistent methods described above by simply choosing the
proper value in the definition of the stabilization type.

4 Discontinuous Galerkin Method via ET

4.1 Discontinuous Galerkin Methods

Discontinuous Galerkin (DG) finite element methods were
originally developed for nonlinear hyperbolic problems fea-
turing discontinuous solutions even starting from a regular
initial datum. The basic idea is to decouple the degrees of
freedom belonging to each element, and to estabilish weak
links by means of inter-element boundary terms. Renounc-
ing continuity on element boundaries, a possible discontinu-
ity in the solution can be resolved within a patch of a few
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elements. In the remainder of this section we give a quick
introduction to the DG approximation of a hyperbolic prob-
lem. For the sake of simplicity, we will refer to the linear
case. For a more complete presentation we refer the reader
to [3,1].

The model linear hyperbolic problem in divergence form
reads:

∂ u
∂ t

+β ·∇(u) = 0, (13)

where β is a given continuous velocity field, possibly de-
pending on space and time coordinates and such that ∇ ·β =
0. The weak formulation of the problem reads: find u ∈ V
such that:

∑
K∈Th

∫

K

∂ u
∂ t

v dx− ∑
K∈Th

∫

K
uβ ·∇v+ ∑

K∈Th

∫

∂ K
vFK ·n dσ

(14)

for all v ∈ V . In the previous formula we named F ≡ β u|K
the flux of u through the element boundary ∂ K. The DG
finite dimensional approximation of this problem can be ob-
tained by choosing Vh such that

Vh ≡
{

vh ∈ L2 (Ω ) | vh|K ∈ Pk (K) ∀K ∈ Th

}
. (15)

If we do not require inter-element continuity of test func-
tions, a convenient choice for a base for V k

h is a set of func-
tions whose support is made up of exactly one element. If e
denotes the face shared by elements K1 and K2 (see Fig. 3),
the fluxes FK1 and FK2 across e in general will be different,
i.e.:

β u|K1
6= β u|K2

, x ∈ e = K1 ∩K2.

As a consequence, the integrals on the edges in general do
not cancel out. A stable inter-element coupling can be ob-
tained by replacing F with a conservative upwind flux H. A
convenient expression for H can be obtained after introduc-
ing the jump and average operators on internal faces defined
as in [1]:

[[ f ]] := f |K1
nK1 + f |K2

nK2 , { f} :=
1
2

(
f |K1

+ f |K2

)
.

These definition can be extended to boundary faces by set-
ting:

[[ f ]] := f , { f} =

{
f on Γin
g on Γout

being g the Dirichelet datum on the inflow boundary. We
refer the reader to the cited references for more details. The
upwind flux H can be written as:

H = β {uh}+
1
2
|β ·n|+[[uh]] . (16)

To obtain the final formulation we substitute H to F on
every element and exploit the following property:

∑
K∈Th

∫

∂ K
vh|K H ·nK dσ = ∑

e∈E 0

∫

e
H · [[vh]] dσ

+ ∑
b∈E ∂

∫

b
H · [[vh]] dσ

(17)

where we named E 0 and E ∂ the sets of internal and bound-
ary element faces respectively and E = E ∂ ∪E 0 their union.
The DG weak approximation of the problem finally reads:

∑
K∈Th

∫

K

∂ u
∂ t

v dx + ∑
e∈E 0

∫

e
H · [[vh]] dσ

+ ∑
b∈E ∂

∫

b
β · [[vh]]{u} dσ = 0.

(18)

The problem was finally discretized in time with a sec-
ond order Crank-Nicolson method.

4.1.1 Recent Developments

More recently, DG finite element method has been success-
fully applied to problems involving elliptic terms. For sim-
plicity of exposition we consider the Poisson problem:

−∆u = g

with homogeneous Dirichelet boundary conditions on ∂ Ω .
In order to weakly impose continuity of the solution on el-
ement boundaries, different approaches can be pursued. We
confine the discussion to the simplest one, which achieves
the goal by introducing a penalty term on inter-element jumps.
Provided suitable definitions of the trace operators are given
on the domain boundary, a possible penalty term is the fol-
lowing:

∑
e∈E

∫

e
ηe [[uh]] · [[vh]] dσ

where we can choose ηe = µ
he

, being µ ∈ R+ and he the
measure of the face. The DG approximation of the model
problem therefore reads:

∑
K

∫

K
∇uh ·∇vh dx− ∑

e∈E

∫

e
([[uh]] · {∇hvh}+[[vh]] · {∇huh}) dσ

+ ∑
e∈E

∫

e
ηe [[uh]] · [[uh]] dσ = ∑

K

∫

K
f vh dx.

We refer the interested reader to [1] for a complete survey.
In the next sections we show how this method perfectly fits
within the framework of Expression Templates implemen-
tation.
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4.2 Implementation

DG methods differ from conventional FE ones in that inter-
element coupling is achieved weakly through boundary terms.
Consequently, the need for trace operators arises. The bilin-
ear form providing the discretization of the PDE problem at
hand (possibly after a suitable linearization) can therefore
be conveniently regarded as the sum of three bilinear forms,
dealing respectively with volume integrals, internal face in-
tegrals and boundary face integrals:

a(ϕi,ϕi) = aK (ϕi,ϕi)+a0 (ϕi,ϕi)+a∂ (ϕi,ϕ j) . (19)

The contributions due to terms on internal and boundary
faces are kept separated because the latter include weak bound-
ary condition handling, which reflect on the different defini-
tion of the trace operators. In the implementation of matrix
assembly routine we exploit formulas like (17) that allow to
pass from a sum over elements to a sum over faces. In sym-
bols:

∑
K∈Th

(∫

K
. . .+

∫

∂ K
. . .

)
= ∑

K∈Th

∫

K
. . .+ ∑

e∈E 0

∫

e
. . .

+ ∑
b∈E ∂

∫

e
. . .,

(20)

which is nothing but the expanded form of (19). This for-
mulation allows to split matrix computation and assembling
into three separate loops: one on volumes, one on internal
faces and one on boundary faces. Volume integral contri-
butions don’t require further discussions, since they can be
handled in the same way as in the conforming FEM case.
Boundary integral terms, on the other side, deserve some
more comments. We assume that two more current finite ele-
ment classes are available (called CurrentIFDGand Current-
BFDG), storing the necessary information to compute bound-
ary integrals. What is needed, in particular, are the values of
adjacent elements’ basis functions on face quadrature nodes,
which we assume to be stored in members phiK1 and phiK2.
The general trace operator on internal faces will have the fol-
lowing interface:

class traceOperator {
public:

traceOperator(CurrentIFDG* fe):_fe(fe){
}

Real operator()(int i, int j, int l,
int K1, int K2) {

/* Function body */
}

private:
CurrentIFDG* _fe;

};

The most remarkable difference is that operator() now
takes two element identifiers as arguments (K1 and K2). The

NK1

NK1

NK2 ϕK2
j

ϕK1 ϕK2
j

ϕK2
j

K2

K1

K1 ϕK1
i i

ϕK1 ϕK2
j

i

0( , )

a0( , )a0( , )

a0( , )

e

ϕa

K2N

i

Fig. 3 Block structure of the elementary matrix associated to internal
edge e.

reason is that the shape functions of elements sharing inter-
nal face e = ∂ K1∩∂ K2 can be conveniently re-numbered us-
ing two indices, the first being the element K ∈ {K1,K2} co-
inciding with their support, the second the local DOF num-
ber on element K. The local matrix stemming from integrals
on face e can therefore be evaluated by means of two inner
loops on adjacent elements:

A0
loc,e = ∑

H∈{K1,K2}
∑

K∈{K1,K2}

a0 (
ϕH

i ,ϕK
j

)
,

for i = 1 . . .NH , j = 1 . . .NK , being NH and NK the num-
ber of local degrees of fredoms on elements H and K re-
spectively (which, in general, can differ from each other).
The elementary matrix A0

loc,e is therefore built in a block-
wise fashion, as shown in Fig. 3 Since expressions must
mimic the behaviour of operators, a similar overloading for
operator() is needed for the following classes: EOExpr,
EOBinOp, EORBinOp and EOFBinOp. The implementation of
boundary face trace operator is somehow easier, since ev-
ery face b ∈ E ∂ only belongs to the boundary of one ele-
ment, and only one more argument K has to be passed to
operator().

In the light of the discussion above, it is worthwhile spend-
ing some words on jump and average unary trace operators,
since most of the binary trace operators are just a combina-
tion of these two. The latter remark prompts for a separate
implementation: for simplicity of exposition we’ll list the
code for operator() in JumpIF class, which implements
the jump operator on internal faces.

Real JumpIF::operator()(int i, int ic,
int l, int H) {

return (H == 0) ? _feIF->phiK1(i,l)
*_fe->normal(ic,l) :

-_fe->phiK2(i,l)
*_fe->normal(ic,l);

}

The operators JumpBF (jump trace operator on boundary
faces), AverageIF, AverageBF (average trace operator on
internal and boundary faces respectively) are implemented
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in a similar way. Once available, this unary trace operators
can be used as in the example given below, referring to the
implementation of operator() in the interior penalty oper-
ator class (IPIF):

Real IPIF::operator()(int i, int j, int l,
int K, int H) {

Real s = 0.;
JumpIF jump(_fe);

/* Computation of eta_e */

for(int ic =0; ic < NDIM; ic++)
s += eta_e * jump(i,ic,l,H)

* jump(j,ic,l,K);

return s;
}

Matrix assembly routines can be done in a similar way as
before, except for the fact that now three loops (on volumes,
internal and boundary faces) are needed.

5 Results

5.1 Continuous Finite Elements

Advection-Diffusin-Reaction problems In this paragraph we
evaluate the performance of the proposed implementation
using the more traditional approach sketched at the end of
§3.1 as a benchmark. We consider the three problems defined
by:

−µ4u = 0 D,

−µ4u+σu = 0 RD,

−µ4u+β ·∇u+σu = 0 ADR

on a unit cube domain.
For every problem we considered both the case of con-

stant and space-dependent coefficients. The following ex-
pressions were assumed for the space-dependent coefficients:

µ (x,y,z) = x3 + y2z,

β (x,y,z) =
(
x3 + y2z,x3 + y2,x3) ,

σ (x,y,z) = x3 + y2z.

All the results are collected in Tab. 1 for linear and quadratic
finite elements, featuring respectively 1331 and 9261 DOFs.
The expression template implementation proposed in this
work proves very satisfactory in terms of efficiency, sig-
nificantly reducing the assembly time in the case of space-
dependent coefficients. This is mainly due to the fact that
every redundancy is cancelled, as pointed out in §3.1.

A stabilized advection-diffusion problem As an example of
stabilized computation, we considered the following prob-
lem:

µ4u+β ·∇u = 0,

NDOF Technique D RD ADR
const xyz k xyz k xyz

1331 ET 0.08 0.15 0.08 0.29 0.09 0.31

EM 0.07 0.30 0.08 0.44 0.10 0.49

9261 ET 0.60 1.13 0.64 2.28 0.72 2.59

EM 0.59 2.27 0.64 3.44 0.80 3.86

Table 1 Assembly time for expression template (ET) and elementar
matrices (EM) techniques. The problems considered are stated in (21).
The constant coefficient case is marked by const, while the space-
dependent coefficient case is marked by the symbol xyz.

with coefficients:

µ = 1×10−6, β = (x−1,y,0)

and Dirichlet boundary conditions:

u|∂ Ω = g =

{
1 if x < 1

2 ,
0 otherwise.

The discontinuity of the boundary datum induces oscil-
lations on the numerical solution, as shown in Fig. 4(a).
Adding the stabilization term allows to prevent oscillations,
as shown in Fig. 4(b).

A non-linear problem As an example of a real problem, we
solve within the Expression Templates code the problem:

−µ4u+
au

b+u
= 0, x ∈ Ω

with u(∂ Ω ) = g. This problem comes from the investiga-
tions about Oxygen concentration in cells. In particular, Ω is
a sphere centred in the origin and with radius R2, µ is piece-
wise constant, namely µ = µ1 for x2 + y2 + z2 ≤ R2

1 (with
R1 < R2), a is picewise constant and in particular vanishes
for x2 + y2 + z2 > R2

1. The cell corresponds to the cell with
radius R1 and the non linear term represents the Oxygen con-
sumption due to the respiration, described by the so-called
Michaelis Menten law. Outside the cell we have a gel where
there is no respiration (for this model see e.g. [2]).

The nonlinear problem is linearized according to the fol-
lowing iterative fixed point scheme: given u(0), solve:

−µ4ũ(k) +
aũ(k)

b+u(k−1)
= 0, x ∈ Ω

with ũ(k)(∂ Ω ) = g, and set:

u(k) = ρ ũ(k) +(1−ρ)u(k−1).

for k = 1,2, . . . until convergence is reached. For a suitable
choice of the relaxation parameter ρ , the method can be
proved to converge. The values for the parameters are listed
in Tab. 2. The partial pressure of the Oxygen is plot in Fig.
5. Some implementation details are mandatory. The problem
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(a) Non-stabilized solution.

(b) Stabilized solution.

Fig. 4 Effect of the stabilization term on an advection-dominated prob-
lem. The plots show the solution value on the clip plane normal to axis
z at z = 0.5.

Parameter Interior value Exterior value
µ 1.63×10−15 3.30×10−15

a 1.5×10−7 0
b 0.44 –

Table 2 Values for the parameters of the example of the Oxygen in the
cell.

Fig. 5 Solution of the non-linear sample problem.

to be solved at every iteration can be viewed as a linear prob-
lem whose coefficient σ depend on the solution at previous
iteration:

σ(u(k−1)) =
a

b+u(k−1)
.

A non-linear function was simply wieved as a functor whose
operator() takes the vector of local solution values as an
argument:

class sigmaU : public NLFunction {
public:
sigmaU(const Real R1, Real a1,

const Real a2, const Real b1,
const Real b2)
:
_R1(R1), _a1(a1), _a2(a2),
_b1(b1), _b2(b2) {

}

Real operator() (CurrentFE& fe,
vector_type& loc_u,

int l ) {
Real u_l = 0.;
for( int k = 0; k < fe.nbNode; k++ )

u_l += loc_u( k ) * fe.phi( k, l );

Real x = fe.quadPt(l, 0);
Real y = fe.quadPt(l, 1);
Real z = fe.quadPt(l, 2);

Real r = sqrt( x * x + y * y + z * z );

Real a = ( r <= _R1 ) ? _a1 : _a2;
Real b = ( r <= _R1 ) ? _b1 : _b2;

return ( a / ( b + u_l ) );
}
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private:
Real _R1;
Real _a1;

Real _a2;
Real _b1;
Real _b2;

};

Again this add requires the implementation of a class (called
EONLFBinOp) handling binary operation involving a non-
linear coefficient and an elementar operator and a suitable
overloading of operator(). For what concerns the viscos-
ity, it can be simply viewed as a space-dependent coeffi-
cientstoring the necessary problem data (the radius R1 and
the two constant values µ1 and µ2). The main program will
therefore read:

/* Definition of mu and mass as above */

sigmaU sigma(R1, a1, a2, b1, b2);
muxyz mu(R1, mu1, mu2);

do {
// LHS and RHS initialization
A.zeros();
F = ZeroVector(dim);

assemble_NL(mu * stiff + sigma * mass,
mesh, fe, dof, A, U);

/* BC handling */

// Residual computation
res = norm_2(F - A * U);

/* System solution: Utilde = A^-1 F */

// Solution update
U = rho * U + (1 - rho) * Utilde;

nit++;
} while( res >= tol & nit <= max_nit);

5.2 A Discontinuous Galerkin Computation

As an example of DG computation we considered the prob-
lem of the deformation and stretching of a spherical inter-
face of radius R = 0.2 after a given constant vorticity field.
In the level set framework (see [11] for an introduction) this
amounts to solving the following linear hyperbolic problem:

∂ u
∂ t

+β ·∇u = 0,

with:

β =




βx
βy
βz


 =




sin2 (2πx)(sin(2πz)− sin(2πy))
sin2 (2πy)(sin(2πx)− sin(2πz))
sin2 (2πz)(sin (2πy)− sin(2πx))


 .

The spherical interface is embedded as the zero level set
of function u, which, at time t = 0, is taken to be the signed
distance function from the interface, namely:

u0 (r) =
√

x2 + y2 + z2 −R.

No boundary condition specification is needed since the
normal component of the velocity is zero on the domain
boundary, and hence no inflow boundary is present. In or-
der to perform the computation, it was necessary to define
proper volume and trace operators, whose overloading of
operator() is reported below. Exploiting a similar strategy
as the one outline above for the stabilization methods, we
decided to incorporate the analytical velocity as the property
u of the classes.

// Pure advection operator

// 1: Volume contribution
Real AdvecDG::operator()(int i, int j,

int ic, int l) {
Real s = 0.;

Real x = _fe.quadPt(0, l);
Real y = _fe.quadPt(1, l);
Real z = _fe.quadPt(2, l);

for(int ic = 0; ic < NDIM; ic++)
s += _u(x, y, z, ic) *

_fe->phiDer(i, ic, l) *
_fe->phi(j, l);

return s;
}

// 2: Internal face contribution
Real AdvecIF::operator()(int i, int j, int l,

int K, int H) {
Real s = 0.;
Real un = 0.;

JumpIF jump(_fe);
AverageIF avg(_fe);

for(int ic = 0; ic < NDIM; ic++)
un += _u(x, y, z, ic) *

_fe->normal(ic, l);

for(int ic = 0; ic < NDIM; ic++)
s += _u(x, y, z, ic) *

jump(i, ic, l, H) *
avg(j, l, K) +
un * jump(i, ic, l, H) *
jump(j, ic, l, K);

return s;
}

// 3: Boundary face contribution
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Real AdvecBF::operator()(int i, int j, int l,
int K, int H) {

Real s = 0.;
Real un = 0.;

JumpBF jump(_fe);

for(int ic = 0; ic < NDIM; ic++)
un += _u(x, y, z, ic) *

_fe->normal(ic, l);

if(un)
for(int ic = 0; ic < NDIM; ic++)

s += un * jump(i, ic, l, H) *
jump(j, ic, l, K);

return s;
}

Assuming that a suitable velocity field beta has been
defined, the main() reads:

// Types for EO incapsulation
typedef EOExpr<Real, AdvecDG> EOAdvecDG;
typedef EOExpr<Real, AdvecIF> EOAdvecIF;
typedef EOExpr<Real, AdvecBF> EOAdvecBF;

// Advection operators...
AdvecDG OadvecDG(&fe, beta);
AdvecIF OadvecIF(&fe, beta);
AdvecBF OadvecBF(&fe, beta);

// ...and their wrappings
EOAdvecDG advecDG(OadvecDG);
EOAdvecIF advecIF(OadvecIF);
EOAdvecBF advecBF(OadvecBF);

/* Definition of the BC handler BCh */

// Matrix assembly
assemble_DG(advecDG, advecIF, advecBF,

mesh, BCh, fe, feIF, feBF,
dof, sourcefct, A, F);

assemble(Mass, mesh, fe, dof, zero, M, F);

/* Problem solution */

Again we would like to point out that the analytical ad-
vection field beta was provided in the constructor call when
instantiating the operators. Some results are collected in Fig.
6 and Fig. 7.

6 Conclusions

In this work we presented an Expression Templates imple-
mentation of the assembly step of a finite element computa-
tion. A suitable code design allows for great user-friendliness

(a) t = 0

(b) t = 0.25

(c) t = 0.5

Fig. 6 Discontinuous Galerkin finite element solution sphere deforma-
tion problem: solution at different instants.
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(a) t = 0

(b) t = 0.25

(c) t = 0.5

Fig. 7 Discontinuous Galerkin finite element solution sphere deforma-
tion problem: solution at different instants

and versatility of the code without abstraction penalty. Per-
formance benchmark was provided by comparison with a
more classical modular technique. Applications to conform-
ing and discontinuous finite elements were considered, along
with stabilized and non-linear problems and a number of ex-
amples were provided. In particular, the readibility and user
easiness of the codes have been demonstrated on real interest
problems.

We finally mention that the ideas in this paper have grown
in the context of the development of an Object-Oriented Fi-
nite Element Library called LifeV (see www.lifev.org).
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