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Abstract

This work represents a first step towards the adaptive simulation of the motion
of water in a complex hydrodynamic configuration, such as a channel network or a
river delta by means of different mathematical models. A wide spectrum of space and
time scales is involved due to the presence of physical phenomena of different nature.
Ideally, moving from a hierarchy of hydrodynamic models, one should solve the most
complex model (with solution ufine) to accurately describe all the physical features
of the problem at hand. In more detail, for a user-defined output functional F , we
aim to approximate, within a prescribed tolerance τ , the value F(ufine) by means
of the quantity F(uadapted), uadapted being the adapted solution confining the most
complex model only on a restricted region of the computational domain. We aim
to provide an efficient tool able to automatically select the regions of the domain
where to solve the coarse hydrodynamic model rather than the finer one, while
guaranteeing |F(ufine) − F(uadapted)| below the tolerance τ . This goal is achieved
via a suitable a posteriori modeling error analysis developed in the framework of a
goal-oriented theory. We extend the dual-based approach provided in [3] for steady
equations to the case of a generic time-dependent problem. Then this analysis is
particularized to the case of free-surface flows. In the last part of the paper an
exhaustive numerical validation is carried out, while emphasizing the crucial matter
of the time discretization for the dual problem.

Keywords modeling adaptivity, a posteriori error estimates, goal-oriented methods,
free-surface flows, dual problem, finite elements

1 Introduction

The study of free-surface flows comprises a wide range of physical phenomena, from tidal
flows, to water motion in large basins, river courses, channels, etc. Ideally, one should
solve the full 3D Navier-Stokes equations to capture all the physical features of the

∗This work has been supported by the GNCS Project “Numerical Methods for multiscale evolutionary

problems”.
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problem at hand. However, this approach requires a huge computational effort. In order
to reduce such a computational cost, a hierarchy of simplified hydrodynamic models has
been proposed in the literature (see, e.g., [23, 25, 26]).
Essentially we can distinguish among models of different dimension (1D, 2D and 3D) and
models of different physical nature, that is, derived under physical assumptions of various
type. According to a dimensional classification, for the 3D case we can consider the free-
surface Navier-Stokes or the hydrostatic 3D shallow water equations; concerning the 2D
situation, the Boussinesq, Serre or Saint-Venant equations can be adopted; finally, in the
one-dimensional case, the 1D counterparts of these latter models are usually employed.
From a physical viewpoint, non-hydrostatic models (for instance, Boussinesq and Serre
equations) are generally opposed to the hydrostatic ones (the Saint-Venant equations)
(see Fig. 1).

Hydrostatic pressure

1D (open channel eqs.)

3D

2D (Saint Venant eqs.)

Non−hydrostatic pressure

3D

2D (Boussinesq, Serre eqs.)

1D (Boussinesq eqs.)

Navier−Stokes equations

Figure 1: A possible classification of the most widespread hydrodynamic models

The approach proposed in this paper consists of a suitable coupling of some of the
above mentioned models by solving the most expensive one (with solution ufine) only in
the regions of the domain where it is strictly necessary.
In more detail, for a user-defined output functional F , we aim to approximate, within a
prescribed tolerance τ , the value F(ufine) by means of the quantity F(uadapted), uadapted

being the so-called adapted solution obtained by solving the most complex model only on
a restricted region of the computational domain. In particular, one can decide to couple
free-surface models of different dimension (see, e.g., [14, 15]) or, alternatively, to combine
models of the same dimension but different from a physical (or analytical) viewpoint.
According to the model coupling classification proposed in [16], the first choice coincides
with a dimensionally heterogeneous-physically homogeneous coupling, while in the sec-
ond case a dimensionally homogeneous-physically heterogeneous coupling is performed.
Let us exemplify these two approaches on a real hydrodynamic configuration, i.e. a river
bifurcation such as that one sketched in Fig. 2. One can use a 1D model before and after
the bifurcation and a 2D one in correspondence with the bifurcation (Fig. 2, on the left).
Alternatively, a 2D linear model can be solved everywhere except in the region near the
bifurcation where a 2D nonlinear model is adopted (Fig. 2, on the right). In both the
cases the aim is to ration the more complex model.
The matter now is where are we allowed to use the simpler model and where do we have
to solve the more complex one? One can make this choice a priori, driven, for instance,
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1D nonlinear 2D nonlinear 2D linear 2D nonlinear

Figure 2: Sketch of a river bifurcation: coupling of a 1D nonlinear with a 2D nonlinear
model (left); coupling of a 2D linear model with a 2D nonlinear one (right)

by physical considerations or, alternatively, by means of a suitable a posteriori model-
ing error estimator which can be used to automatically detect the regions where each
model can be more conveniently employed. However, if the a priori approach is rather
widespread (consider, for instance, the classical domain decomposition theory [22, 6, 21],
or the geometrical multiscale approach largely investigated in the haemodynamics frame-
work [9, 8]), the a posteriori analysis represents a very recent area of interest, and so
far, essentially confined to dimensionally homogeneous couplings and to the modeling of
heterogeneous materials [1, 17, 19, 20, 24].
Concerning the free-surface flows framework, in [14, 15] we deal with an a priori geo-
metrical multiscale strategy, by coupling the 2D with the 1D shallow water models. By
extending the analysis provided in [7], suitable matching conditions between the two
models are derived. On the other hand the coupling of different hydrodynamics mod-
els, driven by an a posteriori modeling error analysis, is tackled in this paper, moving
from the theory provided in [3]. A dual problem, associated with the problem at hand, is
solved to measure the influence of the model on the output functional F of the numerical
solution. This approach is a generalization to the modeling error analysis of the well-
known dual-weighted residual method provided in [2] for the a posteriori discretization
error control. In particular, we extend the analysis in [3] for steady equations to the
case of a generic time-dependent problem. From a computational viewpoint, the main
difficulty related to the unsteady problems is the time discretization of the dual problem.
The outline of the paper is as follows. In Section 2 we provide a modeling a posteriori
error analysis for a general hierarchy of unsteady differential problems. Then, in Section
3, this analysis is particularized to the free-surface flow framework. Section 4 is devoted
to the numerical discretization. Finally in Section 5 a sound numerical validation of the
proposed analysis is carried out, first by introducing the adaptive procedure and then by
assessing it on some significant test cases.

2 Modeling error analysis for unsteady problems

This analysis can be set in the framework of a goal-oriented adaptivity. Let F be the
output functional we are interested in, possibly nonlinear. Standard examples of mean-
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ingful functionals in Computational Fluid Dynamics (CFD) are the lift and drag around
bodies in external flows or mean and local values. In the framework of free-surface flows
we have considered as goal quantities essentially the kinetic energy and the vorticity of
the flow on the whole or on a subregion of the computational domain (see Section 5.2).

Now, let us assume we have two time-dependent models, the fine model and the
coarse one, with solution ufine and ucoarse, respectively. At each time an “intermediate”
model is solved, confining the solution of the fine model in a limited portion of the
domain. This provides us with an unsteady adapted model (with solution uadapted) such
that F(uadapted) is an estimate for F(ufine). In this paper we derive a numerical tool able
to automatically identify, at each time, the regions of the domain where the two models
have to be solved, so that the quantity |F(ufine) − F(uadapted)| be under a prescribed
tolerance, while minimizing the computational cost. Such a task is achieved via a suitable
a posteriori modeling error analysis, i.e. by controlling F(ufine) − F(uadapted) in terms
of quantities cheap to compute.
The reference a posteriori analysis is the dual-based approach proposed in [3].

Throughout we use a standard notation to denote the Sobolev spaces of functions
with Lebesgue measurable derivatives, and the corresponding norms [12].

Let Q = Ω × (0, T ] be the considered space-time domain, with Ω an open (regular)
bounded set of R

d, with d = 1, 2, 3, and T > 0. Let us introduce the following family of
primal problems in variational formulation: find uα ∈ V such that

(∂uα

∂t
, ψ

)
+ a(uα)(ψ) + d(uα)(αψ) = (f, ψ), for any ψ ∈ V, (1)

with uα(0) = u0
α, u0

α being the initial datum, and with f ∈ L2(Q) a given function.
Here V is a suitable space-time functional space accounting for the boundary conditions
associated with the problem at hand, while (·, ·) is the standard L2(Q)-scalar product.
The quantities a(uα)(·) and d(uα)(·) in (1) denote semilinear forms, i.e. they are linear
with respect to the second argument but may be nonlinear in uα. Moreover, let us assume
the form d(uα)(·) to be “trickier” than a(uα)(·) from an analytical viewpoint.
The parameter α = α(x, t) ∈ L∞(Q) in (1), with x = (x, y)T ∈ Ω and t ∈ (0, T ], is a
function, piecewise constant on a given partition of Q in subdomains Qi and taking on
only the values 0 and 1. In view of the discrete formulation, the partition {Qi} of Q can
be identified with the computational space-time grid.
In particular, the choice α = 1 everywhere yields the fine problem (i.e. the most difficult
one) on the whole domain, while for α identically equal to zero we switch to the coarse
model (i.e. to the simplest one). In practice, at each time tj , according to the information
provided by the modeling error estimator, we compute the solution of an intermediate
primal problem (1) with the trickier part d(uα)(ψ) “active” only in the subdomains Qi of
Ω where α(x, tj) = 1, with x ∈ Qi. Notice that, even if we get rid of the semilinear form
d(uα)(ψ) in some areas of the domain, we are neither changing the differential nature of
problem (1) nor the associated boundary conditions. Thus the functional space V is the
same for each model of the family (1).
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Remark 2.1 The choice of the coarse model can be driven by different strategies. Ideally,
a hierarchy of models describing the phenomenon we are interested in should be available.
Then, one can choose a coarse model simpler, for instance, from an analytical point of
view (a coarse linear problem instead of a fine nonlinear one) or from a physical viewpoint
(e.g., a mathematical model derived under simplifying physical hypotheses). For instance,
in the elasticity framework, the most recurrent choice consists of substituting the elasticity
tensor (usually a highly oscillatory function of the position) with a regularized elasticity
tensor, obtained through some homogenization process (see [17, 18, 19, 20]). In Section
3 we specify the criterion that we have adopted for free-surface flow problems.

Let us begin by analyzing the fine primal problem. The corresponding variational
formulation is given by (1) with α = 1, and reads as: find u1 ∈ V such that

(∂u1

∂t
, ψ

)
+ a(u1)(ψ) + d(u1)(ψ) = (f, ψ), for any ψ ∈ V, (2)

with u1(0) = u0
1 the initial datum.

Let us assume that the solution u1 of (2) exists unique in V . This hypothesis allows
us to introduce the following trivial constrained minimization problem, according to an
optimal control approach [2, 3, 17]: find u1 ∈ V such that

F(u1) = inf
v∈M

F(v), (3)

where

M =
{
v ∈ V :

(∂v
∂t
, ξ

)
+a(v)(ξ)+d(v)(ξ) = (f, ξ), for any ξ ∈ V, and with v(0) = u0

1

}
,

F being the chosen goal output functional, defined on V . The minimum u1 of (3)
coincides with the first component of the saddle point x1 = (u1, z1) ∈ X = V × V of the
fine Lagrangian

L(x1) = F(u1) + (f, z1) − a(u1)(z1) − d(u1)(z1) −
(∂u1

∂t
, z1

)
, (4)

z1 being the Lagrange multiplier (or influence function) associated with the functional
F . The critical point x1 of L is such that

L′(x1)(y) = 0, for any y = (ϕ,ψ) ∈ X, (5)

where

L′(x1)(y) = F ′(u1)(ϕ) − a′(u1)(ϕ, z1) − d′(u1)(ϕ, z1) −
(∂ϕ
∂t
, z1

)
(6)

+ (f, ψ) − a(u1)(ψ) − d(u1)(ψ) −
(∂u1

∂t
, ψ

)

5



denotes the derivative of the fine Lagrangian L applied to the test function y. Notice
that in (6) we resort to a Gâteaux differentiation, L being a differentiable functional on
X [13]. Thus, the semilinear forms

F ′(u1)(ϕ) = lim
θ→0

1

θ
{F(u1 + θϕ) −F(u1)}, (7)

a′(u1)(ϕ, z1) = lim
θ→0

1

θ
{a(u1 + θϕ)(z1) − a(u1)(z1)}, (8)

d′(u1)(ϕ, z1) = lim
θ→0

1

θ
{d(u1 + θϕ)(z1) − d(u1)(z1)} (9)

are linear with respect to ϕ and z1 but preserve the nonlinearity in u1.
Via (5)-(6), the minimization problem (3) can be solved by looking for x1 = (u1, z1) ∈ X
such that

(∂u1

∂t
, ψ

)
+ a(u1)(ψ) + d(u1)(ψ) = (f, ψ), for any ψ ∈ V, (10)

(∂ϕ
∂t
, z1

)
+ a′(u1)(ϕ, z1) + d′(u1)(ϕ, z1) = F ′(u1)(ϕ), for any ϕ ∈ V, (11)

with u1(0) = u0
1. We recognize in (10) the variational formulation (2) of the fine primal

problem, while equation (11) coincides with the fine dual problem, associated with (2),
and corresponding to the choice F for the goal quantity. Notice that the dual problem
(11) is linear with respect to the influence function z1. Moreover it will be completed
with a suitable final condition z1(T ) = zT

1 .

Now, let us identify equation (1) with the variational formulation of the adapted
primal problem.
The constrained minimization problem (3) is thus replaced by the new one: find uα ∈ V

such that
F(uα) = inf

v∈Mα

F(v), (12)

where

Mα =
{
v ∈ V :

(∂v
∂t
, ξ

)
+a(v)(ξ)+d(v)(αξ) = (f, ξ), for any ξ ∈ V, and with v(0) = u0

α

}
.

We introduce the adapted Lagrangian

Lα(xα) = F(uα) + (f, zα) − a(uα)(zα) − d(uα)(αzα) −
(∂uα

∂t
, zα

)
, (13)

xα = (uα, zα) ∈ X and zα being the saddle point of Lα and the Lagrange multiplier
associated with the functional F , respectively. By repeating exactly the same procedure
used for the fine problem, we reformulate (12) as the search of the solution uα of the
adapted primal problem (1) together with the solution of the adapted dual problem

(∂ϕ
∂t
, zα

)
+ a′(uα)(ϕ, zα) + d′(uα)(ϕ, αzα) = F ′(uα)(ϕ), for any ϕ ∈ V, (14)

with zα(T ) = zT
α .

6



Remark 2.2 The dual problems (11) and (14) have to be provided with suitable boundary
conditions. In the steady case and for an output functional F consisting of an integral
over the whole domain Ω and of an integral on the boundary ∂Ω of the domain, the dual
boundary conditions can be rigorously identified according to the analysis in [10]. In the
model adaption framework, a first attempt in such a direction has been performed in [4]
for a relatively simple problem, the one-dimensional Helmholtz equation. On the other
hand, in the presence of time-dependent problems or for more complex functionals F , it
is rather standard to provide the dual problem with the same boundary conditions as the
primal problem, after a suitable homogenization (see, e.g., [2]). The dual space is thus
identified with the primal one. This is the choice made in the sequel in the free-surface
flow framework.

In the sequel the notations are shortened thanks to the trivial relation between the
fine and the adapted Lagrangians, i.e.

L(x) = Lα(x) + δL(x), for any x = (u, z) ∈ X, (15)

with
δL(x) = −d(u)((1 − α)z). (16)

With the aim of keeping the quantity F(u1) − F(uα) below a prescribed tolerance,
let us first remark that relations (4) and (13) provide us with the exact values

F(u1) = L(x1) and F(uα) = Lα(xα), (17)

i.e. F(u1) and F(uα) coincide with the values of the fine and of the adapted Lagrangians
at the stationary points x1 and xα, respectively. On the other hand, we would like to
skip the approximation of the fine problem: thus we look for an estimate of the quantity
F(u1) − F(uα) in terms of easily computable quantities, i.e. of the data problem and
of the adapted solutions uα and zα only. With this aim, let us define the modeling
residuals ρM (uα)(ψ) and ρM (uα)(ϕ, zα) associated with the fine primal and dual problem,
respectively, given by

ρM (uα)(ψ) = (f, ψ) −
(∂uα

∂t
, ψ

)
− a(uα)(ψ) − d(uα)(ψ)

= −d(uα)((1 − α)ψ), for any ψ ∈ V,
(18)

ρM (uα)(ϕ, zα) = F ′(uα)(ϕ) −
(∂ϕ
∂t
, zα

)
− a′(uα)(ϕ, zα) − d′(uα)(ϕ, zα)

= −d′(uα)(ϕ, (1 − α)zα), for any ϕ ∈ V.
(19)

Notice that the residuals ρM (uα)(ψ) and ρM (uα)(ϕ, zα) measure the level to which the
adapted solutions (uα, zα) fail to satisfy the fine problems (10) and (11), respectively.

The modeling error analysis provided in [3] for steady equations can be generalized
to the case of non-stationary problems, thus providing the following result:
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Proposition 2.1 Let us assume that the semilinear forms a(uα)(·) and d(uα)(·) and the
functional F are sufficiently differentiable with respect to uα, for any α ∈ L∞(Q). Then
we have

F(u1) −F(uα) = ρM (uα)(zα)︸ ︷︷ ︸
(I)

+
1

2

{
ρM (uα)(ez) + ρM (uα)(eu, zα)

}

︸ ︷︷ ︸
(II)

+ R(xα)︸ ︷︷ ︸
(III)

, (20)

where the residuals are defined according to (18)-(19), eu = u1 −uα and ez = z1 − zα are
the primal and dual error, respectively, while

R(xα) =
1

2

1∫

0

L′′′(xα + se)(e, e, e)s(1 − s) ds, (21)

is a remainder term, with e = (eu, ez) = x1 − xα.

Proof. The proof of Theorem 2.1 in [3] can be extended to the unsteady problems (1) and (2).
The time derivatives in the definition of the Lagrangians are not troublesome for the proof: the
explicit definitions of L and Lα are never involved while only relations (15) and (16) are directly
exploited. Thus we easily prove that

F(u1) −F(uα) = −d(uα)((1 − α)zα) − 1

2
{d(uα)((1 − α)ez) + d′(uα)(eu, (1 − α)zα)} +R(xα),

i.e. relation (20) after substituting the modeling residuals ρM (uα)(zα), ρM (uα)(ez) and

ρM (uα)(eu, zα), according to definitions (18) and (19). �

For the reader’s ease we provide the complete proof of result (20) in the Appendix.

Notice that, at this stage, result (20) provides us with an exact expression for the
quantity F(u1) − F(uα). Nevertheless it involves quantities depending on the fine solu-
tions, i.e. the primal and dual errors eu and ez. Thus, after neglecting the remainder
term R(xα), error estimates for eu and ez , in terms of computable quantities, should be
found to make “operative” relation (20). This is the approach followed, for instance, in
[17, 19, 20]. Alternatively, to make the right-hand side of (20) useful in practice, one can
introduce suitable simplifying assumptions on the problem at hand.
We adopt this second strategy, as in [3]. First we demand for a stability property of the
functional L′(x), by assuming the existence of a constant β > 0 such that, for any xn

and xm ∈ X,
‖xn − xm‖X ≤ β ‖L′(xn) − L′(xm)‖X′ , (22)

‖ · ‖X and ‖ · ‖X′ denoting the norms associated with the space X and its dual X ′,
respectively. Notice that inequality (22) essentially guarantees the invertibility of L ′(x).
Moreover we assume that, for any u ∈ V , the semilinear form d(u)(·) and its derivatives
are sufficiently small. This last request, combined with (22) and thanks to (5), (15) and
the relation L′

α(xα)(y) = 0, for any y ∈ X, guarantees that

‖e‖X = ‖x1 − xα‖X ≤ β ‖L′(x1) − L′(xα)‖X′ = β ‖δL′(xα)‖X′ ≤ β C(d)‖xα‖X ,

8



with C(d) � 1, i.e. that e = O(C(d)). By studying the order of magnitude of the
quantities (I), (II) and (III) in (20) in terms of C(d), we get that (I) = O(C(d)), while
(II) = O([C(d)]2), and (III) = O([C(d)]3). These considerations allow us to neglect the
terms (II) and (III) in (20), i.e. to estimate the quantity F(u1) −F(uα) as

F(u1) −F(uα) ' ηα = ρM (uα)(zα) = −d(uα)((1 − α)zα).

The quantity ηα is the desired a posteriori modeling error estimator, being expressed in
terms of computable quantities only. It will suggest where the fine problem rather than
the coarse one has to be solved on the computational domain to guarantee the quantity
|F(u1)−F(uα)| below a prescribed tolerance τ . We provide more details about this idea
in Section 5.

Remark 2.3 In Section 5.2 we verify heuristically the considerations made above on the
order of magnitude of the terms (I) and (II), moving from some particular test cases.
This will justify, at least numerically, the requirements made above on the functional
L′(x), on the semilinear form d(u)(·) and on its derivatives.

3 Free-surface flow problems

As pointed out in Section 1, a hierarchy of hydrodynamic models can be derived moving
from the 3D Navier-Stokes equations for an incompressible free-surface fluid (see Fig. 1).
Now in view of a realistic simulation of the motion of water in a complex hydrodynamic
system, we aim to have an operative way to automatically select the regions of the
domain where a coarse hydrodynamic model can be solved instead of a finer one. This
goal can be achieved, for instance, via a suitable a posteriori modeling error analysis
such as that one introduced in Section 2. However, as this paper is meant as a first
attempt in this direction, in the sequel we limit our analysis to a proper coupling of
two-dimensional models belonging to the same family of hydrodynamic models, i.e. to
Saint-Venant like equations. As possible next development of this research, a coupling
among more heterogeneous hydrodynamic models seems to be reasonable.

Let us consider the hierarchy of free-surface flow models





∂uα

∂t
+ α (uα · ∇)uα + g∇hα = 0 with (x, t) ∈ Q,

∂hα

∂t
+ ∇ · (hαuα) = 0 with (x, t) ∈ Q,

(23)

with uα(0) = u0
α, hα(0) = h0

α the initial data, where the unknowns uα and hα denote
the mean velocity and the total water depth, respectively, while Q and the function α

are defined as in Section 2. As α takes on only the values 0 and 1, at each time tj, the
nonlinear convective term in the momentum equation will be “switched-on” only in the
regions of Ω where α(x, tj) = 1, that is, ideally, only where the nonlinear features of
the problem at hand significatively influence the target functional F . Moreover, proper
boundary conditions will be supplied to the hyperbolic system (23), depending on the
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hydrodynamic problem at hand.
According to the notations of the previous section, we will refer to (23) as the adapted
model, i.e. the system solved in practice.

The choice α = 1, for any (x, t) ∈ Q, provides us with the fine model, that is with
the Saint-Venant equations [25, 26], written in the non-conservative form:





∂u1

∂t
+ (u1 · ∇)u1 + g∇h1 = 0 with (x, t) ∈ Q,

∂h1

∂t
+ ∇ · (h1u1) = 0 with (x, t) ∈ Q,

(24)

with u1(0) = u0
1, h1(0) = h0

1 the initial data. Notice that, from a computational view-
point, system (24) is the most expensive one. The expectation is to never solve the fine
model on the whole domain, but only on a reduced portion of Ω. This will be confirmed
by the numerical validation in Section 5.2.

On the other hand, if α is identically equal to zero in Q, the adapted model reduces
to the coarse problem





∂u0

∂t
+ g∇h0 = 0 with (x, t) ∈ Q,

∂h0

∂t
+ ∇ · (h0u0) = 0 with (x, t) ∈ Q.

(25)

Typically, also problem (25) will be never solved on the whole Ω. Were this the case,
it could mean that the hydrodynamics involved in the problem at hand is simpler than
what expected a priori, and the coarse model would suffice to reasonably describe the
phenomenon.

To summarize, at each time tj, neither the fine problem (24) nor the coarse one (25)
will be solved on the whole Ω. The problem to be discretized will be the adapted model
(23), according to the value of α(x, tj), for any (x, tj) ∈ Q.

3.1 Modeling error estimator for shallow water equations

In view of the derivation of a modeling error estimator for the Saint-Venant equations,
let us first fit the free-surface flow models above into the general framework of Section 2.
Let us move from the weak form associated with the fine problem (24) and let us sum
up the momentum and the continuity equations after multiplication by suitable test
functions v and q, respectively. This leads to the following formulation: find (u1, h1) ∈
W = V × Z such that, for any (v, q) ∈ W,

(∂u1

∂t
, v

)
+

(∂h1

∂t
, q

)
+

(
(u1 · ∇)u1, v

)
+ g (∇h1, v) +

(
∇ · (h1u1), q

)
= 0, (26)

with u1(0) = u0
1 and h1(0) = h0

1. Let us introduce the “global” unknown U1 = (u1, h1) ∈
W and test function Ψ = (v, q) ∈ W to simplify the weak form (26) as: find U1 ∈ W
such that (∂U1

∂t
, Ψ

)
+ a(U1)(Ψ) + d(U1)(Ψ) = 0, for any Ψ ∈ W, (27)
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with U1(0) = U0
1 = (u0

1, h
0
1) the initial data vector, and where

(∂U1

∂t
, Ψ

)
=

(∂u1

∂t
, v

)
+

(∂h1

∂t
, q

)
(28)

while

a(U1)(Ψ) = g (∇h1, v) +
(
∇ · (h1u1), q

)
and d(U1)(Ψ) =

(
(u1 · ∇)u1, v

)
(29)

are semilinear forms, linear with respect to Ψ but nonlinear in U1. Notice that, in this
case, the forcing term in (2) is identically equal to zero.

Remark 3.1 The spaces V and Z are chosen according to the boundary conditions asso-
ciated with system (24), i.e. according to the test case under examination. At this stage,
we have considered the general problem (24) without choosing specific boundary condi-
tions. Thus we can only state that V and Z are suitable subspaces of H 1(Ω) × H1(Ω)
and H1(Ω), respectively.

Now let F be the goal functional we are interested in. Following the constrained
minimization procedure of Section 2, we first introduce the fine Lagrangian

L(x̃1) = F(U1) − a(U1)(Z1) − d(U1)(Z1) −
(∂U1

∂t
, Z1

)
, (30)

with x̃1 = (U1, Z1) ∈ X̃ = W ×W, and where Z1 = (w1, κ1) ∈ W is the vector of the
Lagrange multipliers (or influence functions) associated with the functional F . Thus,
when looking for the stationary point x̃1 of the Lagrangian L in (30), we are led to
solving the fine primal problem (27) together with the corresponding dual one: find
Z1 ∈ W such that

(∂Φ

∂t
, Z1

)
+ a′(U1)(Φ, Z1) + d′(U1)(Φ, Z1) = F ′(U1)(Φ), for any Φ ∈ W,

with Z1(T ) = ZT
1 = (wT

1 , κ
T
1 ) the final data vector, and Φ = (ϕ, ϑ) the test functions

pair.
According to the Gâteaux derivative definition, we have that

a′(U1)(Φ, Z1) = g(∇ϑ,w1) +
(
∇ · (h1ϕ), κ1

)
+

(
∇ · (ϑu1), κ1

)
, (31)

d′(U1)(Φ, Z1) =
(
(u1 · ∇)ϕ,w1

)
+

(
(ϕ · ∇)u1,w1

)
. (32)

Moreover, notice that the components w1 and κ1 of the dual solution Z1 may be defined
as the dual mean velocity and the dual total water depth, respectively.

Now, let us consider the adapted model (23). By repeating an analogous procedure,
we introduce the adapted weak form: find Uα = (uα, hα) ∈ W such that

(∂Uα

∂t
, Ψ

)
+ a(Uα)(Ψ) + d(Uα)(αΨ) = 0, for any Ψ = (v, q) ∈ W, (33)
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with Uα(0) = U0
α = (u0

α, h
0
α) the initial data vector and where the scalar product(∂Uα

∂t
, Ψ

)
and the semilinear forms a(Uα)(·) and d(Uα)(·) are defined according to (28)

and (29), respectively. Via a minimization procedure, we are led to looking for the critical
point x̃α = (Uα, Zα) ∈ X̃ of the adapted Lagrangian

Lα(x̃α) = F(Uα) − a(Uα)(Zα) − d(Uα)(αZα) −
(∂Uα

∂t
, Zα

)
,

i.e., to finding the solution Uα ∈ W of the adapted primal problem (33) together with
the solution Zα = (wα, κα) ∈ W of the associated dual problem: find Zα ∈ W such that

(∂Φ

∂t
, Zα

)
+ a′(Uα)(Φ, Zα) + d′(Uα)(Φ, αZα) = F ′(Uα)(Φ), for any Φ ∈ W, (34)

with Zα(T ) = ZT
α = (wT

α , κ
T
α ), Φ = (ϕ, ϑ), and where the scalar product

(∂Φ

∂t
, Zα

)
and

the semilinear forms a′(Uα)(Φ, Zα) and d′(Uα)(Φ, αZα) are defined according to (28),
(31) and (32), respectively.

We are now in a position to state the result corresponding to Proposition 2.1 for the
free-surface flow models (23). With this aim, let us introduce the modeling residuals
involved in (20):

ρM (Uα)(Zα) = −d(Uα)
(
(1 − α)Zα

)
= −

(
(uα · ∇)uα, (1 − α)wα

)
,

ρM (Uα)(EZ) = −d(Uα)
(
(1 − α)EZ

)
= −

(
(uα · ∇)uα, (1 − α)(w1 −wα)

)
,

ρM (Uα)(EU , Zα) = −d′(Uα)
(
EU , (1 − α)Zα

)
(35)

= −
(
(uα · ∇)(u1 − uα), (1 − α)wα

)
−

((
(u1 − uα) · ∇

)
uα, (1 − α)wα

)
,

where EU = (u1 − uα, h1 − hα) and EZ = (w1 − wα, κ1 − κα) are the primal and dual
error, respectively.

Proposition 3.1 If the semilinear forms a(Uα)(·) and d(Uα)(·) defined in (29) and the
functional F are sufficiently differentiable with respect to Uα, for any α ∈ L∞(Q), then
it holds that

F(U1)−F(Uα) = ρM (Uα)(Zα)︸ ︷︷ ︸
(I)

+
1

2

{
ρM (Uα)(EZ) + ρM (Uα)(EU , Zα)

}

︸ ︷︷ ︸
(II)

+ R(x̃α)︸ ︷︷ ︸
(III)

, (36)

the residuals ρM (Uα)(Zα), ρM (Uα)(EZ) and ρM (Uα)(EU , Zα) and the remainder term
R(x̃α) being defined according to (35) and (21), respectively.

To make result (36) practical from a computational viewpoint, we make the same
simplifying hypotheses of stability on L′(x) and of regularity on d(U)(·) and its derivatives
as introduced in Section 2, for any x ∈ X̃ and for any U ∈ W. Thus, the following
modeling error estimator for the goal quantity F(U1) −F(Uα) is obtained:

F(U1) −F(Uα) ' ηα = ρM (Uα)(Zα) = −
(
(uα · ∇)uα, (1 − α)wα

)
. (37)
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Remark 3.2 Notice that, at this stage, we are interested in the modeling error control
only, i.e. we are assuming to replace in (37) the quantities uα and wα with sufficiently
accurate approximations uh,α and wh,α, respectively (we refer to Section 5.2 for some
further remarks). An example of analysis taking into account both the discretization and
the modeling error is provided in [3].

Remark 3.3 As pointed out in Section 2 for the general unsteady case, to get useful
information from (36), we could also find a bound for the errors EU and EZ in terms
of the adapted quantities Uα and Zα (see [17, 19, 20]). This alternative approach would
avoid us to make the stability and regularity assumptions above on L′(x) and on d(U)(·)
and its derivatives. However, this task is not trivial for the shallow water equations,
unless one probably moves from a conservative and viscous formulation of the shallow
water system.

4 The discretization scheme

According to the theory developed in the previous sections, the problems to be approxi-
mate at each time tj are the adapted primal and dual ones. They both are discretized via
a space-time finite element scheme. In more detail we use the cG(1)dG(0) method, by
choosing functions continuous and piecewise linear in space, discontinuous and piecewise
constant in time [11, 5].
With this aim, we move from the general cG(1)dG(r) discretization of the equations
(33) and (34), with r ≥ 0. Let us introduce a partition of the time interval (0, T ],
0 = t0 < t1 < . . . < tn = T into subintervals Ii = (ti−1, ti] of length ki = ti − ti−1, for
i = 1, . . . , n. The space-time domain Q turns out to be subdivided into n space-time
slabs Si = Ω × Ii. The discontinuity of the time discretization allows us to endow each
slab Si with a different mesh and justifies the definition of jump of a function v at time
tj, for j = 1, . . . , n− 1, given by

[v]j = vj,+ − vj,−, where vj,± = lim
s→0

v(tj ± s).

Let us introduce the space-time finite element space

V
k,r
h,1 =

{
v ∈ L∞(0, T, C0(Ω)) : v(x, t)

∣∣
Ii

=

r∑

j=0

vi
j(x) tj , vi

j ∈ V i
h

}
, (38)

for r ≥ 0. The space V i
h in (38) is the standard space of continuous piecewise linear finite

elements, associated with the mesh on Si and suitably accounting for the boundary
conditions assigned on ∂Ω.
Thus the cG(1)dG(r) discrete form of the adapted primal problem (33) reads as: find
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Uh,α = (uh,α, hh,α) ∈ V
k,r
h,1 such that, for any Ψh = (vh, qh) ∈ V

k,r
h,1 ,

T∫

0

∫

Ω

{∂uh,α

∂t
· vh +

∂hh,α

∂t
qh + g∇hh,α · vh + ∇ · (hh,αuh,α) qh

+α (uh,α · ∇)uh,α · vh

}
dΩ dt+

n−1∑

i=1

(
[uh,α]i,v

i,+
h

)
Ω

+

n−1∑

i=1

(
[hh,α]i, q

i,+
h

)
Ω

+
(
u

0,+
h,α ,v

0,+
h

)
Ω

+
(
h

0,+
h,α , q

0,+
h

)
Ω

=
(
u0

α,v
0,+
h

)
Ω

+
(
h0

α, q
0,+
h

)
Ω
,

(39)

(·, ·)Ω being the standard L2(Ω)-scalar product. For the value i = 0, we have set [uh,α]0 =

u
0,+
h,α − u0

α and [hh,α]0 = h
0,+
h,α − h0

α, where u0
α and h0

α are the initial data associated with
(23). Likewise, the adapted dual problem (34) is discretized as: find Zh,α = (wh,α, κh,α) ∈
V

k,r
h,1 such that, for any Φh = (ϕh, ϑh) ∈ V

k,r
h,1 ,

0∫

T

∫

Ω

{∂ϕh

∂t
·wh,α +

∂ϑh

∂t
κh,α + g∇ϑh · wh,α + ∇ · (hh,α ϕh)κh,α + ∇ · (ϑh uh,α)κh,α

+α (uh,α · ∇)ϕh ·wh,α + α (ϕh · ∇)uh,α · wh,α

}
dΩ dt−

n−1∑

i=1

(
[wh,α]i,ϕ

i,−
h

)
Ω

−
n−1∑

i=1

(
[κh,α]i, ϑ

i,−
h

)
Ω

+
(
w

n,−
h,α ,ϕ

n,−
h

)
Ω

+
(
κ

n,−
h,α , ϑ

n,−
h

)
Ω

= F ′(Uh,α)(Φh)

+
(
wT

α ,ϕ
n,−
h

)
Ω

+
(
κT

α , ϑ
n,−
h

)
Ω
.

(40)
For the value i = n, we have set

(
[wh,α]n,ϕ

n,−
h

)
Ω

= (wT
α−w

n,−
h,α ,ϕ

n,−
h ) and

(
[κh,α]n, ϑ

n,−
h

)
Ω

=

(κT
α − κ

n,−
h,α , ϑ

n,−
h ), with wT

α and κT
α the final data completing (34).

As we aim to use functions piecewise constant in time (namely, an implicit Euler scheme
for the time discretization), we set r = 0 in (38). The time derivatives in (39) and (40)
are thus identically equal to zero. Moreover the discontinuous nature of the time dis-
cretization scheme allows us to decouple the global systems (39) and (40), and rewrite
them as a time-stepping scheme, i.e.

ti∫

ti−1

∫

Ω

{
g∇hh,α · vh + ∇ · (hh,αuh,α) qh + α (uh,α · ∇)uh,α · vh

}
dΩ dt

+
(
[uh,α]i−1,v

i−1,+
h

)
Ω

+
(
[hh,α]i−1, q

i−1,+
h

)
Ω

= 0,

(41)

and

ti−1∫

ti

∫

Ω

{
g∇ϑh ·wh,α + ∇ · (hh,α ϕh)κh,α + ∇ · (ϑh uh,α)κh,α + α (uh,α · ∇)ϕh · wh,α

+α (ϕh · ∇)uh,α · wh,α

}
dΩ dt−

(
[wh,α]i,ϕ

i,−
h

)
Ω
−

(
[κh,α]i, ϑ

i,−
h

)
Ω

= F ′(Uh,α)(Φh),

(42)
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respectively, for i = 1, . . . , n.

It is well-known that the resolution of the coupled discrete problems (41) and (42)
is not a trivial matter, essentially due to the reverse time scales characterizing the dual
framework. This could make the computational cost of the whole space-time discretiza-
tion extremely burdensome, especially for a large time interval and when a small time
step is required to guarantee the convergence of the discretization scheme.
Ideally, in view of an adaptive procedure based on the error estimator ηα in (37), one first
solves the coarse primal problem and the coarse dual problem on the intervals (t0, T ] and
(T, t0], respectively, to get the starting solutions (see Section 5.1 for the details). Then,
to get the value predicted by ηα for the goal quantity F(U1)−F(Uα), two new advancings
in time, one forward and the other backward, are necessary to find suitable approxima-
tions for the quantities Uα and Zα in (37). Overall, the whole time interval has to be
spanned four times, twice forward and twice backward.

Remark 4.1 To reduce the computational cost of the rigorous “primal-dual” procedure
described above, different heuristic strategies can be adopted. A first approach we tested
moves from the assumption that the goal output functional F is a global “space-time”
functional, that can be written as

F(·) =

T∫

0

∫

Ω

g(·) dΩ dt, (43)

with g a positive function. In such a case, a “slab-wise” procedure can be adopted.
In more detail, both the primal and the dual problems are solved, forward and backward,
respectively, for each space-time slab Si, for i = 1, . . . , n. The discontinuous nature of the
adopted time discretization together with the choice made in (43) for the goal functional
F justify such an approach. However, by comparing the numerical results provided by this
approach with the corresponding ones yielded by the rigorous “primal-dual” procedure, it
is found that the minimum for F from the “slab-wise” procedure generally is an over-
estimation of the minimum detected by the rigorous approach.
A second more reliable strategy is proposed and validated in Section 5.2.

5 Numerical assessment

The aim of this section is twofold. Moving from the modeling error estimator (37), we
first sketch the algorithm used to decide which model of the hierarchy (23) has to be
solved at each time and on each mesh element K, to guarantee a prescribed tolerance τ
on the goal quantity |F(U1)−F(Uα)|. Then we validate this algorithm on some numerical
test cases.

5.1 The adaptive procedure

Let us introduce a fixed space-time partition of the computational domain Q consisting
of Nh elements and Nt uniform time intervals. To start the model adaption procedure we
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need a reference primal and dual solution. With this aim, we first discretize the coarse
primal problem (25) on (0, T ], together with the corresponding dual problem (equation
(34) with α = 0) on (T, 0] and compute ηα = η0. Now we are in a position to apply the
adaptive procedure below:

1) via a suitable localization procedure, the estimator ηα is evaluated on each triangle
K and on each time interval Ii, thus yielding the local positive modeling error
estimator ηi

α,K = ηα|K×Ii
;

2) then:

a) if ηi
α,K >

τ

NhNt
, then α|K×Ii

= 1, i.e. the fine model (24) is associated with

the element K of the space-time slab Si;

b) if ηi
α,K ≤ τ

NhNt
, then α|K×Ii

= 0, i.e. the coarse model (25) is discretized on

the triangle K of the space-time slab Si;

3) the adapted primal and dual problems (33) and (34) are thus discretized, the cor-
responding function α being identified at the points 2)-a) and 2)-b);

4) the quantity ηα is finally evaluated.

Notice that a sub-iteration on the points 2)-a) and 2)-b) will be likely required to
guarantee the global quantity |F(U1)−F(Uα)| to be really under the prescribed tolerance
τ , in spite of the localization procedure. Moreover the check at the points 2)-a) and 2)-b)
entails a space-time equidistribution criterion of the modeling error on the elements of
the mesh.

Remark 5.1 The localization procedure used at point 1) is similar to the one adopted
in [3].

Remark 5.2 Concerning the choice of the computational grid, the idea is to use a mesh
fine enough so that the discretization error be at least an order of magnitude less than
the tolerance τ demanded on the modeling error. Some further considerations related to
this choice will be made in the wave overpassing a cylinder test case.

The adaptive approach described above turns out to be a reliable procedure in spite
of its simplicity. This is confirmed by the numerical results in the next section.
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5.2 The numerical test cases

A numerical validation of the adaptive procedure in Section 5.1 is provided here. In
more detail three different two-dimensional hydrodynamic configurations are considered.
The first one deals with the simulation of the motion of a wave in a closed basin. In the
second test case the evolution of a solitary wave moving along a straight channel with
an obstacle is analyzed. Finally, in the last test case we simulate the motion of a solitary
wave along a river bifurcation.

5.2.1 The Gaussian hill test case

A well-known example of the Gaussian hill phenomenon is provided by the evolution of
the water surface when, for instance, a stone is thrown into the water at rest.
Let the computational domain Ω = (−20, 20)× (−20, 20) ⊂ R

2 be a closed squared basin
with a side of 40m. The reference water level is chosen equal to 5m and the bottom is
assumed flat. The adapted model (23) is completed with suitable initial and boundary
conditions. In more detail, at the initial time t0 = 0, the profile of elevation

hα(x, y, 0) = e−0.25(x2+y2) (44)

is assumed. Equation (44) describes the Gaussian hill centered at (0, 0)m and with height
equal to 1m. In absence of the Coriolis force, the Gaussian hill breaks and gives rise to a
circular wave propagating from the point (0, 0)m towards the boundary of the domain.
Then, as the basin is closed, the wave is reflected backward to the center of the domain.
Concerning the boundary conditions, no-slip conditions are assigned for the velocity uα

on the whole boundary ∂Ω of the domain, namely we impose uα · n = 0, n being the
unit outward normal vector to the boundary ∂Ω.
To discretize system (23) and the corresponding dual problem with the cG(1)dG(0)
scheme of Section 4, a quasi-uniform mesh of Nh = 21248 elements is employed, while
the time step ∆t is chosen equal to 0.1s, the final time being T = 16s.
Finally we identify the goal functional F with the quantity

F(U1) = Fkin, Ω
GH (U1) =

T∫

0

∫

Ω

|U1|2 dΩ dt, (45)

representing the kinetic energy of the fluid. A tolerance τ = 10−3 is required on the
value Fkin,Ω

GH (Uα) approximating the goal quantity (45).

Let us analyze the numerical results. Figure 3 shows the distribution of the areas
corresponding to the fine model (dark zones) and to the coarse one (light zones) at six
different times. In more detail, at each time tj the adapted free-surface model (23) is
solved on the whole domain Ω, the piecewise constant function α being identically equal
to 1 in correspondence of the dark areas and equal to 0 in the light zones. The subregions
that influence most the kinetic energy of the fluid are associated with the fine model. In
particular, both the initial and the reflected wave are detected by the error estimator.
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Figure 3: Distribution of the areas associated with the fine model (dark zones) and with
the coarse model (light zones) for the Gaussian hill test case. Left-right, top-bottom:
tj = 1s, 3s, 4s, 7s, 9s and 10s

Notice that the not perfect symmetry characterizing the distribution of the fine and of
the coarse areas at the times tj = 4s and tj = 7s is likely due to the unstructured
computational grid. Moreover we remark that the number of the mesh elements where
the fine model is discretized is, at each time, a reduced portion of the total number of
triangles, being at most 35% of the total number of elements. Figure 4 confirms such a
feature: the maximum number of triangles associated with the fine model is reached at
tj = 9s, namely at the beginning of the whole reflection phase of the wave.
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Figure 4: Time evolution of the percentage of mesh triangles associated with the fine
model for the Gaussian hill test case

In Fig. 5 the estimates provided by ηα for the quantity |Fkin, Ω
GH (U1) − Fkin,Ω

GH (Uα)| are
represented in correspondence with the times tj = 4s, 7s and 10s. The accuracy required

on the approximation Fkin,Ω
GH (Uα) is guaranteed, the values in Fig. 5 being all approxi-

matively within the demanded tolerance τ = 10−3. Moreover, a comparison between the
plots of Figures 3 and 5 corresponding to the same times, shows that, as expected, the
largest values of ηα are associated with the areas of the domain where the fine model is
solved.
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Figure 5: Values provided by ηα for the quantity |Fkin, Ω
GH (U1)−Fkin,Ω

GH (Uα)| at the times
tj = 4s (left), tj = 7s (middle) and tj = 10s (right)

Due to the academic nature of this test case, we have used it to make some further
assessment on the adopted numerical procedure. In more detail, we have first analyzed
the sensitivity of the results with respect to the time step ∆t. We have evaluated the
error estimator ηα for three different choices of the tolerance τ and two different values
of ∆t. The corresponding results are summarized in Table 1.
Except for the choice τ = 10−2 and ∆t = 0.1s, all the values tabulated for ηα are largely
below the prescribed tolerance. In particular, for the smaller time step, an additional
order of magnitude is gained with respect to the demanded accuracy. However, notice
that a smaller time step necessarily involves an increase of the computational cost!

On this test case, we have also validated a numerical strategy for the evaluation of
the estimator ηα, alternative to the rigorous “primal-dual” approach of Section 4 and
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τ ∆t = 0.1 ∆t = 0.05

10−2 1.0065 · 10−2 5.2508 · 10−4

10−3 3.0474 · 10−4 2.8198 · 10−5

10−4 4.0255 · 10−5 2.6961 · 10−6

Table 1: Sensitivity of the error estimator ηα with respect to the time step ∆t for the
Gaussian hill test case

to the “slab-wise” procedure of Remark 4.1. In more detail, the quantity ηα in (37)
is replaced by the new one ηα = ρM (Uα)(Z0) = −

(
(uα · ∇)uα, (1 − α)w0

)
. From a

computational viewpoint this choice is reasonable, the time interval being spanned now
only three times. From a theoretical point of view, this strategy can be justified as
in a dual-weighted residual approach where the quantitative information is provided by
the primal problem, the dual problem being responsible essentially of weighting how the
error propagates.
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Figure 6: Distribution of the areas associated with the fine model (dark zones) and with
the coarse model (light zones) provided by the rigorous “primal-dual’ approach (on the
right) and by the simplified one (on the left) for the Gaussian hill test case. Top-bottom:
tj = 9s and 10s
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Figure 6 compares the distribution of the fine and of the coarse areas provided by the
rigorous approach and by the simplified one at times tj = 9s and tj = 10s. The zones
which differ more significantly are highlighted by the ellipses. However, notice that the
results provided by the two approaches almost coincide.

5.2.2 The channel with an obstacle test case

Let us analyze the motion of a solitary wave along a straight channel with an obstacle.
We identify the computational domain Ω ⊂ R

2 with a channel 100m long and 20m wide,
characterized by a cylinder centered at (x, y) = (30, 10)m and with a radius r = 4m.
The reference water level is chosen equal to 5m and the bottom is assumed flat. The
initial conditions associated with the adapted model (23) are the following ones:

uα(x, y, 0) =
√

11.76
0.2 sech2(

√
0.15(x− 10))

5 + 0.2 sech2(
√

0.15(x− 10))
, vα(x, y, 0) = 0,

hα(x, y, 0) = 0.2 sech2(
√

0.15(x− 10)) + 5,

(46)

uα and vα being the x- and y-component of the mean velocity uα, respectively. Equa-
tions (46) describe the velocity and the elevation profile characterizing a so-called solitary
wave, namely a wave traveling with the same velocity and without any shape distortion
if any perturbation does not occur [26], as an obstacle. Thus, when the solitary wave
overpasses the cylinder, a reflected wave, moving backward with respect to the direction
of the solitary wave, is generated.
Non-reflecting boundary conditions are assigned at the inflow and at the outflow of the
domain, while no-slip conditions (i.e. uα ·n = 0) are associated with the horizontal sides
of Ω.
The cG(1)dG(0) scheme of Section 4 is used to discretize system (23) moving from the
quasi-uniform grid of Nh = 2304 triangles in Fig. 7 (on the left), and by choosing a time
step ∆t = 0.1s, with T = 16s the final time.
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Figure 7: The channel with an obstacle test case: the first computational grid, where
the control area γ is highlighted (on the left); the second computational mesh with the
local refinement around the cylinder (on the right)

Concerning the goal functional F , we first aim to control the quantity

F(U1) = Fkin, γ
Cyl (U1) =

T∫

0

∫

γ

|U1|2 dΩ dt,
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that is the kinetic energy of the fluid in the ring region γ ⊂ Ω, of thickness 4m, around
the obstacle (see the highlighted area in Fig. 7, on the left). The tolerance is set to
τ = 10−3.
The distribution of the fine and of the coarse areas selected by the error estimator (37)
at times tj = 6s, 7s, 8s, 9s, 10s and 14s is provided in Fig. 8. Now, as we are controlling
the goal quantity around the cylinder, it is reasonable for the fine model to be associated
with the zones surrounding the obstacle only. It’s quite likely that the solitary wave
provides information to the target functional F during the interaction of the wave with
the cylinder, when we expect the fine model to become “active”.

−30 −20 −10 0 10 20 30 40 50 60 70
0

10

20

−30 −20 −10 0 10 20 30 40 50 60 70
0

10

20

−30 −20 −10 0 10 20 30 40 50 60 70
0

10

20

−30 −20 −10 0 10 20 30 40 50 60 70
0

10

20

−30 −20 −10 0 10 20 30 40 50 60 70
0

10

20

−30 −20 −10 0 10 20 30 40 50 60 70
0

10

20

Figure 8: Distribution of the areas associated with the fine model (dark zones) and with
the coarse model (light zones) for the channel with an obstacle test case and for the

choice F = Fkin, γ
Cyl . Left-right, top-bottom: tj = 6s, 7s, 8s, 9s, 10s and 14s

To stress the dependence of the “area-to-model” correspondence on the selected goal
functional, we show in Fig. 9 the distribution of the regions where the fine and the
coarse models are solved for two different functionals F , namely for

F(U1) = Fkin,Ω
Cyl (U1) =

T∫

0

∫

Ω

|U1|2 dΩ dt and F(U1) = Frot, Ω
Cyl (U1) =

T∫

0

∫

Ω

|∇×U1|2 dΩ dt,

∇×· denoting the standard curl operator. In the first case we aim to control the kinetic
energy of the fluid on the whole domain, while the vorticity of the flow on Ω is controlled
for the second choice of F .
For both the choices Fkin,Ω

Cyl and Frot, Ω
Cyl , either the primal solitary wave or the reflected

one are crucial to control the target quantities. Indeed they are detected by the error
estimator ηα and associated with the fine model. However, notice that the distribution
of the mesh elements where the fine model (24) is solved (dark zones) changes according
to the goal functional we are interested in.
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Figure 9: Distribution of the areas associated with the fine model (dark zones) and
with the coarse model (light zones) for the channel with an obstacle test case and for

the choices F = Fkin,Ω
Cyl (column on the left) and F = F rot, Ω

Cyl (column on the right).
Top-bottom: tj = 2s, 6s, 10s and 12s

This test case has been used to assess the sensitivity of the numerical approximation
with respect to the choice of the time step ∆t and of the computational mesh. In more
detail, we have evaluated the error estimator ηα by using the same computational grid
(of Nh = 1580 triangles) and with the aim of approximating the goal quantity F kin, γ

Cyl (U1)

with an accuracy τ = 10−3. Two different time steps have been adopted, ∆t = 0.1s and
∆t = 0.05s, respectively. The corresponding distributions of the fine and coarse areas at
four different times are represented in Fig. 10.
The number of triangles where the fine model (24) is solved is lower when the smaller
∆t is adopted, even if the difference is not so relevant. As already inferred from the
Gaussian hill test case, the choice of a small time step seems not to be a so convenient
strategy. The increase of the computational effort associated with a smaller ∆t is not
balanced by a considerable reduction of the number of “fine triangles”.
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Figure 10: Comparison between the distributions of the “fine areas” (dark zones) and of

the “coarse areas” (light zones) for the channel with an obstacle test case with F = F kin, γ
Cyl

and for the choice ∆t = 0.1s (column on the left) and ∆t = 0.05s (column on the right).
Top-bottom: tj = 6s, 9s, 10s and 12s

A comparison of the time evolution of the quantity F kin, γ
Cyl (Uα) with the corresponding

coarse and fine values Fkin, γ
Cyl (U1) and Fkin, γ

Cyl (U0), respectively is provided in Fig. 11, for
the two choices ∆t = 0.1s (on the left) and ∆t = 0.05s (on the right). The three curves
are characterized by the same trend. As expected, the kinetic energy estimated by the
adapted model (dashed line) represents a more reliable prediction for the target quantity

Fkin, γ
Cyl (U1) (solid line) with respect to the values predicted by the coarse model (solid

with circles line). Also in this case the difference due to the choice of the step size is
minimum (it suffices to compare the two plots in Fig. 11).
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Figure 11: Evolution of the kinetic energy as a function of the time step for the coarse
model (solid with circles line), for the fine model (solid line) and for the adapted one
(dashed line) for the choices ∆t = 0.1s (on the left) and ∆t = 0.05s (on the right)
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To analyze the influence of the chosen computational mesh on the evaluation of the
modeling error estimator ηα, we have computed the quantity F kin, γ

Cyl (Uα) by using two
different grids: the initial quasi-uniform mesh of Nh = 2304 elements on the left of Fig. 7
and a corresponding locally refined grid, obtained by refining the initial mesh only in a
region around the obstacle, i.e. where the kinetic energy has to be controlled (see Fig. 7
on the right). The values τ = 10−3 and ∆t = 0.1s have been adopted for the tolerance
and the time step, respectively.
The corresponding results are collected in Table 2.

τ initial mesh locally refined mesh

10−1 −5.6552 · 10−1 −1.4582 · 10−1

10−2 −7.6179 · 10−3 −3.4512 · 10−3

10−5 −2.2047 · 10−5 −1.1489 · 10−6

Table 2: Sensitivity of the error estimator ηα with respect to the choice of the computa-
tional mesh for the channel with an obstacle test case

Notice that the order of magnitude of the quantities tabulated in the two columns
is nearly the same, except when the tolerance τ is chosen equal to 10−5. In such a
case the employment of a suitably refined mesh turns out to be advantageous from a
computational viewpoint.

5.2.3 The river bifurcation test case

As last benchmark, let us consider the propagation of a solitary wave along a river
bifurcation. The reference computational domain Ω ⊂ R

2 is sketched in Fig. 12. It is a
bifurcation 100m long, with a width at the inflow and at the two outflows equal to 10m
and 7m, respectively. The reference water level is equal to 5m, while a flat bottom is
assumed.
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Figure 12: The river bifurcation test case: the quasi-uniform computational grid

The adapted model (23) is completed with exactly the same initial and boundary con-
ditions adopted for the channel with an obstacle test case (see Section 5.2.2). Thus the
solitary wave identified by the initial conditions (46) travels undisturbed, until it inter-
acts with the bifurcation. Then a smaller reflected wave is generated.
The discrete scheme of Section 4 is applied moving from the computational grid in Fig. 12
consisting of Nh = 7548 elements and with a time step ∆t = 0.1s, T = 17s being the
final time.
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The nonlinear functional

F(U1) = Fkin,Ω
Bif (U1) =

T∫

0

∫

Ω

|U1|2 dΩ dt

is selected as goal quantity, the tolerance τ being chosen equal to 10−2.
Figure 13 provides us with the corresponding distribution of the areas where the fine
and the coarse models are solved at times tj = 12s, 13s, 14s and 15s. As expected, both
the initial and the reflected waves are identified by the error estimator ηα as the main
responsibles for controlling the kinetic energy of the fluid.

Figure 13: Distribution of the areas associated with the fine model (dark zones) and with
the coarse model (light zones) for the river bifurcation test case. Left-right, top-bottom:
tj = 12s, 13s, 14s and 15s

Finally, we have repeated the same simulation by making a more restrictive requirement
on the tolerance τ chosen equal to 10−3 and 10−4, respectively. The corresponding values
provided by the estimator ηα for the quantity Fkin,Ω

Bif (U1) − Fkin,Ω
Bif (Uα) are gathered in

Table 3. The accuracy demanded on the quantity ηα is largely guaranteed for each choice
of τ .

τ Fkin,Ω
Bif (U1) −Fkin,Ω

Bif (Uα)

10−2 −4.6506 · 10−3

10−3 −1.9876 · 10−4

10−4 8.8259 · 10−7

Table 3: Sensitivity of the error estimator ηα with respect to the tolerance τ for the river
bifurcation test case

Remark 5.3 We recall that the solitary wave (46) assigned as initial condition for the
two last test cases does not represent an analytical solution for the shallow water equa-
tions. As a consequence, besides the “physical” reflected wave due to the interaction of
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the solitary wave with the obstacle or with the bifurcation, a second small “non-physical”
reflected wave will arise in both the simulations.

Remark 5.4 A heuristic check of the regularity assumptions made to deduce the model-
ing error estimator (37) from the exact relation (36) has been performed in the case of the
Gaussian hill and of the channel with an obstacle test case. In more detail, for these test
cases we have compared the terms (I) and (II) in (36) (see Fig. 14). An order of mag-
nitude separates the two terms almost everywhere in agreement with the considerations
made above on the asymptotic behaviour of (I) and (II).
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Figure 14: Comparison between the terms (I) (circles) and (II) (crosses) for the Gaussian
hill (on the left) and for the channel with an obstacle (on the right) test case as a function
of time

6 Conclusions

Moving from a hierarchy of hydrodynamic models, we provide in this paper an efficient
tool to estimate the target quantity F(ufine), ufine being the solution of the most com-
plex model of such a hierarchy and where F denotes an output functional of interest.
The leading idea is to evaluate F(ufine) within a prescribed accuracy by means of the
quantity F(uadapted), where uadapted is the adapted solution, i.e obtained by limiting the
solution of the most complex problem only to the areas of the computational domain that
most influence the goal quantity. This aim is obtained thanks to a suitable a posteriori
modeling error estimator developed in a goal-oriented framework.
The novelty of the analysis proposed in this paper consists of an extension of the approach
provided in [3] to the case of time-dependent problems. The main difficulty related to
unsteady problems is essentially the time discretization of the dual problem, as reverse
time scales are involved. This unavoidably leads to a an increase of the computational
cost. However this technique is still convenient when the increase of the computational
cost, due to the resolution of the dual problem, is balanced by a considerable reduction of
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the areas of the domain where the finest problem is solved. For instance, this is the case
of complex hydrodynamic configurations, where an a priori “subdomain-to-model” cor-
respondence is not always evident (see, [16]). Moreover this a posteriori analysis allows
us to control physically meaningful functionals of the numerical solution in engineering
applications.
The idea of an a posteriori modeling error estimator could be undoubtly more incisive
when dimensionally heterogeneous–physically homogeneous models are coupled. This
idea will be investigated in a forthcoming paper.

Appendix. Proof of Proposition 2.1. Let us consider the error on the goal quantity
F(u1) − F(uα). Thanks to the relations (17) and (15) and by using the definition (16)
of δL, we can rewrite it as

F(u1) −F(uα) = L(x1) − Lα(xα) = L(x1) − L(xα) + δL(xα)

= −d(uα)((1 − α)zα) +

1∫

0

L′(xα + λe)(e) dλ .
(47)

The trapezoidal rule applied to the integral in (47) yields

1∫

0

L′(xα + λe)(e) dλ =
1

2

{
L′(x1)(e) + L′(xα)(e) +R

}
,

R being the remainder term defined in (21). Now, moving from equalities (5) and (15),
and by exploiting the relation L′

α(xα)(y) = 0, for any y ∈ X, we get

L′(x1)(e) + L′(xα)(e) = L′(xα)(e) = L′
α(xα)(e) + δL′(xα)(e)

= δL′(xα)(e) = −d(uα)((1 − α)ez) − d′(uα)(eu, (1 − α)zα),

from which result (20) follows, after introducing the definitions (18) and (19) for the mod-
eling residuals ρM (uα)(zα), ρM (uα)(ez) and ρM (uα)(eu, zα). �
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