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Abstract

We present multi-level geometrical approaches in the study of aorto-
coronaric bypass anastomoses configurations. The theory of optimal con-
trol based on adjoint formulation is applied in order to optimize the shape
of the incoming branch of the bypass (the toe) into the coronary. At this
level two possible options are available in shape design: one implements
local boundary variations in computational domain, the other is based on
a linearized design in a suitable reference domain through the theory of
small perturbations. At a coarser level, reduced basis methodologies based
on parametrized partial differential equations are developed to provide (a)
a sensitivity analysis for geometrical quantities of interest in bypass con-
figurations and (b) rapid and reliable prediction of integral functional
outputs. The aim is (i) to provide design indications for arterial surgery
in the perspective of future development for prosthetic bypasses, (ii) to
develop multi-level numerical methods for optimization and shape design
by optimal control, and (iii) to provide an input-output relationship led
by models with lower complexity and computational costs. We have nu-
merically investigated a reduced model based on Stokes equations and a
vorticity cost functional (to be minimized) in the down-field zone of by-
pass. In local shape design procedure a Taylor like patch has been found.
A feedback procedure with Navier-Stokes fluid model is proposed based
on the analysis of wall shear stress and its related indexes of interest.

Keywords: Optimal Control, Shape Design, Small Perturbations Theory, Flow
Control, Parametrized PDEs, Generalized Stokes Problem, Reduced Basis Meth-
ods, Arterial Bypass Optimization.
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1 Framework: CFD in Haemodynamics

When a coronary artery is affected by a stenosis, the heart muscle cannot be
properly oxygenated through blood. Aorto-coronaric anastomosis restores the
oxygen amount through a bypass surgery downstream an occlusion. At present,
different kind and shape of aorto-coronaric bypass anastomoses are available
and, consequently, different surgery procedures are used to set up a bypass. A
bypass can be made up either by organic material (e.g. the saphena vein taken
from patient’s legs or the mammary artery) or by prosthetic material. Pros-
thetic bypasses are less invasive. They may feature very different shapes for
bypass anastomoses, such as, e.g., cuffed arteriovenous access grafts.
Mathematical modelling and numerical simulation of physiological flows allow
better understanding of phenomena involved in coronary diseases (see Refer-
ences [10] and [11]). Improvement in the understanding of the genesis of coro-
nary diseases is very important as it allows the reduction of surgical and post-
surgical failures. It may also suggest new means in bypass surgical procedures
as well as with less invasive methods to devise new shape in bypass configura-
tion (see Reference [6] for an introduction to optimal design for arterial bypass
anastomosis).
A geometrical multi-level approach. In this work, the background pro-
vided by mathematical modelling and numerical simulation has led us to apply
the Optimal Control theory of systems governed by partial differential equations
(PDEs) with the aim of optimizing the (full) configuration and the (local) shape
of a simplified bypass model. In support to this aim at macro-geometrical level
efficient schemes for reduced-basis methodology [7] applied to parametrized par-
tial differential equations (P 2DEs) are being used to provide useful and quick
indications (outputs) in a repetitive design environment as shape design re-
quires. With the reduced basis approach also a sensitivity analysis of the initial
configuration and a study of important geometrical quantities in bypass is under
investigation (see References [13] for an introduction and [5] for details). Fig. 1
clarifies our geometrical double-level of interest for bypass design.
A double control approach. At micro-geometrical level optimal control
of one (or several) aspect of the problem entails the minimization of a cost
functional which describes physical quantities involved in the specific problem.
The problem is related both with optimal shape design (see B.Mohammadi,
O.Pironneau [4]) and flow control (involved in the observation of the evolving
system and in cost functionals (such as vorticity or wall shear stress)). Op-
timization process is carried out by a control function used as parameter in
modelling the shape of the domain. At this level a double control approach
has been used: in the former case control function is used to define directly
the boundary shape (local boundary variation method) in the true domain (see
Reference [9]); in the latter case control function is used to define the map-
ping transformation from the reference domain to the true one. In this case
the design problem becomes an optimal control problem on coefficients and the
analysis is based on small perturbation theory (see Reference [1]). In both cases
the adjoint approach proposed by J.L. Lions [3] to get cost functionals gradient
in problem with distributed or boundary control and observation has been de-
veloped. In the functional optimization process a descent gradient-type method
is used. Numerical approximation is based on Galerkin-Finite Element Method
(see for example Reference [12]).
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Results. At the end of a first investigation stage, which has been prelimi-
nary reported in [9], based on optimal design by local boundary variation, a
cuffed bypass is found with a shape which resembles the Taylor arterial patch
[2]. Results reported in Sec. 4, based on the multi-level and double control ap-
proaches, go in the same direction. The effect of the shape obtained is to reduce
gradually the average velocity of the blood as it approaches the distal anasto-
mosis, since the cross-sectional area of the bypass is steadily becoming larger.
This prevents the sudden deceleration experienced in the conventional model
with the fluid returning to the host vessel. The blood is guided more smoothly
through the vessel thanks to the gradually changing geometry. Consequently
there is a smooth reduction of the momentum of the blood while approaching
the junction. Flow disturbances are abated, undesirable flow separation at the
toe of the bypass diminished. Vorticity reduction by the optimization process is
quite substantial. A feedback procedure has then been implemented by solving
the unsteady Navier-Stokes equations in the original configuration as well as in
the final configuration obtained after applying the optimal shape design process
on the simplified model. The quadratic functional used at this step keeps into
consideration wall shear stress variations in time and along the vascular wall we
are modelling by shape design. A reduction of 25% in wall shear stress spatial
and temporal oscillations has been guaranteed.
Development Guidelines. Optimal control and shape optimization applied
to fully unsteady incompressible Stokes and Navier-Stokes equations and the
setting of the problem in a three-dimensional geometry will provide more real-
istic design indications concerning surgical prosthesis realizations. Theoretical
investigation based on perturbation theory analysis and linearized shape design
is providing results on existence and uniqueness of solution and about well-
posedness of the problem, and will permit us to better understand the problem
from a theoretical point of view. Reduced-basis methodology approximation is
going to provide not only high computational savings but also a methodologi-
cal pre-process to detect the essential feature of the optimization process itself
(such as a sensitivity analysis). The ultimate goal is to build an input-output
relationship si = Fi(µk) with different models characterized by an increasing
degree of complexity, where si are outputs of interest (design quantities and
fluid mechanics indexes) and µk inputs (typically geometrical quantities).

2 Control and Shape Design: a double approach

The Stokes equations in a two-dimensional computational domain Ω with ve-
locity vector u = {u, v} and pressure p read:




−ν∆u +∇p = 0 in Ω ⊂ R2,
∇ · u = 0 in Ω,
u = 0 on Γw, u = gin on Γin, T · n̂ = 0 on Γout,

(2.1)

where n̂ is normal unit vector on the boundary ∂Ω. The latter is partitioned
in three components: Γin is the inflow boundary, where a Hagen-Poiseuille’s
velocity profile gin is imposed, Γout is the arterial outflow boundary, with a
free-stress Neumann-type condition on stress tensor T , and Γw is the boundary
corresponding to the arterial wall, the stenosed artery portion and the incoming
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branch of bypass with no-slip conditions imposed; Fig. 1 represents schemati-
cally the computational geometry and the symbols used.
Velocity values at the inflow are chosen so that the Reynolds number has order
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Figure 1: Bypass schemes: macro geometrical (left) and local configurations
(right).

103. Blood kinematic viscosity ν is 4 · 10−6 m2 s−1 [10].
In this first approach the control w represents the shape of Γc: a part of
Γw(typically the upper part of the incoming branch), made up of M branches
Γj

c(w) = Γj
c + wj , where wj is the control variable, the curves Γj

c are shape
functions (polynomials). The control shape function wj changes of a quantity
δwj during the optimization process. At the k-th iteration we have: wj

k =∑k−1
m=0(δw

j
m).

The observation on the system. We consider vorticity as distributed obser-
vation (flow control and shape optimization combined problems) in the down-
field zone Ωwd of the incoming branch of the bypass, defined as ∇×u = ∂v

∂x− ∂u
∂y

and we control the system by minimizing the functional: J(w) =
∫
Ωwd

| ∇×u |2
dΩ. During the optimization iterative process we must solve the following ad-
joint problem, to estimate the cost functional gradient J ′(w):

{ −ν∆q +∇π = ∇×∇× u|Ωwd
in Ω,

∇ · q = 0 in Ω, q = 0 on ∂Ω,
(2.2)

where q and π denote the adjoint velocity and pressure, respectively. The
feedback procedure based on unsteady Navier-Stokes applied on the two different
configurations is based on the following cost functional:

Jτ = mean0≤t≤T Σ(t) =
1
T

∫ T

0

Σ(t)dt =
1
T

∫ T

0

∫

Γw

( ∂

∂t
τw(t)

)2

dΓdt, (2.3)

which is the L2 norm of the rate of the wall shear stress (τw(t)). See for details
[9].
Small perturbations. A second approach to local shape design is based on a
map from the real domain Ω to a (rectangular) reference one Ω̃ using a variable
transformation x̃ = x, ỹ = 1

f(x,ε)y, where f(x, ε) represents the upper shape and
can be developed as f(x, ε) = f0(x) + εf1(x) + ε2f2(x) + ..., being f0(x) the
unperturbed shape. Assuming that problem (2.1) has a solution u, p that is in-
finitely differentiable with respect to ε: u = u0 +εu1 + ..., and p = p0 +εp1 + ...,
and using small perturbation techniques we can derive the equations for uk, pk

starting from (2.1), after mapping Ω to the reference domain. At this point
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we can use optimal control techniques to solve the problem for u1, p1 (the first
corrections), the function f1(x) represents a perturbation in the shape f0(x)
(weighted by ε) and is another unknown for the problem, used as control vari-
able. Like in the first approach we use an adjoint formulation, a gradient-type
method and the same functional (observation). In this case the shape design
problem is transformed into an optimal control problem on the coefficients,
which depend on the coordinate transformation itself. Results are shown in
Fig. 3 and a detailed analysis is reported in [1].

3 Reduced Basis Techniques for pre-process

Reduced basis techniques (see A.T.Patera et al., e.g. [7] and [8]) are being
used for a pre-process applied to macro bypass configuration (Fig. 1). We need
quantitative information (s(µ)) about sensitivity of some geometrical quanti-
ties before applying local shape design. By choosing a certain number of geo-
metrical parameters (bypass diameter t, artery diameter D, stenosis length S,
graft angle θ, bypass bridge height H) and a number (N) of sample parameters
µk = {tk, Dk, Sk, θk,Hk} we solve our state equations in a reference domain
Ω̃, properly mapped by an affine geometrical transformation [13] (off-line pro-
cedures). With N solutions uk(µk), pk(µk) of problem (2.1) we build a (re-
duced) basis functional space for velocity (ζ = {uk(µk), σk(µk)}) and pressure
(ξ = {pk(µk)}). Note that ζ has been enriched by additional velocity σk(µk)
which are the so-called Supremizer solutions. They are obtained by solving the
additional problem:

∫
Ω̃
(σk ·w +∇σk ·∇w)dΩ =

∫
Ω̃

pk∇·wdΩ, where both the
solution σk and the test functions w belong to the Sobolev space [H1

Γw
(Ω)]2

which vanishes on Γw. These extra functions allow the spaces ζ and ξ to sat-
isfy an equivalent inf-sup condition [12]. Choosing a new sample µ we can
get a new (on-line) solution for our problem s.t.: uN = Σ2N

k=1Uk(µ)ζk(µk),
pN = ΣN

k=1Pk(µ)ξk(µk). The components of the weights U = {Uk} and
P = {Pk} are given by the solution of the reduced basis Stokes linear system:
{ −νΣ2N

j=1Ψij(µ)(
∫
Ω̃
∇ζi · ∇ζjdΩ)Uj + ΣN

l=1Φli(µ)(
∫
Ω̃

ξl∇ · ζidΩ)Pl = Θi(µ)(
∫
Ω̃

fζidΩ),
Σ2N

j=1Φlj(µ)(
∫
Ω̃

ξl∇ · ζjdΩ)Uj = 0, 1 ≤ l ≤ N, 1 ≤ i ≤ 2N.
(3.4)

Ψij(µ),Φli(µ),Θi(µ) are the affine mapping coefficients. An adaptivity proce-
dure in choosing parameters samples to minimize error between Galerkin-Finite
Element solution and the reduced basis solution has been used. A-posteriori
estimates on outputs of interest s(µ) is under investigation ([5]).

4 Some Numerical Results

We present below some numerical results obtained applying optimal control by
local boundary variation (Fig. 2) and using small perturbations techniques (Fig.
3), starting from the same configuration with a small graft angle and a cuffed
upper part (as suggested by results in [9]). Shape is smoothed at the intersection
with artery to guide blood and the corner disappears.
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Figure 2: Bypass configuration (velocity [ms−1 ·10−2]) near the incoming branch
before (left) and after (local) shape optimization (right).
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Figure 3: Linearized bypass configuration (velocity) near the incoming branch
after shape design by small perturbations (left) and its adjoint solution in refer-
ence domain (right). Adjoint solution provides an indication of the most sensible
zone related with our observation in the domain.
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