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Summary

In this paper we present a new approach in the study of Aorto-Coronaric bypass
anastomoses configurations based on small perturbation theory. The theory of
optimal control based on adjoint formulation is applied in order to optimize the
shape of the zone of the incoming branch of the bypass (the toe) into the coro-
nary (see Figure (1)). The aim is to provide design indications in the perspective
of future development for prosthetic bypasses.
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1 Introduction

We consider the application of optimal control approaches to shape optimization
of aorto-coronaric bypass anastomoses ([22]). We analyze the “first correction”
method which is derived by applying a perturbation method to the initial prob-
lem in a domain Q C R? whose boundary 9f) is parameterized by a suitable

*This work has been prepared when the first author was visiting Bernoulli Center of the
Swiss Federal Institute of Technology Lausanne in the framework of the special semester on
“The Mathematical Modelling of the Cardiovascular System”



function f. Then we propose numerical methods for its solution.

The surgical realization of a bypass to overcome a critically stenosed artery is
a very common practice in everyday cardiovascular clinic.

Improvement in the understanding of the genesis of coronary diseases is very
important as it allows to reduce surgical and post-surgical failures. It may also
suggest new means in bypass surgical procedures with less invasive methods and
to devise new shape in bypass configuration ([19]).

Generally speaking, mathematical modelling and numerical simulation can allow
better understanding of phenomena involved in vascular diseases ([24], [23] and
).

When a coronary artery is affected by a stenosis, the heart muscle can’t be
properly oxygenated through blood. Aorto-coronaric anastomosis restores the
oxygen amount through a bypass surgery downstream an occlusion.

At present, different kind and shape for aorto-coronaric bypass anastomoses are
available and consequently different surgery procedures are used to set up a
bypass.

A bypass can be made up either by organic material (e.g. the saphena vein
taken from patient’s legs or the mammary artery) or by prosthetic material. The
current saphenous bypass solution requires the extraction of saphena vein with
possible complications. In this respect, prosthetic bypasses are less invasive.
They may feature very different shape for bypass anastomoses, such as, e.g.,
cuffed arteriovenous access grafts. Different cuffed models are used such as
Taylor Patch [2] and Miller Cuff Bypass, [4], but also standard end-to-side
anastomoses at different graft angle [3] or other shaped carbon-fiber prostheses.
In the cardiovascular system altered flow conditions such as separation, flow
reversal, low and oscillatory shear stress areas and abnormal pulse pattern are
all recognized as potentially important factors in the development of arterial
diseases (see [15] and [18]). For all these different aspects the design of artificial
arterial bypass is a very complex problem. Carbon fiber and Collagen cuffed
grafts instead of natural saphenous vein can be used for studying new shape
design without needing “in loco” reconstruction. In this framework, Optimal
Control (Lions [12]) by perturbation theory (Van Dyke [31]) provide a new
approach to the problem, with the goal of improving arterial bypass graft on
the basis of a better understanding of fluid dynamics aspects involved in the
bypass studying.

2 Notation and Problem Statement

Let €2 be a bounded domain of R2, T' = 09 is the boundary of Q, Q = QU 99,
z := (z,y) is a point of . For every scalar function ¢ and a vector function v,
whose components are u, v, we recall the definition of the following operators:

_ (90 9
V¢—(ax78y),
ou Ov
. = ) ::D = —_— —_—
Vv = div(v) (v) o T 9
ov  Ou
ny.fmt(y)f%—a—y,



0 0

We remind that:
rot(Vxuv) = —Av+V(V-v), Ap =V (V9).

In the sequel vectors are marked with an underlined notation v, aggregation of
vector quantities v with scalar quantities p are indicated with @ (Q = (v,p)),
® or i
Consider an idealized, two-dimensional bypass bridge configuration in Fig.(1)
and the domain on Fig.(2), where the dotted line represents the geometry of
the complete anastomosis; I'y, is the section of the original artery, I';, is the
new anastomosis inflow after bypass surgery, I',,; is the anastomosis outflow.
We consider the following boundary value problem for the Stokes equations
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Figure 1: Idealized, 2-D bypass bridge configuration (left) and detail of the

sensible part for the optimization process (right). The dotted curve represents
a possible shape variation.
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Figure 2: ﬁ = ﬁl U ﬁg, Fw = le U ng U F’lz)37FO = an n 092 .

[33], used to model low Reynolds blood flow in this study. For mathematical
aspects in fluid mechanics see, for example, [14]. The problem reads: find v, p



s.t.
—vAv+Vp=F in Q,
V-v=0 1in Q, 1
V=0, on L, v=0o0nTy, Ul,,, (1)
—p-n+ Vg% = 9,07 Lout UTw,,

where n = (n1,n2) is the outward unit normal vector on T, F' = F(x,y), v;, =
Vin(®,9), 9., = 9,,,(T:y) are given vector functions, v = const > 0 and
vy = {v;, on T'in;0 on Ty, UL, }. In the following we may need to impose
some additional restriction on p (for example [, pdQ=0if I';, =T).

The subset I'c . of I, is parametrized by a function f(x,¢) of € [x1,z2] and
of small parameter ¢ € [—eg,&0], €9 = const. More precisely we assume that

f(z, &) can be developed as follows:

f(@,e) = folw) +efi(z) + e fala) + ..., (2)

where fp € WL (21, 25), for k = 0, (we recall that W% (2, 25) is the space
of functions fj; € L*°(x1,x2) such that all the distribution derivatives of first
order of fi are functions of L™ (x1,22)) and fi € Wé’w(:rl,zg), for k > 1, so
that fr(x1) = fr(x2) = 0,k > 1. Here the function fo(z) > 0 describes the
original subset I'c o of the boundary of “unperturbed domain”, I'y,0 = 99 of
the domain g (see Fig. 3(left)), while fi(z),k > 1, could be unknown when
dealing with control problem (see Section 4).

><

Figure 3: “Unperturbed domain” Qg, Qo = Q50U Qs (left). The “simple”
domain Q (right).

The weak statement of (1) reads: find v € (H'(Q2))?, p € L?(Q) s.t.

a(v, ) = b(p, ) + G(0) Vo € X,
b(p,v) =0 Vp € L*(Q), (3)
V=2V 0N Fip Uy, U ngv

where with © we indicate test functions and:

a(v,0) = / vVu - Vod§2
Q

b(P,@Z/QpV-@dQ, G(@):/

| End0+ / g,,, odl,

FoutUFwQ
X:={d:0¢€ (H(Q)%d=00nT; UL, Uly,,.}

Although a(.,.),b(.,.) and G(.) depend on the parametrization f of the part
I'ce, this dependence will be understood for simplicity of notations.



3 The problem for the perturbation functions

Let us introduce the reference (simple-shaded) domains o ={0<3<A0<
G<Bi=p} W={0<i<A—F<7<0},and Q=0 UQy (see Fig.3
(right)). Then we assume that f(z,e) > 0 and consider the following variables
transformation:

f Zﬁl Uﬁg —>5, i:Tf(g),

such as T is the identity in Q, while Tf(z,y) = (=, %y) in
We set & = (#,¢) and define
Q(i) =uvo Tgl(i) = Q('ia ij(jj, 6)/ﬂ)
where ¥ = (a1, ). Then,
dzdy — L gza5
5
and the following relations hold:
99 (5 09(z)
{ ('T(-%') f@g 3; ) (4)
~ op(x ~ fz (T 0 (Z
8() = 2 — L2 (with f, = L),

D(f)2(E) == (V1) 0 T;l)l@ =5 - gf;g( o 5t Bk )
R(NDE) = (V x 0) o T; 1) (&) = 32 — gl gn _ 2 01

Then in Q we have:
D(f)o =maV -0 +miD(f)3, R(f)D =maV x &+ miR(f)d,

where V¢ := (%7 g—g), while my is the characteristic function of Qg (s = 1,2).

To simplify the notations from now on we will set (unless otherwise specified):
=z, 0(2,9) =v(z,y), a=u, 0= ,D=D,R=R, Q=Q, T, =T,,.
Then problem (3) in the new variables reads as follows:

(f,"U’U)*b(fp, )+G(fa )VQEX,
(f’B»f)—OVPGI[F(Q)a (6)
v=uv;on Dy Ul ULy,

We have emphasized the dependence of a(f;.,.),b(f;.,.), and G(f;.) on f. Pre-
c1sely, (Wlth Ql Qh QQ Qg)

a(fvgvﬁ) = al(f;ﬂa@) + GQ(Q,ﬁ)y

iy [ v _wlOuy 00 yfs0b 520
al(f”U’v)_/Ql ﬂ (<85C f ay) (ax f 3y)+f2 ay
dxdy,
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b(f;p, )_bl(f b,v )+b2(p7 )7



bl(f;p,@)=/Q gpi’?(f)@dmdy, bz(p,ﬁ)=/Q pV - bdxdy,
G(f;0) = G1(f;2) + G2(0),

Gi(f;0) = fF vdmdy—i—/ g, dr,
! ﬁ (ToutUTw2)No0 sou
G2(0) = | F-ddedy +/ g, -odr.
Q2 (Pout Ul w2)NO0R2 sou

Note that the functions 9, p on (6) can be assumed to be independent of ¢ in
the sequel.
Assume that the problem (6) has a solution v, p that is infinitely differentiable
with respect to e:
{UZUO+€U1+€2U2+... )
p=po+epi+eprt...
where p € L2 v, € X, k > 1. Using (2), (7) and small perturbation techniques

we can derive the equations for v, pr, k > 0. In particular for k = 0 v, and po

satisfy
a(fO;QO7 ) - b(anp07 ) + G(f07 ) VU € X
b(fos B, vo) = 0 Vp € L(Q), (8)
vy =vy on Ly ULy, UTy,.

Correspondingly we define:

Robs,O = R(fO)QO (9)

For k£ =1 the functions v; and p; are the solution of the equations:

(an'Uh )—b(fo,ph ) + Zb(f;p0, D)]e=o+

+35G( )|E 0 (f?v()? )|E OVUGX (10)
(fo,p7’l)1)+ e (f p?UO)|€ O_OVPEL2(Q>

v, =0o0n Ty, UTy,, Ul,,,

B2 vy 00
f3 oy o

where
ST Deca = by (o) = [ Dpip(yiasays [ Dp (1 oy,
Dy(f1,8) = 2 D(f)ileo = [y (Wﬁ“ 5}{ iy
Dy (f1,10) = D Juglecol= Dy fr in the sequel),
%G(f;ﬁ)la:o = Gi(f1;0) = o J;F ddxdy,
g 8

dady+
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fo 3y Ay
So the problem for v, p; reads as follows: find v, € X, p; € L2(Q) s.t.:

{a(fOQ'Upﬁ)_b(fO?ph )_bf(f17p07 )+Gl(f17 )_af(f17v()7 )VUEX
b(fo; psv1) + by (fr;hv9) = 0 VP € L*(Q),

/ Jov 25f1 8v0~8@dd
Q

(11)
This is a generalized Stokes Problem [7]. By a similar technique we can derive
the equations for v, pr with k¥ > 2. However we will not further carry on this
development in this work.

4 The Shape Optimization Problem

Suppose now that the function fi(x) in (10) is unknown as well as v;, p1. To
complete problem (10) we will have to formulate some “additional equations”;
otherwise we should require that f; be determined by minimizing a suitable
“cost functional”.

Problem (3) can be supplemented by the “additional equations”:

C(fiv,p) =0 (12)

where C is an operator (linear or nonlinear) defined on H{(z1, x2) x X x L2(€).
(We consider now f € H} for convenience). We assume C to be smooth with
respect to its variables f,v,p. Using the representations (2) and (7) we derive
from (12) the following equation:

C(f,v,p) = C(fo,vg,Po) +€C1(f1,01,p1) + O(e?) =0, Ve € [—ep,20] (13)

where a0

Cl(fl,ylapl) = &(f,y,p)‘EZO' (14)
If we assume that the data of our problems are such that C(fy,vq, po) = 0, then
we can use

Cl(fhyppl):o (15)

as additional equation to complete (10). An alternative approach would consist
in replacing the exact controllability equation (15) by the following minimization
problem:

i /Q %\&(fl,yl,pnﬁdmy (16)

where we assume that C; has image in L2(£2). Note that (16) is a weak statement
of (15).

In the next sections we apply the approach described above for the completion
of (10) and we will use the following special choice of (12):

C(f,v):=(Vxv)o T;l)(x,y) — Robs.e(T,y) in Qg C Q, (17)

where 4 is a suitable subset of 2 in which we want our additional equation
(or our “control”) to take place. Morever

Robs,s = Robs,O + gRobs,l + 52R0b572 +..., Robs,O = ((v X Q()) © TJjol)- (18)



Then we have: C(fo,v) = 0, while the equation (15) reads:

C(fi,v1) = R(fo)vy + mMiRysf1 — Rops,1 = 0 in Qya, (19)

where

- Ovr  yfos O B 0w
R(fo)v, = (V xu)o T (z,y) = — — Z2E——
(fo)fl ( —1) fo ( y) or fO 8y fO ay
y(fl,zfo—fo,zfl)% Bf1 Ouo
73 oy  f§ oy
Therefore we have the problem: find v; € X, p; € L%(Q), f1 € H(x1,22) s.t.

(f()avl, )_b(f()aplv )+bf(f17p07 )+G1(f1, )_af(flav()a )V’UGX
(f0727yl)+bf(f1apay()> —OVPELQ(Q),
R(fo)vy +miRysfi — Rovs,n = 0 in Qo

Ryfr:=Rys(f1,09) = —

(20)
where Rops,1 is a given function. Problem (20) is an “exact controllability
problem”. These problems have solutions in some particular cases only. For
this reason we replace (20) by the following optimal control problem: find v, €
X, p1 € LQ(Q), f1 € Hé(xl,fEQ) s.t.

a(fos;vy,0) = b(fo;p1,2) = bp(f13p0,0) + Gi(f152) — ag(fi300,0) VO € X,
b(fo; P v1) + by (f1;h,v9) = 0 Vp € LA(Q),
inffl = %Hfl”]?ﬂé(zhzﬁ —|—’}/1J1(f1,’071),
(21)
where

Ji(f1,vy) /mwd R(fo)vy +miRysf1 — Robs1) dady,

a = const > 0 is a small regularization parameter, v; > 0 is a weight coefficient,
Mg 1s the characteristic function of €2,,4.

Note that the third equation from (20) is considered in (21) in the least square
sense; then (21) for « = 0 provides the weak statement of problem (20). Oth-
erwise the solution v; = v1(«a), p1 = p1(@), f1 = fi(a) of (21) represents an
approximate (regularized) solution of (20).

We will also consider a generalized optimal control problem still given by (21)
however now instead of J; we use

J(fr,v1,01) =nJi(fr,01) + 22 (f1,v1,01)-

Here vo = const > 0 is a weight coefficient, while J(f1,v,,p1) is an additional
functional assumed to be quadratic. An example of J(f1,v;,p1) follows.
Example 1.

1
Jo(f1,01,1) := Ja(21,p1) = S(llpy — Pout 112, ) +/ V) — Vgt 1 |2d)
out (22)

where poyt, Uy, are given.



5 The variational equations of the optimal con-
trol problem

While considering (21) we can still consider the simple domain 2 of Fig. 3(right).
Another possibility consists of using the new variable transformation

Tﬁl(i) =, i € Q7 S QO7 (23)

which is the identity in Qs, while Tﬁ)l(i‘, 7) = (&, %ﬂ) in Q1. After applying
(23) we will work in the “unperturbed” domain g (see Fig. 4) where the
expressions for the bilinear forms in (21) become simpler. Let us use the variable
transformation (23). Indeed problem (21) reads upon its reformulation in :

Figure 4: “Simple” domain 2 — Qg .

find Vi=0y, P = p17f = fll s.t.

ao(v,0) — bo(p, 0) = by (f;po,0) + G1(f;0) — ar(f;v9,0) VO € X
bo (P, v) + by(f;p,v0) = 0 Vp € L2(Q), (24)
inff = %”f”]%lé(fl,xz) + J(f,ﬂ,p),

where

o ov 00 Ov 00
ao(v,0) = /Qou(ax v 8y)cl:ndy.

bo(p,0) = / pV - ddzdy,
Qo

by (f,po,0) =/Q pon(f,@)dxder/Q %povﬁdmdy,
’Df(faﬁ) _ _[y(fxfo —fo,zf)@+i@],

15 Ay fo Oy
Df<f7’l)()) = foa

Gi(f;0) = /Q %E - vdxdy,

1From now on we denote v, =9, p1 =p, fi = f however we should keep in mind that
now v, p, f represent the “first corrections” of vy, po, fo on the unperturbed domain.



xT - x ai a: 87 8A
af(f;yo,@):/Q Qwo-vgdmdy—/g yyYzfo — Joal) (D09 08 v 00

0 fé Oy Ox Ox Oy

2fv ov, 00
- 20 Zdedy.
/90,1 fo oy oy

J(f,0,p) = nJi(f,v) + 72 2(f, v, p),
1
Jl(f,Q) = 5 7nwd|V Xy+m1Rff*Rob571|2dl‘dy,
Qo
(fofo = fouf) Ovo [ Oug
Ref =Rs(f,vy) =~y — = 2~
1R ) 7 o oo
— @ _ @ V-v= @ + @
- O0x Oy’ = 0r Oy
and Ja(f,v,p) are given by corresponding expressions. In order to derive the
operator form of problem (24) we introduce the following real spaces :

V x v

X C (L3(Q))? C X*, HP C L*(Q) C HP*,
Hy C L2(zy,22) C H,
W =X x HP C Hy := (L*(Q))? x L?(Q) € W*,
Let us reformulate (24) in the following form: find @ := (v,p) € W =
(X x HP), f € H/, s.t

{ L(2,) = B(f, &) V& = (0,p) € W,

: . 25
infrem, = 2|12 + J(f, @), (25)

where .
L(®, ) := ag(v,0) — bo(p, 0) + bo(p, v),

B(fai) = bf(.f7p07ﬁ) + Gl(faﬁ) - af(faﬂ07ﬁ) - bf(.fvf)aﬂo)
Should @ be a solution of (25), then

for any f € Hy ( f is the independent variation), where ® i€ W satisfies the
following equation: . o
E(Q};,Q) = B(f,®) V& ¢ W. (27)

In (26), J; = g—&{ and JJQ = g—; are partial derivatives of J, while (@, ®) is the

duality between W and W* and (g, f) the duality between Hy and H}. Then
we can rewrite (25) as a system of “optimality conditions”:

{ L(®, D) = B(f, ) V& € W, (28)

alf, Pus + (Jo(f,2),85) + (J4(f, ), f) = 0 Vf € H

The element @ 7 can be eliminated from (28) by introducing the adjoint problem:
find Q := (q,0) € W s.t.

LHQW) = LW, Q) = (Jp(f,2), W) VIV € W. (29)

10

;)dxdy—&—



Since Qf € W we can choose W = Qf in (29), yielding
(Jo(f.2),25)) = L(24,Q) = B(.Q) (30)
and the system of variational equations (28) reads now as follows:

L(2,®) = B(f,®) ¥V € W,
LY(QW) = (Jo(f, @), W) VW e W, (31)
olf, Fu, + B(f,Q) +(J;(f. @), f) =0 Vf € Hy.

)
(

The first equation is the state equation. Let us define the following operators.
See [13], [12], [1]-

L:W— W, (L2 d)y, = L(2, D), VO, W,
L* W — W, (W, L"Q)n, = (LW, Q)x,. VQ, W € W,
B:Hy — W*, (Bf,®)u, = B(f,2) Vf, 2,
A s W5 — W, (Auo(f, @), W), = (Jo(f, 2), W),
Ay Hj — Hy, (ApJp(f, @), Dizeran) = (J(£,2), f).
Now the system (31) can be written in operator form as follows:

L® =Bf (in W),
alof + B*Q+ AsJp(f, @) =0 (in (Hy)*),

where A. is the extension to Hy of the following operator A o:

Ac,Of = _farx + f7 D(AC,O) - H2 N Hf
Remark. The system (32) with a cost functional J = [[C® — ¥|| , where
C: W — H,, is a given operator and ¥ € H,, a given observation function
analyzed in [1]. In this case J; = 0 and A, J5(f, @) = C*(C® — ¥).
6 Uniqueness and existence results

We analyze the particular cases where the cost functional J is chosen as outlined
by Example 1 of Section 4.

6.1. Let J be the functional J5 of in Example 1. Then

J(faQ) = J(fayvp) = % 777lwd|V XQ"_mlRff_Robs,l'QdQ'i‘ (33)
Qo
72 _ 2 _ 2
+ 92 (|p pout| + ‘Q yout| )dF

out

To study the problem in this case we assume that ,,; = Qo and we put here:

Xi={v:ve (HQ(Q))Q,y: 0on T, UT,, UT,.},

11



HP := Hl(Qo), Hf = H2(:v1,x2)ﬁH(1J(x1,x2).

Here we consider H? for velocity in order to use the uniqueness continuation
theorem. The derivatives Jg(f, ®) and J}(f, ®) become

<J</I>(f7g)7§> =N and(v X v+ mlRff - Robs,l) : (v X @)dﬂ"_
Qo

+72 / (P — Pout)PdL’ + 72 / (v — vgye) - 0dT,
T I

out out

(Jr(f. @), f) =m | mua(V xutmiRyf - Robs,1) Ry fdQ,

¥ & = (0,p)) andy f.
The system of variational equations (28) reads: find v, € X,p; € HP

ao(vy, ) = bo(ps,0) + F(f,2) Vi € X,
bo (ps Qf)“‘bf(f p,v) =0 Vp € HP (), A
alf, u, +m fQO Mua(V X vp + MRy f = Rovs,1) - (V X vp +miRy f)dQ+
+%2 Jr, (PF = Pout)f + (Vf — Voyy) - v7)dDl = 0 Vf € Hy,
(34)

where

F(fa ) _bf(fap(); )+G1(fa )_af(fay()vﬁ)a

and for every f7 vp = yf(f), pj = pf(f) denote the solution of the system
given by the first and second equations in (34) corresponding to a right end side
f=f. The system (31) is: find v; € X,p; € HP

:b (pf7 )+F(f7 )VQGX,
+ by (f; p,Uo)—UVPGHP(Q)

’7 f Out vf out) er vge X
~00(6,0) =2 Jp., (py — Pour) 5 5 € P,
olf, Fy + F(F.0) — by (0, 00)+ A A
+7 fQo mwd(V X vr + mlRff — Robs,l)mlRffdQ =0Vfe Hf.

(35)
In the sequel we assume that the generalized Stokes problem (10) (see ref. [7])
has a unique solution for any given v,, po (the solution in the unperturbed
domain €2y) and for each f € Hy. (See [8]).
Consider now the problem (35) for a > 0.

Proposition I. For any o > 0 problem (35) has a unique solution for each
gwen R 1.

PrOOF. Following [1], we formally invert L and L* in the first and second
equations of (32) then we substitute @, @ into the third equation and we obtain
the following weak problem: f € Hy satisfies:

alf, Py + (Af, Af)12(o 20) = (Gy Af)i2 (01 00 Y € Hy, (36)

12



where A is a linear operator, which depends on previous operators from varia-
tional equations, while G will depend on the data more precisely from (34) we
obtain:

(f’ f) (Affa f)]L2 (z1,22)s

(Af7 Af)]Lz(iEl,l‘g) = 71/ 'rnwd(V X v+ mlRff) . (v X Qf + mlRff)dQ+
Q

+72/ (ppj +v-vf)dl,
r

out

(Ga Af)]].,2(z1,$2) = 71/ mwdRobs,l’(VXQf+m1Rff)dQ+72/ (poutpf+yout'yf)dra
Q out

where ® = (v,p) = L7'Bf, ®; = (v;,p;) = L' Bf,Vf € Hy.

We see, that if @ > 0 then the problem (36) has unique solution which satisfies

and: Hf||%ﬂf < ||G|I?/(2a) < oo. Correspondingly we can construct v, p, q, o,

which jointly with f provides the unique solution of (35).

Consider now the problem (35) with o = 0.

Proposition I1. Assume that: i) The solution of the generalized Stokes problem
2 2
satisfies (37;0) + (%) >0aty=0, x € (x1,x2) i) problem (35) has a solu-

tion. Then this solution is unique in the class (H?(£2))? x H (Q) x W12 (21, 25).
PROOF. Let (vq,...,f1) and (v,,..., f2) be two solutions of (35). Then for
V=0, — V..., f = f1— fo from (34) we obtain:

Consider the second and third equation from (37) in s
V'QZO, VXEZOZ’TLQ2,O.

Then Av = 01in Q2 o. Considering ¢ with supp(0) C Qs ¢ from the first equation
of (37) we find Vp =0, then p = const in Qs and —p-n + Z/g—% =0 on Ly
Since p = 0 on I'yys then p =0 in Q3 and I/g% =0 on I'yy; too. Consequently,
v satisfies: B

. v

Av=01in Qs9, v=v-==0o0n Iyy.
on
This problem has only the trivial solution v = 0 in Q2. Since v € (H?*())?
then
v

Q:£:00n1“0::{(x,y):y=0,w1<$<$2}-

Consider now the second and third equations from (37) in £ o:

{ V-v-— [y(ifoofofo Tf)auo + ]{2 %1;’] =01in Qi 0,

38
fozf)%_i%]zolngl,o ( )

3 dy Jfo Oy
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On I'y we have:

|f(z)| = fo — - on Ty,

(the dependence of the right end side on x and y is understood). Since v =

%:%—Oonl‘o,then
ou Ov ov  Ou
V'Q|y:0:7+7|y20207 vxﬂ|y:027 7‘y:0207 .’L‘E(Sﬁ’l,.’L'Q)-

or ' dy oy Ox

i.e. f(z) =0. Therefore, v =0, p =0 too.

Let us once more note, that if v > 0 and we introduce into considerations
the cost functional Jy, then we overdeterminate the problem (15) for @ = 0
and the initial problem. Therefore in this case we have usually uniqueness
results, however not existence results generally. But in some physical problems
the above overdeterminations (and the term «f| f ||H2-}1f also) are reasonable and
have a physical sense, therefore in these cases we can consider the optimal
control problems like (16) as the problems to be independent of the initial
problem (where we have only J;). Here, we have also existence results and can
name these optimal control problems as the “optimal shape design problems”.
Nevertheless, it is interesting to study solvability results of above variational
problems as a = 5 = 0.

7 Iterative Processes

In this section we propose some iterative processes which are well suited for
solving the variational equations obtained in the previous sections.

7.1. Consider the problem (32); if for £ = 0,1,... f%* is known then f(*+1)
can be determinated by solving the following equations ([1]):

LK) = Bfk)

QW = Ay Jo (f0,2H),

Aw® = B*QW) + Ap g, (f®, 0W),
FEFD = pBT_ (0 f 0 4R,

(39)

where {73} is a family of parameters whose determination follows from the
theory of extremal problems ([32]), the general theory of iterative processes
([16], [25], [27]), and the ill-posed problems theory ([28] and [30]). The step
(39) would read as follows for the variational form (31) of problem (32):

£(@®,8) = B(f®, ) vd € W,
LW, QM) = (J5(f#), ™)) W) YW € W,

(w®, Pla, = B(f,Q™) + (J4(f®, M), f) Vf € Hy,
FEFD = £ o (af ) 4 ap(R)),

(40)
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7.2. Consider now problem (34) (with Q,,q C ). The iterative process (40) for
this problem read as follows:

ao(y(k) 0) = bo(p®),0) + F(f*,9) Vi € X,

bo@,y )+bf< )5 p ) = 0V € HP(Q),

(Q Q ) _bO(U(k) q +mn fQ Mya(V X v®) +m1Rff Robs,1):
(VX §)dQ + 72 fFU U(k — Vot ) qdl' v§ € X,

~b0(8,4®) =2 Jp. (0% — pour)odT Vo € B,

(w®, P, = F(f,4) = bs(f;6®),v5)+

91 fgy Mawa(V X 00 + Ry f0) — Ry 1)ma Ry fdQ Vf € Hy,
fEFD = fB) — 7y (af® +w®) k=0,1,....

?S..u

(41)
Consider now the finite dimensional case in which the function f, { f(*)}, f all are
sought for in a finite-dimensional subspace Hy y C Hy of dimension N < oo,
whose basis ¢; € WH(xq,15),i = 1,2,...,N. Then the following theorem
holds true.

2 2
Theorem 1. Assume that Qg = €0, (%L;) + (%—?) >0aty =0,z € (x1,22).
Then:

1. The problem (34) is correctly solvable for a > 0 and all N < oo;

2. The iterative process (41) is convergent for any o > 0, N < oo and
provided the parameters 7, >0, k=0,1,2,.... are small enough;

3. If a 1s sufficiently small while k is sufficiently large, then {y(k),p(k), f(k)}
can be taken as an approximate solution of problem (34).

Proof:

1. The existence of the solution for @ > 0 has been proved early. Let us
consider the case a = 0. Since f = Ef;lai% € Hy n then in the form
(36) with a = 0 we conclude that this equation is correctly solvable (be-
cause the problem (34) can have only unique solution in X x H? x Hy,
see Proposition IT). We assume the generalized Stokes problem to be
correctly solvable for given f € Hy. Hence the problem (34) is correctly
solvable too.

2. If & > 0 then the bilinear form on the left hand side of (36) is coercive and

continuous with respect to the norm || f|j 4,0 = \/OéHfH%ﬂf + ||Af||]]242(w1 2)"
Then according to the general theory of iterative algorithm the process
given by
(Y, Py = D, Dy = 7(@(FD, Day + (AFY, A ay.00)) -
_(Ga Af)LQ(m1,w2)’ k= 0,1,...

is convergent for small 7 > 0. Hence the process (41) is convergent also
and
1™ —wllx + [p® — pllze + 11 = F g, — 0, k — o0 (42)
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If AalA*A € [C1,Cy],C1,Cy = const, and 1, = 2/(2a + C; + C3) then
(42) becomes (see [1]):
Cy — C

k
72&—!—014—02) — 0, k — oo.

(43)

o —ulx-+p® —pllas +1£~ s, <

3. Let vy, po, fo be a solution of (34) when aw = 0. According to the theory
of ill-posed problem ([28] and [30]) we have: ||fo — fallmr — 0 as @ — 40,
where (fo,v,,Pa) is the solution of (34) for o > 0. Hence

lug — vallx + [P0 — Pallme — 0, as a — +0.

Then owing to (42) we conclude that the conclusions of our theorem holds true
also.

The simple schemes in Fig.(5) can be considered as examples of the above prob-
lems when f € Hy y for small N (the dimension of Hy x).

f 0,
Q Ba R 7{:/ a,
By > By h
N / it V2 9%
X =0 X,=0 %
' N=1 2 N=3
@ (b)

Figure 5: Domain Q with N shape functions: (a) N = 1, f = 01 + apo(z),
po = x(xs —x); (b) N =3, f =01+ 5] a;p;.

8 Test Problem and Numerical Results

To test our method we consider some test problems on simplified configurations.
Numerical simulations have been carried out using Bamg [11], a Bi-dimensional
Anisotropic Mesh Generator and FreeFem, a finite element Library developed at
INRIA [10], the French National Institute for Research in Computer Science and
Control, with the development of algorithms based on control theory and adjoint
formulation for generalized Stokes problem. For application of finite element
method to incompressible flow see [9]. In this section we present numerical
results using as cost functional the L2 norm of the vorticity in the downfield
zone of the new incoming branch of the bypass.

Wall curvature was considered only in the zone of the incoming branch of the
bypass where we set fy = sin(z); in other parts we used piecewise constant
function. The graft angle of the bypass incoming branch (which influences
vorticity) is equal to zero (between the artery and the new incoming branch
there isn’t a relative angle).

Velocity values v;, at the inflow are chosen in such a way that the Reynolds

16



number Re = L has order 103. Blood kinematic viscosity v = £ is equal
” y 0 q

to 4 x 1075 m? 57!, blood density p = 1 g em™3 and dynamic viscosity p =
4%1072 g em~'s™!; ¥ is a mean inflow velocity related with v,,, while D is the
arterial diameter (3.5 mm). [23].

Fig. (6)-(8) provide a preliminary account of numerical results and show how
the shape of the bypass using generalized steady Stokes equations in an optimal
control problem is smoothed out at the corner. Fig. (6) refers to the original
configuration; whereas Fig. (7) to the configuration obtained after 25 iterations

of the optimization algorithm (the vorticity has been reduced by about the 30%)

in>

Figure 6: Idealized 2-D bypass configuration before optimal shape design pro-
cess: iso-velocity [ems™1].

Figure 7: Bypass configuration at the end of shape optimization using first
corrections: iso-velocity.
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Figure 8: Adjoint solution g in Bypass configuration in the reference domain.

9 Future Developments

The development of tools for geometry reconstruction from medical data (medi-
cal imaging and other non-invasive means) and their integration with numerical
simulation could provide improvements in disease diagnosis procedures.

In this study we have focused on the problem of determining the first corrections
for the shape design of simplified two-dimensional bypass configurations.
Using the numerical method developed in this paper it is possible to realize the
iterative process for solving initial nonlinear problems. For that it is sufficient to
consider f = fo+ef1, where fj is the initial configuration and f; the computed
first correction, as the new fy, then to calculate a new first correction and so
on.

Optimal control and shape optimization applied to fully unsteady incompress-
ible Stokes and Navier-Stokes equations and possibly the coupled fluid-structure
problem and the setting of the problem in a three-dimensional geometry will pro-
vide more realistic design indications concerning surgical prosthesis realizations.
A further development will be devoted to build domain decomposition methods
([26]) based on optimal control approaches and efficient schemes for reduced-
basis methodology approximations (see for example [20] and [21]) which could
be more efficient for use in a repetitive design environment as optimal shape
design methodology requires. See [29] for the state of the art of the problem.
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