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1 Introduction

The accurate computation of a physically meaningful quantity (the goal quantity) associated with
the solution of a given problem is of paramount importance in engineering applications. For ex-
ample, in micro- or nano-electronics the output current is a fundamental quantity to assess the
performance of the device at hand. In particular, we consider the Drift-Diffusion (DD) model
for semiconductors describing the charge-transport in a device in terms of the electric potential
(ψ), electron (n) and hole (p) concentrations [Sel84]. Thus, the goal quantity can be described
by a suitable functional J , either linear or nonlinear, of the variables ψ, n and p. The accurate
approximation of J can be dealt with in the framework of the optimal control theory. In particu-
lar, we consider an anisotropic a posteriori error estimation relying on the dual-based approach of
[BR01, GS02]. We solve an adjoint (dual) linearized problem while employing anisotropic interpo-
lation estimates [FP01, FP03] to bound the approximation error associated with the solution of the
dual problem with respect to a suitable finite dimensional space. Thus, the parameters describing
the distribution and shaping of the elements of the computational mesh act as control parameters,
through which it is possible to approximate the goal quantity as accurate as needed.

The outline of the paper is as follows. In Section 2 the DD model for semiconductors is
introduced. In Section 3 we sketch the abstract framework on which the anisotropic analysis is
based. In particular, in Section 3.1 we recall some anisotropic interpolation error estimates which
are the basic tool linking the dual-based a posteriori analysis of Section 4 to the anisotropic mesh
adaptivity procedure. In Section 5 we derive the desired anisotropic a posteriori error estimator,
while in Section 6 we address the iterative adaptive procedure used to construct the anisotropic
meshes. A numerical validation is carried out on some test cases dealing with a pn-junction diode
in Section 7. Finally, some conclusions and open issues are drawn in Section 8.

∗This work was partially supported by the INDAM 2003 Project “Modellistica Numerica per il Calcolo Scientifico

e Applicazioni Avanzate”.

1



2 The Drift-Diffusion model

In this section we recall the stationary Drift-Diffusion charge transport model (see e.g. [Sel84]),
consisting of the conservation laws for charge and for electron and hole concentrations (1)(left)





div(ε ~E) − ρ = 0,

− div ~Jn + qR = 0,

div ~Jp + qR = 0,





~E = −∇ψ,

~Jn = q(Dn∇n− µn n∇ψ),

~Jp = −q(Dp∇p+ µp p∇ψ),

ρ = q(p− n+D),

Dn = µnVth,

Dp = µpVth.

(1)

completed by the constitutive relations (1)(right). In (1), ψ, n and p are the unknowns, i.e. the
electric potential, and the electron and hole concentrations, while ~Jn, ~Jp are the electron and hole

current densities, ~E is the electric field, ρ is the net charge density, D is the given doping profile,
R is the recombination/generation rate, Dn, µn (Dp, µp) are the electron (hole) diffusion coefficient
and mobility, Vth is the thermal voltage, ε is the semiconductor dielectric permittivity, and q is the
positive electron charge. As typical expression for R, we consider henceforth the so-called Shockley-
Read-Hall form, given by R = (pn − n2

i )/[(p + ni)τn + (n + ni)τp], where ni is the electron/hole
intrinsic concentration, and τn and τp are suitable relaxation times (see, e.g., [Sel84]). The whole
system is completed by suitable boundary conditions, usually of mixed type. For simplicity, we
consider the case where the device is made up of a homogeneous semiconductor material, occupying
the computational domain Ω, that is we do not deal with metal-semiconductor or metal-oxide-
semiconductor structures. Thus, the boundary ∂Ω of Ω is split into two non-overlapping parts,
ΓD and ΓN, where Dirichlet and Neumann boundary conditions are imposed, respectively. For
instance, in the case of the pn junction diodes of Fig. 1, we have ΓD = AG ∪ CD while ΓN =
∂Ω\ΓD. The boundary conditions characterizing the devices in Fig. 1 are thus given by ψ = ψD,
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Figure 1: Geometry of a pn junction diode

n = nD and p = pD on ΓD, while ∇ψ · ~n = ∇n · ~n = ∇p · ~n = 0, on ΓN, where ~n is the
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unit outward normal vector to ∂Ω, ψD = Vapp + Vbi, with Vapp the external applied voltage and

Vbi = Vth sinh−1(D/(2ni))|ΓD
, the so-called built-in voltage, while nD =

[(
D +

√
D2 + 4n2

i

)
/2

]∣∣∣
ΓD

and pD = −
[(
D +

√
D2 + 4n2

i

)
/2

]∣∣∣
ΓD

.

3 The anisotropic “tool box”

Let us introduce a conformal partition Th of Ω, in the usual sense [Cia78], consisting of triangular
elements and let K denote the general triangle. Let TK : K̂ → K be the standard affine mapping
between the reference triangle K̂ (e.g. the unit equilateral one) and the general one K, with

~x = (x1, x2)
T = TK(~̂x) = MK ~̂x + ~tK . Then let us introduce the polar decomposition of MK , i.e.

MK = BK ZK , with BK symmetric positive definite and ZK orthogonal matrices, respectively.
Decomposing BK in terms of its eigenvectors ~ri,K and eigenvalues λi,K , with i = 1, 2, yields

Figure 2: Geometrical quantities related to the affine mapping TK

BK = RT
KΛKRK , where RT

K =
[
r1,K , r2,K

]
and ΛK = diag[λ1,K , λ2,K ]. Throughout we assume

λ1,K ≥ λ2,K , that is sK = λ1,K/λ2,K ≥ 1, sK being the so called stretching factor (see Fig. 2 for
the geometrical meaning of the quantities λi,K , ~ri,K).

3.1 Anisotropic interpolation error estimates

Moving from the above abstract framework, we now recall some anisotropic interpolation error
estimates, introduced in [FP01, FP03]. We assume a standard notation for the Lebesgue and
Sobolev spaces, see, e.g., [Cia78]. For any function v ∈ H 1(Ω), let GK(v) be the symmetric
positive semi-definite matrix with entries (GK(v))i, j =

∫
∆K

∂xi
v ∂xj

v d~x, and let IK(v) ∈ P
1(K) be

a Clément-like interpolant of v on K, where P
1(K) is the space of polynomials of degree less than

or equal to one on K, ∆K being a suitable patch of elements surrounding K. Then the following
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estimates can be proved:

‖v − IK(v)‖2
L2(K) ≤ C1

2∑

i=1

λ2
i,K

(
~rTi,K GK(v)~ri,K

)
, (2)

‖v − IK(v)‖2
L2(e) ≤ C2

1

λ2,K

2∑

i=1

λ2
i,K

(
~rTi,K GK(v)~ri,K

)
, (3)

where the edge e ∈ ∂K and C1, C2 suitable constants (see [MPP03] for more details).

4 Dual-based a posteriori analysis

Suppose that we are interested in approximating the goal quantity J(u) by J(uh) such that |J(u)−
J(uh)| ≤ τ , with J a continuous functional, possibly nonlinear, u and uh the exact and approximate
solutions to the problem at hand, and τ a given tolerance. In electronics, J can be, for example, the
total current in a device, or in Computational Fluid Dynamics, it can represent the kinetic energy
or the vorticity of a fluid, the lift or drag in a flow past a body, while in structural mechanics, it
can be the torsion moment, the stress values or the total surface tension.

With this aim we can follow the so-called dual approach in [BR01, GS02]. In a general setting,
let a(u; v) and J(u) be semilinear forms, where it is understood that, when more than one argument
is present, the forms are linear with respect to all the arguments on the right of the semicolon. The
problem at hand can be formulated as the following control problem: find u ∈ V such that

J(u) = min
v∈M

J(v) with M = {w ∈ V : a(w; v) = F (v), ∀v ∈ V } ,

where F is a linear form and V is a suitable Hilbert space. Let L(u; z) = J(u) +F (z)− a(u; z), for
any u, z ∈ V , be the corresponding Lagrangian. The condition for finding the critical points of L,
that is

L′(u, z;ϕ, v) = J ′(u;ϕ) + F (v) − a(u; v) − a′(u;ϕ, z) = 0, ∀ϕ, v ∈ V,

yields the primal problem (P.P.): find u ∈ V such that

a(u; v) = F (v), ∀v ∈ V,

and the adjoint problem (A.P.): find z ∈ V such that

a′(u;ϕ, z) = J ′(u;ϕ), ∀ϕ ∈ V,

where a′(u;ϕ, z) = lim
ε→0

1

ε
[a(u + εϕ; z) − a(u; z)] is the Gâteaux derivative of a(u; z) with respect

to its first argument, and likewise for J ′(u;ϕ). Then let us consider the Galerkin approximation
(G.A.) of (P.P.): find uh ∈ Vh such that

a(uh; vh) = F (vh), ∀vh ∈ Vh,

where Vh is a suitable finite dimensional subspace of V . The problems (P.P.) and (G.A.) are linked
by the Galerkin orthogonality (G.O.) condition:

a(u; vh) − a(uh; vh) = 0, ∀vh ∈ Vh.
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In the case when both a and J are linear, from (P.P.), (A.P.) and (G.O.) the following error
representation holds: J(u)− J(uh) = F (z−ϕh)− a(uh; z−ϕh), for any ϕh ∈ Vh. Otherwise in the
more general case when either a or J are nonlinear, it can be proved that

J(u) − J(uh) = F (z − ϕh) − a(uh; z − ϕh) + R ∀ϕh ∈ Vh, (4)

where

R =

1∫

0

[a′′(uh + se; e, e, z) − J ′′(uh + se; e, e)]s ds,

is a remainder term quadratic with respect to e = u− uh (see Propositions 2.2 and 2.3 in [BR01]).
In practice, neglecting R, choosing ϕh as a suitable interpolant of z and integrating by parts over
the elements of the mesh, we obtain an estimate of the form

|J(u) − J(uh)| ≤ C
∑

K∈Th

ρK(uh)ωK(z),

where ρK(uh) is a residual term depending only on the approximate solution uh and ωK(z) is a
weighting term taking into account the dual solution z.

5 Goal-oriented a posteriori analysis for the DD model

In this section we apply the general framework of the previous section to the Drift-Diffusion model
(1) (more details can be found in [MP04]). For this purpose, let U = (ψ, n, p) and Z = (z1, z2, z3)
be the primal and dual solution triplets, respectively, and let (u, v) =

∫
Ω u v dΩ denote the standard

L2(Ω)-scalar product. Then problem (1) can be cast in the abstract framework above by defining

a(U ;Z) = (ε∇ψ,∇z1) − q(p− n+D, z1) + q(Dn∇n− µnn∇ψ,∇z2) + q(R, z2)

+ q(Dp∇p+ µpp∇ψ,∇z3) + q(R, z3),

while F (U) = 0. Thus L(U ;Z) = J(U) − a(U ;Z), for any (U,Z) ∈ W × W̃ , where W is the
affine space of functions in [H1(Ω)]3 taking into account the nonhomogeneous Dirichlet boundary

conditions, while W̃ = [H1
ΓD

(Ω)]3. Letting V = (v1, v2, v3), we have

a′(U ;V,Z) = (ε∇v1,∇z1) − q(v3 − v2, z1)

+q(Dn∇v2 − µnn∇v1 − µnv2∇ψ,∇z2) + q(R′
n(U)v2, z2) + q(R′

p(U)v3, z2)

+q(Dp∇v3 + µpp∇v1 + µpv3∇ψ,∇z3) + q(R′
n(U)v2, z3) + q(R′

p(U)v3, z3),

R′
n(U), R′

p(U) being the derivatives of the recombination/generation term with respect to n and
p, respectively. Let J(U) be the quantity we are interested in and let us introduce the Galerkin
approximation Uh = (ψh, nh, ph) ∈ Wh of the primal solution, such that a(Uh, Vh) = 0, for any

Vh ∈ W̃h, where Wh and W̃h are finite dimensional subspaces of W and W̃ , respectively. Moving
from equality (4) and neglecting the remainder term R, it holds

J(U) − J(Uh) ' −a(Uh;Z − Vh), ∀Vh ∈ W̃h.
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In more detail, by splitting the integrals over Ω as sums over the elements K of the mesh Th, we
get

J(U) − J(Uh) '

3∑

i=1

∑

K∈Th

{
(ρi

K , zi − vh,i)K +
1

2
(jie, zi − vh,i)∂K

}
,

where ρi
K = ρi

K(ψh, nh, ph) and jie = jie(ψh, nh, ph), with i = 1, 2, 3, are the internal and edge
residuals, respectively, defined by





ρ1
K = [ div(ε ~Eh) − q(ph − nh +D) ]

∣∣
K
,

ρ2
K = [−div ~Jn,h + qR(Uh) ]

∣∣
K
,

ρ3
K = [ div ~Jp,h + qR(Uh) ]

∣∣
K
,

and jie =





[~ji · ~n]e, ∀e ∈ Eh,

2~ji · ~n, ∀e ∈ ΓN,

0, ∀e ∈ ΓD,

where ~j1 = −ε ~Eh = ε∇ψh, ~j2h = ~Jn,h = q(Dn∇nh − µnnh∇ψh) and ~j3h = − ~Jp,h = q(Dp∇ph +
µpph∇ψh) are the discrete displacement, electron and hole current densities, respectively, R(Uh)
is the recombination/generation term evaluated at Uh, Eh is the set of the internal edges of Th

and [ v ]e denotes the jump of the function v across the edge e. Now choosing Vh

∣∣
K

= IK(Z), i.e.
by identifying the test function Vh with the Clément-like interpolant of the dual solution Z, and
thanks to the anisotropic interpolation error estimates (2)-(3), we obtain

|J(U) − J(Uh)| ≤ C

3∑

i=1

∑

K∈Th

αK Ri
K(Uh)ωi

K(zi), (5)

where C = C(C1, C2), αK = (λ1,Kλ2,K)3/2, and for i = 1, 2, 3,

Ri
K(Uh) =

1

(λ1,Kλ2,K)1/2

(
‖ρi

K‖L2(K) +
1

2λ
1/2
2,K

‖jie‖L2(∂K)

)
,

ωi
K(zi) =

1

(λ1,Kλ2,K)1/2

[
sK

(
~rT1,KGK(zi)~r1,K

)
+

1

sK

(
~rT2,KGK(zi)~r2,K

)]1/2
,

with Ri
K(Uh) and ωi

K(zi) independent of |K|, at least asymptotically, i.e. when the mesh is suffi-
ciently fine.

6 Generation of the mesh

The technique used to compute the adapted meshes is a metric-based, adaptive iterative procedure

that, starting from a given mesh, T
(k)
h , consisting of N

(k)
h elements, finds the new mesh T

(k+1)
h

by exploiting the error estimator (5). In practice, the anisotropic quantities describing the new

mesh T
(k+1)

h are approximated by functions piecewise constant on T
(k)

h . Since we are dealing with
a vector problem, each of the three terms in (5) yields a contribution to the adaptive procedure,
i.e. a corresponding mesh. As the procedure to obtain each mesh is the same for all the three
contributions, we detail in the following the general procedure for a given i ∈ {1, 2, 3}. For this
purpose, let ηi

K = αK Ri
K(Uh)ωi

K(zi) be the local error estimator. We impose that:

i) ηi
K = τ/N

(k)
h , for any K ∈ T k

h , where τ is the given tolerance (equidistribution criterion);
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ii) |K| be as large as possible (mesh elements minimization criterion).

Requirement ii) amounts to solving the minimization problem for the quantities at step k + 1:

find the optimal values s̃K of sK and ~̃r1,K of ~r1,K such that ωi
K(zi) be minimized, subject to the

constraints sK ≥ 1, ~r1,K , ~r2,K ∈ R
2 , ~ri,K · ~rj,K = δij, for i, j = 1, 2, with δij the Kronecker symbol,

where the dependence on k+1 is understood. Let µm and µM be the (positive) minimum and max-

imum eigenvalues of GK(zi)/(λ
(k)
1,Kλ

(k)
2,K), respectively. Then the solution of this minimization prob-

lem yields ~̃r1,K parallel to the eigenvector associated with µm and s̃K = λ̃1,K/λ̃2,K = (µM/µm)1/2.

Finally, requirement i) allows us to obtain the specific values for λ̃1,K and λ̃2,K , as

λ̃1,K λ̃2,K '

(
τ

N
(k)
h

)2/3(
Ri

K(Uh)
(
s̃K µm +

1

s̃K
µM

)1/2
)−2/3

.

The above quantities define in a unique way the size and shape of the elements of the new mesh

T
i,(k+1)

h . Following the same above procedure, once the three metrics for T
1,(k+1)

h , T
2,(k+1)

h and

T
3,(k+1)

h have been obtained, the final mesh T
(k+1)
h may be obtained by computing the intersection

of the three metrics, as described in [GB98].

7 Numerical results

We asses the procedure outlined in the previous sections on some test cases. Firstly, let us provide
some computational details:

• the Scharfetter-Gummel node-centred box method is used as numerical approximation scheme,
thus, only the current densities along the edges are meaningful [BBFS90]. This scheme guar-
antees a discrete maximum principle for the unknowns;

• the reconstruction of the current densities inside each triangle is carried out by the lowest
order edge elements of Nédélec’s first family [Ned80];

• the Newton method is used to solve the whole system;

• the stiffness matrix for the dual problem is just the transpose of the Jacobian associated with
the non-linear system of the primal problem, so that the overhead of solving the dual problem
is approximately the same as that of one further iteration of the Newton method;

• the software BAMG [Hec98] is used to compute all the meshes.

We consider the step-junction diode of Fig. 1, with the following choice for the data: Ω = (0, 10) ×
(0, 10)µm, symmetric doping, i.e. D = 1017 cm−3 in the curved polygonal n-region A-G-E-F-A,
and D = −1017 cm−3 in the remaining part, contact length |AG| = |CD| = 4µm, and junction
radius |AE| = |AF| = 5µm centred at A, τn = τp = 10−9 s, µn = 1300 cm2V−1s−1, and µp =
400 cm2V−1s−1.
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Figure 3: Control of total current: sequence of adapted meshes

7.1 Control of total current

As first choice, we identify the goal functional J with the total current, i.e. with the flux of the
total current density ~J = ~Jn + ~Jp, either at the n-side contact AG, or at the p-side edge CD. In

the case of the n-side contact, for example, the functional J is computed as J(U) =
∫
AG

~J · ~n ds =∫
∂Ω

~J · ~nω ds =
∫
Ω ω div ~J dΩ +

∫
Ω
~J · ∇ω dΩ =

∫
Ω
~J · ∇ω dΩ, for any function ω smooth enough,

such that ω
∣∣
AG

= 1 and ω
∣∣
CD

= 0. Notice that, we have used the divergence theorem and, from

(1), the property that div ~J = 0, so that, thanks also to the boundary conditions, the flux of ~J at
the two contacts is equal and of opposite sign. This escamotage holds for the weak formulation but
it generally fails in the discrete case. It is shown however, to provide rather accurate results in the
FEM context (see [BR01, GS02]). In Fig. 3, both rows show the evolution of the meshes at the
first three iterates at Vapp = 0.9V. The top row refers to the control on the n-side and the meshes
are those corresponding to the dual variable z1 only, while the bottom row deals with the control
on the p-side contact, respectively, and the meshes are associated with z3.
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7.2 Control of pointwise electron concentration

As second test case, we consider the control of the electron concentration at the point (4.167, 8.638)µm
at the two biases corresponding to a forward Vapp = 0.7V and a reverse Vapp = −5V . Figure 4
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Figure 4: Control of pointwise electron concentration: sequence of meshes for Vapp = 0.7V (left)
and Vapp = −5V (right) at the first iteration

shows the meshes corresponding to the dual variable z2 at the first iteration (top row) and the
corresponding plot of z2 (bottom row). The left column refers to the forward-bias case while the
right column is associated with the reverse-bias polarization.

8 Conclusions

We have dealt with a dual-based anisotropic a posteriori error estimation for the Drift-Diffusion
model in semiconductors. This allows us to control suitable goal quantities via the optimal control
theory where the controls are essentially the geometrical quantities describing the mesh. By an
appropriate distribution and shaping of the elements we can guarantee that the error in the desired
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output functional is below a given tolerance. Several open issues are in oder: the validation on
other functionals and on other devices; the extension to the time-dependent problem.
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