A TWO-COLOR, RANDOMLY REINFORCED URN
PIETRO MULIERE, ANNA MARIA PAGANONI, AND PIERCESARE SECCHI

ABSTRACT. We study an urn containing balls of two or more col-
ors. The urn is sequentially sampled. Each time a ball is extracted
from the urn it is reintroduced in it together with a random num-
ber of balls of the same color: the distribution of the the number of
added balls may depend on the color extracted. We prove asymp-
totic results for the process of colors generated by the urn and for
the process of its compositions. Applications to sequential clinical
trials are considered as well as connections with adaptive design of
experiments in a Bayesian framework.

1. INTRODUCTION: REINFORCED BERNOULLI PROCESSES

The law of an infinite sequence X = (X,,,n = 1,2, ...) of Bernoulli
random variables is said to be reinforced (Walker and Muliere,2004) if

and, for every n > 1 and 4, ...,z, € {0,1},
P(Xn_|_2 = 1|X1 = T, ,Xn = xnan—I—l = ].) (12)
Z P(Xn+1 = ]_|X1 =X, aXn = .’L'n)
Initial conditions (1.1) together with condition (1.2) imply that
P(Xn+2 = O|X1 = Iy, ---aXn = Tn, Xn+1 = 0)
Z P(Xn_|_1 = 0|X1 =7, aXn = .’L'n)
for every n > 1 and x4, ..., x, € {0,1}.
The law of any infinite sequence of exchangeable Bernoulli random
variables is reinforced; this follows from an application of de Finetti’s
Representation Theorem (Walker and Muliere, 2004). However, an

infinite sequence of Bernoulli random variables with reinforced law need
not be exchangeable.
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Consider, for instance, a generalized urn process X = (Xp,n =
1,2,...) of Hill, Lane and Sudderth (1980) with initial urn composi-
tion (bg, wp) and urn function f. The function f maps the unit inter-
val to itself while by and wy are two nonnegative real numbers with
strictly positive sum. The law of X is defined by assuming that X; is a
Bernoulli(f(z))) random variable with zy = by/(bo+wy); for n > 1, the
conditional distribution of X, given X7, ..., X, is a Bernoulli(f(Z,))
with
7 _ bo+ > iy X,

" b() +wo+n .

If f is nondecreasing, the law of X = (X,,,n = 1,2,...) is reinforced.
A celebrated special case is obtained when f(z) = x for x € [0,1] :
then X is a Pdlya sequence and its law is exchangeable. However, X
is not exchangeable if f is different from the identity, from a constant
function or from a function of the type

0, z€[0,-2),

? bo+wo
f(.’L') = p, T = b0_|_0w0:
1, =€ (521,

with p € (0,1) (Hill, Lane and Sudderth, 1987).

An interesting urn scheme generating an infinite sequence of Bernoulli
random variables whose law is reinforced and that is not exchangeable
nor a generalized urn process, has been studied by Li, Durham and
Flournoy (1996) and by Durham, Flournoy and Li (1998) under the
name of randomized Pdlya urn: it has applications in randomized se-
quential clinical trials. Let 7o, m; € [0, 1] be the probabilities of success
for two treatments, say treatment 0 and treatment 1, respectively. An
urn initially contains by > 0 balls of color 1 and wy > 0 balls of color
0: when patient n = 1,2, ... needs to be assigned to a treatment, a ball
is sampled from the urn and the patient is assigned to treatment 0 or
treatment 1 according to the color of the sampled ball. Next, if the
treatment is successful, the sampled ball is reintroduced in the urn with
another of the same color, otherwise it is reintroduced in the urn alone;
with this updated composition, the urn is ready for the assignment of
patient n+1. Let X = (X,,,n = 1,2, ...) be the process of colors gener-
ated by this urn scheme: the law of X is reinforced. Durham, Flournoy
and Li prove that, if 7; # 7y, as n grows to infinity the composition of
a randomized Pdlya urn concentrates on the color corresponding to the
treatment with highest probability of success. Hence, if m; > g, the
conditional probability of assigning the (n+ 1)-th patient to treatment
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1, given the treatment successes and failures observed on the previ-
ous n patients, converges almost surely to 1. This makes the model
attractive for adaptive randomized sequential clinical trials.

The convergence result of Durham, Flournoy and Li is proved by
embedding the sequence X in a continuous-time Yule process. We be-
lieve that, in the case of two treatments, a direct proof can be obtained
by considering a generalized urn process Y embedded in X. In fact,
let T, T, ... indicate patients for which a successful treatment is ob-
served: these are also the times when the urn composition changes.
For every n, T, is finite almost surely and we may define the process
Y = (Y,,n=1,2,...) such that Y;, = X7, for n = 1,2, .... The sequence
Y is a generalized urn process with initial urn composition (b, wo) and

urn function
T

f(.I) - T + (1 —SE)ﬂ'o’ S [07 1]

Note that f(0) =0=1— f(1) and f is continuous, strictly increasing
and concave if m; > my; hence, in the terminology of Hill, Lane and
Sudderth (1980), 1 is the unique downcrossing point for f and it follows
from their Theorem 6.1 that the proportion of balls of color 1 in the urn
generating the process Y converges to 1 almost surely. This must then
also be true for the proportion of balls of color 1 in the urn generating
the process X.

This argument convinced us to investigate whether the ideas driving
Hill, Lane and Sudderth 1980’s paper could be of use for studying the
reinforced Bernoulli process generated by a two-color, randomly rein-
forced urn. Once again, visualize an urn initially containing by balls
of color 1 and wy balls of color 0. The urn is sequentially sampled.
Let 1 and v be two probability distributions with bounded support
contained in [0, 00); each time a ball of color 1 is sampled from the
urn it is returned to the urn together with a random number of balls
of color 1 having distribution p; each time a ball of color 0 is sampled
from the urn it is returned to the urn together with a random number
of balls of color 0 having distribution v. A more detailed definition is
given in the next section before proving that, if i is stochastically larger
than v, the sequence of proportions of balls of color 1 converges to a
limit Z,,. The process of colors generated by the urn is thus asymp-
totically exchangeable, i.e. given Z,, the colors generated by the urn
are asymptotically conditionally i.i.d. with distribution Bernoulli(Z).
In section 4 we show that if, in addition, the supports of u and v are
bounded away from O and the first moment of y is greater than the
first moment of v, then Z, is equal to 1 almost surely. The argument
for this result follows closely that in Hill, Lane and Sudderth (1980) for
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studying convergence of generalized urn processes; like them, in section
3 we introduce a gambling problem connected with our urn, to be used
as an auxiliary tool for proving properties of the distribution of Z.
A two-color, randomly reinforced urn implements a specific adaptive,
randomized, sequential design for clinical trials on two treatments with
a favorable response, like for instance survival time after treatment; a
Bayesian perspective on the problem will be illustrated in Section 5
where connections with two-armed bandit problems will also be exam-
ined. Finally, a generalization to a (k + 1)-color, randomly reinforced
urn is considered in the last section of the paper.

2. MODEL SPECIFICATION AND FIRST ASYMPTOTIC RESULTS

We are going to define a two-color, randomly reinforced urn with ini-
tial composition (b, wo) and directed by two probability distributions
u and v; by and wy are two non negative real numbers with strictly
positive sum, while 4 and v are two probability distributions with sup-
port contained in [o,w], where 0 < a < w < oo. In fact, visualize an
urn initially containing by balls of color 1 and wq balls of color 0. Set

B
BO = b(), W() = Wy, D() = B() + W(), Z() = HO (21)

0
At time n = 1, a ball is sampled from the urn; its color is X7, a
random variable with Bernoulli(Zp) distribution. Let M; and N; be two
independent random variables with distribution p and v, respectively;
assume that X, M; and N; are independent. Next the sampled ball is

replaced in the urn together with
XiM;+(1— X))V,

balls of the same color; set

B
By =By + Xi My, Wy =Wy + (1 - X1)Ny, Dy =B+ W, Z; = D—l

1
Now iterate this sampling scheme forever. Thus, at time n + 1, given
the sigma-field F,, generated by Xi,..., X,,, My, ..., M,, and Ny, ..., N,
let X,,+1 be a Bernoulli(Z,) random variable and, independently from
F, and X, 1, assume that M,, ;1 and N,,;; are two independent random
variables with distribution p and v respectively. Set
Bn—l—l = Bn + Xn—l—an—Ha Wn—|—1 = Wn + (1 - Xn—|—1)Nn—|—1a

Bn—l—l
Dn—|—1 '
We thus generate an infinite sequence X = (X,,n = 1,2,..) of Bernoulli
random variables, with X, representing the color of the ball sampled

Dn+1 = Bn—|—1 + Wn—i—l; Zn—|—1 =
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from the urn at time n, and a process (Z, D) = ((Z,, D,),n =0,1,2...)
with values in [0,1] x (0,00), where D,, represents the total number
of balls in the urn before it is sampled for the (n 4 1)-th time and Z,
is the proportion of balls of color 1; we call X the process of colors
generated by the urn while (Z, D) is the process of its compositions.
Note that, since (1.1) and (1.2) are satisfied, the law of X is reinforced.
For 1 = v, a two-color, randomly reinforced urn becomes a generalized
Pélya urn with parameters (bg, wo, v), as defined and studied in May,
Paganoni and Secchi (2002).

In the rest of the section we illustrate a few asymptotic results for
the process of colors and the process of compositions generated by a
two-color, randomly reinforced urn; we often assume that

W >t V. (2.2)

This means that E[¢(M)] > E[¢(NV)] for all nondecreasing functions ¢ :
R — R for which expectations exist. In particular, when assumption
(2.2) is satisfied, the random variable

An — E Mn—l—l _ Nn+1
Dn + Mn+1 Dn + Nn+1

J—"n} (2.3)

is almost surely non negative, for n = 0,1, 2, ....

Theorem 2.1. Assume that (2.2) holds. Then the sequence of propor-
tions Z = (Z,,n = 1,2,...) is a bounded submartingale with respect to

the filtration {F,}. Therefore, it converges almost surely to a random
limit Zo € [0, 1].

Proof. Compute

E[Zn11| 7] .
B, + M, W
- [Z"<Bn + V—V: + J+\/.}n+1 T B+ W+ Nn+1> Fn}
and analogously
E[(1 — Zni1)|F] >

= E|(1-2Z2, Ful -
[( )(Bn+Wn+Nn+1+Bn+Wn+Mn+1>‘ }
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Hence
E[ZH-H - Zn|-7:n] (26)
= E[(l - Zn)ZnH - Zn(l - Zn+1)|~7'—n]
=7Z,(1—-2,)E [ Bot M1 | W
Bn + Wn + Mn+1 Bn + Wn + Nn+1
_ Wn + Nn—|—1 _ Bn f :|
Bn + Wn + Nn+1 Bn + Wn + Mn—l—l "
Mn+1 Nn—|—1 :|
=72,1-2,E — Fn
( ) [Bn + Wn + Mn+1 Bn + Wn + Nn—|—1
= Z,(1— Z,)A,
>0,
where A, is defined in (2.3). u

Corollary 2.2. Assume that (2.2) holds. Then the sequence of colors
X is asymptotically exchangeable and

Hm P[Xps1 = 21, ooy Xna = 23] = B[Z20=1% (1 — Z, )k Ziza o]
n—oQ

for every k > 1 and x1, ...,z € {0,1}.

Proof. For n > 1, the conditional distribution of X,,; given F, is a
Bernoulli(Z,); on a set of probability one, it converges to a Bernoulli(Z)
as n grows to infinity. The result now follows from Lemma 8.2, part
(b) in (Aldous, 1985). n

For € > 0, set
A ={z€0,1] : (1 — z) > €}.

Lemma 2.3. Assume that o > 0 and that [ zp(dz) > [ zv(dz). If
Zy € A, then P[Z exits from A] = 1.

Proof. The argument is analogous to that used by Hill, Lane and
Sudderth (1980) for proving their Proposition 3.1.

Fix e >0 and let T =inf{n > 0: Z, ¢ A.}. Since A, is open, T is a
stopping time with respect to the filtration {F,}. Forn =1,2,3, ..., let
T, be the minimum of T" and n; for k = 1, ..., n, the indicator 1j7;,>4] is



measurable with respect to Fj_;. Thus

1> E[Zp] > (2.7)
> E Z(Zk_Zk—l)l[TnZk} =
| k=1
= E|D E[(Z— Zc )| Fillimzn

| k=1

Z E[(Zk — Zk—1)| Fr-1]1ir=c0]
=

v
&=

= E Z Ze—1(1 = Zp—1) A1 1pr=og]
[ k=1

Z Ak—ll[T:oo}]

k=1

v

ek

a bo+w0+(k—1)a
> € E|M, — N;|P|T = ¢
- ; o+ w0+ i)z e = MHPLT = o)
on a set of probability one; the second equality follows from (2.6), the
next to the last inequality holds because the proportions Z,_; € A, if
T = oo, while the last inequality is true because, with probability one,

bo+wo+ (j—1a<D;<by+wy+(j— 1w (2.8)

for every j =0,1,...,n
Thus, for n > 1,

b0+w0+ 1)
1> E(M, — N.|P|T = ) 2.
52 (by + wy + kw)? M el Pl ] (2:9)

Since o > 0,
ibo+w0+(l€—1)a
1 (b() + wo + kw)2

moreover, B[My— Ni| = [ zpu(dx) — [ 2v(dx) > 0. Hence, P[T = oo
must be zero and P[Z, exits from A.] = 1. u

Y

Theorem 2.1 and Lemma 2.3 admit a corollary that parallels Corol-
lary 3.1 in Hill, Lane and Sudderth (1980). Before stating it, let us
note that the process (Z, D) is a Markov sequence with respect to the
filtration {F,}; hence the strong Markov property holds. Rephrased in
our urn terminology it says that, if 7 is an almost surely finite stopping
time relative to the filtration {F,} then, given the sigma-field F,, the
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conditional law of the random sequence ((Z;, D), (Z;+1, Dr41),...) is
that of the process of compositions generated by a two-color, randomly
reinforced urn with initial composition (Z, D,, (1—Z,)D,) and directed
by © and v.

Theorem 2.4. Suppose that:
(i) a> 0;
(ii) assumption (2.2) holds;
(iii) [ zp(dz) > [ zv(dz).
Then, lim, o Z,, = Zoo € {0,1} with probability one.

Proof. Existence of the almost sure limit Z,, for the sequence of pro-
portions Z = (Z,,n = 1,2,...) is guaranteed by (i) and Theorem 2.1.
Let € > 0; since A, is open,

P[Z € A = P[(Zy,, D,) eventually in A, x (0,00)] =0

where the last equality holds because of Lemma 2.3 and the strong
Markov property. Since this is true for every € > 0, P[Z,, € {0,1}] = 1.
[ |

The last one is only an intermediate result: in fact, in Section 4 we
are going to prove that

P(Zyp=1)=1 (2.10)

when by > 0 and assumptions (i)-(iii) of Theorem 2.4 are satistified.

3. AN AUXILIARY GAMBLING PROBLEM

We introduce a gambling problem for studying the distribution of
the limit of the sequence of compositions of a two-color, randomly
reinforced urn satisfying assumption (2.2).

Following Dubins and Savage (1965), a gambling problem is defined
by three elements: the space S of the gambler’s fortunes, a gambling
house associating to each fortune s € S the gambles available to the
player, and a utility function v : S — R. The fortunes space of our
gambling problem is S = [0,1] x (0,00). The gambling house is de-
scribed by the set A of all couples (u,v) of probability distributions
with support contained in [a, w], with 0 < a < w < 0o, and such that
i >g v. When the gambler’s fortune is (z,d) € S and the gambler
selects (u,v) € A, his next fortune has distribution v((z,d), (1, v))
and is equal to ((zd + M)/(d + M),d + M) with probability z and
((2d)/(d+ N),d+ N)) with probability 1 — z, where M and N are two
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independent random variables with distribution px and v respectively.
Finally, for every (z,d) € S, define

u(z,d) = (1 —2)"
where [ is an integer greater than or equal to 2.

Remark 3.1. If A is a countable subset of [, w]| and, for all (u,v) € A,
both probability distributions ;1 and v have support contained in A, we
may describe our gambling problem by means of a countable space of
fortunes S and refer to the gambling theory developed in Maitra and
Sudderth (1996) which avoids technical issues of measurability.

A gambler’s strategy o is an infinite sequence oy, 01, ... such that
oo = ap € A and o,(s1,...,8,) € A, for every n > 1 and s1,..., 8, €
S. When his initial fortune is (2,d) € S and the gambler chooses a
strategy o, this determines the law of a stochastic process (Z, D) =
((z,d), (Z1, Dy), (Zs, Ds), ...) with values in S; (Z;, D;) has distribution
v((2,d),00) and, given (Z1,Dy) = (21,d1), ..., (Zn, Dy) = (2n,dy), the
conditional distribution of (Z,11, Dpy1) is equal to

Y((zn, dn), 00 ((21,d1), .- (20, dn))),

for n = 1,2,3,.... The strategy o generates a payoff to the gambler
equal to
u(o) = E[limsup u(Z,, D,)]. (3.1)

n—oo

This is consistent with the payoff treated in Dubins and Savage (1965)
because the utility function u is bounded and thus the Fatou equation
in Sudderth (1971) is in force (see also Theorem 2.2 in Maitra and Sud-
derth (1996)). In fact, with an argument analogous to that illustrated
by equations (2.4)-(2.6) in the proof of Theorem 2.1, one can show that,
for every gambler’s strategy o, the sequence Z = (Z,,n = 1,2,...) of
the first components of the process (Z, D) is a bounded submartingale
and converges almost surely to a random variable Z; hence

u(0) = E[B(1 - Z)"™].

The process D = (D,,n = 1,2, ...) diverges to infinity with probability
one for any strategy o available to the gambler; this happens because,
for any (u,v) € A, both probabilities distributions have support con-
tained in [, w| and « > 0.

A constant strategy consists in fixing (o, o) € A and letting

0o = O'n(Sl, ) Sn) = (,u'Oa VO)a

for every n > 1 and s4, ..., s, € S; that is the gambler plays constantly
the gamble identified by (uo, v9). We indicate such a constant strategy
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as (o, o). If (2,d) € S is the initial fortune of a gambler who chooses
a constant strategy (o, v9)®, the process of states (Z, D) has the same
law as the process with the same name generated by a two-color, ran-
domly reinforced urn with initial composition equal to (zd, (1 — z)d)
and directed by pg, and vy.

The value of the gambling problem at the initial fortune (z,d) € S
is defined as

V(z,d) = supu(o);

g

a strategy o is optimal at (z,d) if u(o) = V(z,d). With the next theo-
rem we find an expression for the value of our gambling problem and an
optimal strategy for the gambler playing it. Before stating the result,
let us define for a,b > 0

B(a,b) = ————=

where I'(a) is the gamma function evaluated at a. For a € [a,w], we
use ¢, for the point mass distribution at a.

Theorem 3.2. For every initial fortune (z,d) € S,

PO +6-1)
V(z,d) = ﬁp(w)r(i +68-1)

(3.2)

and the constant strategy (d,,0,)% is optimal at (z,d).

Proof. For every initial fortune (z,d) € S, let Q(z,d) = u((dy, 6,)%).
When the gambler chooses the constant strategy (d,,d,,)>, the law of
the sequence Z = (Z,,n = 1,2,...) is that of the infinite sequence of
random proportions of balls of color 1 generated by a Pélya urn initially
containing d balls, of which a number zd are of color 1 and a number
(1 —2)d of color 0. At time n = 1,2, ..., a ball is sampled from the urn
and it is reintroduced in it together with other w balls of the same color;
the number of balls contained in the urn becomes d+ (n+1)w, of which
a fraction Z,; are of color 1. It is well known that the sequence of
random proportions generated by this Pélya urn converges to a random
variable Z,, with Beta distribution with parameters (zd/w, (1—z)d/w).
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Thus

@Ed (3.3)
:/ B(1—t)"'B (ﬁl, M) 11— t)(ltv—z)d‘ldt

W W
(e +s-1)
() r(E+s-1)

In order to prove that (J,,d,)% is optimal, we show that @ is exces-
sive, i.e. that for all (z,d) € S and (p,v) € A

Qzd) > / Q(u, 0)1((2, d), (1, v)) (du, dv), (3.4)

and that
Qo) = u(o) (3.5)

for every gambler’s strategy o; the real number (o) is defined in (3.1)
after substitution of u with (). The result then follows from Theorem
3.3.1 in Dubins and Savage (1965) or Theorem 5.1 in Maitra and Sud-
derth (1996).

To prove (3.4), let m € [a,w], (z,d) € S and observe that, because
of (3.3),

QG d+m)
P (em)r (G244 5 1)
=5
T (1_))P(d+m+ﬁ 1

?

)
_ 3 [(( —2)d+w(B-2)(1L-2)d+w(B—-3))---((1 —2)d)
(d+m+w(B-2)(d+m+w(B—3)) --(d+m)

hence Q((zd + m)/(d + m),d + m) is a decreasing function of m. This
implies that, for all independent random variables M and N with dis-
tributions p and v respectively, (u,v) € A,

zd+ M zd+ N
o M) < o

ElQ( d+ N
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since p >4 v; therefore,

[ Qo). () o) (3.5)
= zE[Q(%,d + M)+ (1-2) E[Q(%, d+ N)]
< QT A+ V) + (1 ) BlQ( o d+ V)]
= E[zQ(%,d—i— N)+(1- z)Q(didN,d-l—N)].

Now define, for all couples of non negative real numbers (b, w), all
n € [o,w| and all integers r > 0, the quantity

g(b,w,n,r)
b [ (w+b(w+b+w) - (w+b+rw) }_}_
S wtb|(wHb+n)(w+b+n+w) - (w+b+n+rw)

w {(w+b)(w+b+w)---(w+b+rw).

w+b w(w+ w) -+ - (w + Tw)
(w+n)(w+n+w) - (w+n+rw) ]

(wH+b+n)(w+b+n+w)---(w+b+n+rw)]

Notice that ¢g(b, w,n,0) = 1; with a few elementary, but tedious, com-
putations one can show that

g(b,w,n,r)— g(b,w,n,r+ 1)
(n)(b+w+w)---(b+w+rw) .
b+w+n)b+w+n+w)---(b+w+n+(r+1w)
(w+n) (w+n+rw)
(wH+w) - (w+(r+1w)

1=

> 0;
hence g(b,w,n,r) <1 for all » > 0. Fix n € |, w| and check that

zd+n zd
d 1— —.d 3.7
= Q(za d)g(Zda (1 - Z)da n, 8 — 2)
< Q(z,d).
Equation (3.4) now follows from (3.6) and (3.7).
To prove (3.5), let o be a strategy available to the gambler; under
o the sequence Z = (Z,,n = 1,2,...) converges almost surely to a

random variable Z,, while lim,, ., D,, = oo with probability one. By
Lemma 5.2 in Hill, Lane and Sudderth (1980), on a set of probability
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one the sequence of Beta distributions with parameters (Z,D,,/w, (1 —
Z,)D,,/w) converges in distribution to 0z . Thus

Q(0) = E[lim Q(Z,, Dy)]
ZuDy (1= Z,)D,

= E[lim 15(1 —t)*B ( , )tz“f”— 1-1)

n—oo J w w

= E[ﬁ(l - Zoo)ﬂ_l]

u(o).

4. ON THE DISTRIBUTION OF Z,

We are finally ready to prove (2.10). Consider a two-color, randomly
reinforced urn with initial composition (b, wp) and directed by the
probability distributions x4 and v with support in [, w], with 0 < o <
w < 00.

Theorem 4.1. Suppose that by > 0 and
(i) a> 0;
(ii) assumption (2.2) is satisfied by the probability distributions p
and v;
(iil) [¥ zp(dz) > [¥ zv(dz).
Then Zy = lim,_ oo Z, = 1 almost surely.
Proof. It follows from Theorem 2.4 that P[Z,, € {0,1}] = 1. Suppose
that
PlZu=0]=¢>0. (4.1)

Let (z,d) € (0,1) x (0,00) be such that (by, wo) = (2d, (1 — 2)d).

Case 1: (zd, (1 — z)d) € L = {(b,w) € (0,00) x [0,00) : min(b, w) >
w} Consider the gambling problem described in the previous section
and a gambler with initial fortune equal to (z,d) who decides to use
the strategy (u, ) for playing it. Then, (4.1) implies that

ef < u((p,v)*) < V(z,d). (4.2)
However, because of Theorem 3.2,
V(z,d)
d (1-2)d
rEr (s
F(%)P(%Jrﬁ—l)
1 1 — z 1—2
:/ B (ﬁ,( Z)d> T 6 ) s TO ) o

0

w w

(1—=Zp)Dp _ldt]
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For /8 going to infinity, a Beta distribution with parameters (1, 3) con-
verges in distribution to dy; this fact and (4.2) imply that

0= lim V(z,d) > lim fe = oc; (4.3)
B—00 B—00

hence (4.1) is false. Note that the first equality in (4.3) holds because

the integrand
B (ﬁ’ (1 — Z)d) t%_l(l _ t) (l—wz)d_l
w w

is a bounded and continuous function defined on [0, 1] that is equal to
0 for t = 0, since zd > w.

Case 2: (zd,(1 — 2)d) € L°N{(b,w) € (0,00) X [0,00) : w > 0}.
Let 7 = inf{n : (Z,D,, (1 — Z,)D,,) € L}; 7 is a stopping time with
respect to the filtration {F,}. Moreover, since min(bg,wy) > 0 and
a > 0, P[t < oo] = 1. The strong Markov property implies that,
given the sigma-field generated by 7, the conditional law of the pro-
cess ((Zr,D;),(Zr41,Dr41), ...) is the same has that of the process of
compositions generated by a two-color, randomly reinforced urn with
initial composition (Z,D,, (1 — Z,)D,) and directed by the probability
distributions p and v; the sequence of proportions of balls of color 1
generated by this urn converges to 1 almost surely because of Case 1.
This must then also be true for the two-color, randomly reinforced urn
with initial composition (b, wp) and directed by u and v.

Case 3: (1 — z)d = 0. This is the simplest case, since Z,, = 1 for all
n=12..if wyg=0. ]

When p = v, a two-color, randomly reinforced urn with initial com-
position (bg, wq) and directed by p and v is a generalized Pélya urn
with parameters (b, wo,v) as in May, Paganoni and Secchi (2002); in
this case the distribution of Z_, has no atoms. We don’t know the exact
distribution of Z,,, but Theorem 3.2 implies the following inequalities
for its moments:

L(efee) T (2 + 1)

Bl = Zeo)) < T p Bz (44
and
E[Z] < PTG +7) (4.5)

= I()r(fetwe 47

for r = 1,2, .... To obtain (4.4), consider a gambler with initial fortune
(z,d) = (bo/(bo+wo), bo + wo) who plays the constant strategy (v, v)>.
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Then, for g =r+1,

%u«u, v)®) <

V(z,d)

because of (3.2). This is in fact inequality (4.4) written with a different
notation. Inequality (4.5) now follows by simmetry from (4.4). For
instance, for r = 1, (4.4) and (4.5) imply that E(Zy) = by/(bo + wo),
something we can get directly from Theorem 2.1 since the sequence of
proportions Z = (Z,,n = 0,1,2,...) is a bounded martingale for y = v.

5. A BAYESIAN PERSPECTIVE

Suppose that the probability distributions p and v directing a two-
color, randomly reinforced urn represent the laws of a favorable covari-
ate with positive values observed for a patient after the patient has
experienced ‘treatment 1’ or ‘treatment 0’, respectively; for instance,
the covariate may result from a blood count or be a function of patient’s
survival time after treatment. If ;4 and v are unknown, a researcher
designing a sequential clinical trial may be tempted to use the urn for
allocating patients to treatments, knowing that, in the long run, the
urn will select the better treatment with higher and higher probabil-
ity, if such a treatment exists; better here refers to the treatment with
associated a stochastically larger covariate with greatest expectation.

A Bayesian researcher can take p and v to be random, with joint
law incorporating prior information. For instance, following Ferguson
(1973), he could assume that p and v are independent Dirichlet pro-
cesses, with parameters ¢; and ¢, respectively; ¢; and ¢y are finite
measures with support contained in [o,w], with 0 < a < w < oo.
In this case, let X be the process of colors and (Z, D) the process of
compositions generated by a two-color, randomly reinforced urn with
initial composition

by = /w xdy(dzx), wy = /w xpo(dx)

and directed by p and v. The color of the ball extracted from the
urn when it is sampled for the n-th time indicates the treatment that
patient n will experience; M,, indicates the the value of the covariate for
patient n if he has been subject to ‘treatment 1’ while /V,, represents the
value of the same covariate when he is subject to ‘treatment 0’. Then,
at stage n = 1,2, 3, ... of the trial, after having observed the covariate’s
values for the first n patients, the conditional expected value for the
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covariate on the next patient experiencing ‘treatment 1’ is

v " bo+ > i XiM;
E[/a @] = Slae) 50 X,
D,

e+, X

while the conditional expected value for the covariate on the next pa-
tient experiencing ‘treatment 0’ is:

o * wo + (1 - XM,
B[ o) 7] = S ST (1 X)
D

oo, w]) + 325, (1 = X3)

Fr is the sigma-field generated by the random variables Xy, ..., X,, and
X M+ (1—X1)Ny, ., Xy My, + (1 — X,,) Ny, Equations (5.1) and (5.2)
follow from independence of i and v and from Ferguson (1973) where
it is shown that if y is a Dirichlet process with parameter ¢;, then the
expectation of u((—o0,z]) is ¢7*([a, w])é1((—o0, x]) for every z € R,
and the conditional distribution of u, given a sample M, ..., M, of size
k > 1 from p, is a Dirichlet process with parameter ¢, + Zle Ong; -
The researcher may thus consider the urn as a randomizing device that
assigns patient n + 1 to a treatment with a probability proportional to
the product of the total number of patients who experienced in the past
such treatment and the best Bayesian prediction under square loss for
the value of the covariate for patients experiencing such treatment: we
are here interpreting the prior information contained in the quantities
é1([o, w]) and ¢o([er,w]) as if these were sample sizes of patients who
experienced the two treatments prior to the actual sequential trial.

In fact, the urn implements a strategy for a two-armed bandit prob-
lem, a gambling problem where a player has to make sequential selec-
tions from two independent stochastic processes (arms); at each stage
of the problem, the gambler chooses to observe an arm based on past
selections and observations; see Berry and Fristed (1985) for a gen-
eral theory for bandit problems. The case where observations on arm
1 = 1,0 are conditionally i.i.d. given that their marginal distribution p
and v respectively are Dirichlet processes with parameters ¢; and ¢y,
has been treated by Chattopadhyay (1994) who generalized results of
Clayton and Berry (1985). For a Bayesian, the theory of bandit prob-
lems is the right mathematical setting for sequential clinical trials: of
course, for each sequence of selections and observations a payoff need
to be specified and the worth of a strategy is then judged with respect

(5.1)

(5.2)

(1 - Zn);
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to the expected payoff it generates. For instance, Clayton and Berry
(1985) and Chattopadhyay (1994) consider as payoff the sum of the
first N > 1 covariate’s values that, in our notation, is

N N
S XM+ (11— X)Ns. (5.3)
=1 =1

The existence of an optimal strategy is then guaranteed, but it seems
next to impossible to specify it explicitly unless N is very small. How-
ever, Clayton and Berry note that, with a payoff as in (5.3), optimal
strategies possess a monotonicity property:

roughly, the larger the observation from arm 1, the greater
the inclination to continue selecting that arm.

This is yet another instance of reinforcement; the strategy implemented
by our two-color, randomly reinforced urn has the same property. Note
that this strategy is randomized in the sense that, at each stage of the
problem, the strategy selects an arm by means of a randomizing device.
In general, the use of a randomized strategy does not give an advantage
to the gambler: there is always a non-randomized strategy generating
a greater or equal expected payoff. Nevertheless, in sequential clinical
trials non-randomized strategies are not appealing since they are open
to experimental bias: for instance, Rosenberger and Lachin (2002) and
Hu and Rosenberger (2003) claim that:

randomization should be preserved in clinical trials at all
costs, because it mitigates certain biases and provides a
basis for inference.

6. CONCLUDING REMARK: A (k + 1)-COLOR, RANDOMLY
REINFORCED URN

The arguments of the previous sections may be easily extended to
cover the case where the urn contains more than two colors and the
reinforcement’s distribution associated with one particular color domi-
nates the reinforcement’s distributions associated with the other colors.

Let £ > 1, By = (bo(1),...,b0(k + 1)) a vector of k + 1 positive real
numbers and p, vy, ..., v, be k+1 probability distributions with support
contained in [o, w], where 0 < o < w < oo. The vector By represents
the initial urn composition with by(7) > 0 indicating the number of
balls of color 7+ = 1, ...,k + 1 contained in the urn before it is sampled
for the first time. Set

k+1 1

Dy =) By(i) and Z, = +-Bo.
i=1 0
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Let X, be a random vector with values in {0, 1}**! and Multinomial(1, Zp)
distribution, and M,; € [o, w]**! a random vector with probability dis-
tribution equal to the product pu X v -+ X vg; assume that X; and M;
are independent. Next, set

k+1
1
By =By+ Xy x M, Dy =Y _Bi(i) and Z; = +-Bi.
i=1 1

where the operator * represents the element by element product be-
tween two vectors with same length. At time n + 1, given the sigma-
field F, generated by Xi,..., X, and M, ..., M, let X, ;1 € {0,1}F*!
be a random vector with Multinomial(1, Z,) distribution and, indepen-
dently of F,, and X,,;1, assume that M, is a random vector with val-
ues in [, w|¥*! and with distribution equal to the product uxv; - - - X .
Set

k+1

. 1
Bn+1 = Bn + Xn+1 * Mn—l—l; Dn+1 = Z Bn+1 (7')7 Zn+1 =
=1

= By
Dn+1

And so on forever, thus generating the process of the urn compositions
(Z,D) = ((Zn, Dy),n = 0,1,...) with values in [0, 1]**! x (0,00) and
the process of colors X = (X,,,n =1,2,...) with values in {0, 1}F+1,

Theorems 2.1 and 4.1 are easily generalized, if we assume that the
probability distribution p dominates every probability distribution v;,
fore=1,...,k.

Theorem 6.1. Assume that, for alli =1, ..., k,
o zst v;.

Then the sequence Z(1) = (Z,(1),n =0,1,2,...), of the proportions of
balls of color 1 in the urn, is a bounded submartingale with respect to
the filtration {F,} and it converges to a random limit Z,(1) € [0, 1].

Proof. . In the proof of Theorem 2.1 substitute Z, with Z,(1), B,, with
B, (1), M,, with M, (1) and set W,, = 3#*] B,,(i). When computing the
analogous of equations (2.4)-(2.5), for n = 1,2, ..., let

k+1 _
Ny = X, (i — 1)M,(d),
1=2

where (X, (1), ..., X,(k)) has values in {0,1}* and, given F,, is inde-
pendent of X, 1 and of M,,; with conditional distribution equal to
a Multinomial(1, (1 — Z,(1)) Y(Z.(2), ..., Zn(k +1))). Note that, given
Fn, the conditional distribution of N, is a mixture of the probability
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distributions v, ..., x; p is stochastically larger of such mixture because
u>g v foralli =1, .. k. [

Theorem 6.2. Suppose that:
(i) a>0
and, forit=1,...,k,
(i) p >q v
(iii) [ zp(dz) > [0 zv(dz).
Then lim,, o Z,(1) =1 almost surely.

Proof. As for the last theorem, Lemma 2.3 and Theorem 2.4 are easily
reformulated and proved in the new (k + 1)-color setting after observ-
ing that u is stochastically larger than any mixture of the probability
distributions v;’s because of (i7), and the first moment of p is strictly
greater than the first moment of any mixture of the probability dis-
tributions v;’s if (i47) is true. Hence lim, ,. Z,(1) € {0,1} almost
surely.

To complete the proof, introduce a gambling problem, with space of
fortunes S = [0, 1] x (0,00) and gambling house described by the
set A of all (k+ 1)-tuples of probability distributions (u, v1, ..., V) with
support contained in [, w| and such that p > v; for i = 1, ..., k; when
the gambler fortune is (z,d) € S and the gambler selects (u, v, ..., ;) €
A, his next fortune has distribution v((z, d), (4, v1, ..., ¥)) and is equal

to
k+1

1 . .
(d+zk+1X() ()(dz—i—X*M),d-l—ZX(z)M(z))

i=1

where X is a random vector with values in {0, 1}**! with Multinomial(1, 2)
distribution and M is random vector, independent of X, with values
in [o, w]*! and probability distribution p x vy x -+ X v. Finally, for
/3 an integer greater than or equal to 2, let u(z,d) = (1 — 2(1))? ! be
the utility function at the fortune (z,d) € S.

There are no difficulties in adapting the proof of Theorem 3.2 for
showing that, for every initial fortune (z,d) € S, this new gambling
problem has value

r()rE==d 4 g — 1)
r(=r(Z - 1)
and the constant strategy (dy, 0y, -..,0,) is optimal.

Now, go through the argument of Theorem 4.1 for proving that
Zs(1) =1 almost surely. n

V(Z, d) =p
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