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Abstract

This paper presents a review of the mathematical models which can be adopted to
describe the different physical phenomena characterizing the flow around a sailing
yacht. The complete model accounting for laminar-turbulent transition regime, free-
surface dynamics and fluid-sails interaction is introduced as long as some simplified
models that have been used to reduce the computational complexity. Drawing on
the experience of the Ecole Polytechnique Fédérale de Lausanne (EPFL) as Official
Scientific Advisor to the Alinghi Team, winner of the 2003 America’s Cup, we
discuss the role of Computational Fluid Dynamics simulations based on Reynolds
Averages Navier-Stokes (RANS) equations and their integration in standard yacht
design process. Numerical results in different areas (appendages design, free-surface
flows, aerodynamics of sails) are presented and discussed.
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1 Introduction

The America’s Cup is a yachting race first run in 1851 and whose prize repre-
sents the world’s oldest sporting trophy. America’s Cup yacht races are fiercely
competitive. Even after a race of several hours, just seconds can separate two
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teams at the finish line. Unlike aerospace or automotive applications, for which
vast safety margins must be guaranteed, America’s Cup competition demands
the utmost performance. Design teams must perform extensive analysis to en-
sure that their racing yachts can pursue victory without slipping over the edge
into disaster.

The 31st America’s Cup series held this past spring in Auckland, New Zealand,
was won by Team Alinghi of Geneva. To help wring every drop of performance
out of the latest technology, in July 2001 the Alinghi syndicate named the
Federal Institute of Technology in Lausanne (I’Ecole Polytechnique Fédérale
de Lausanne, or EPFL) as its official scientific advisor.

Experienced sailors, disciplined training sessions, focused teamwork, and top
quality construction all play major roles in the winning of America’s Cup
class races. But Team Alinghi has also given careful attention to scientific
innovation and technical detail in its partnership with the EPFL. Using their
prowess in multiple disciplines, the EPFL researchers helped the Alinghi team
evaluate commercial materials, developed new materials and methods, and
modeled and simulated innovative designs. Their work clearly bore results,
because Alinghi sailed under demanding conditions without any perceptible
equipment failures. Fifteen senior scientists, drawn especially from two disci-
plines - polymer technology and applied mathematics, together with some 20
students, have been working in the research, design, construction, outfitting
and modification of the Alinghi boats.

2 New materials and complex flowfields, testing and numerical
simulation

In addition to getting the departments to function smoothly together as they
took their firstrough concepts from design to fabrication, the challenges of
the EPFL researchers were technological: developing composite structures to
handle extreme conditions, testing the material’s resistance to more than the
standard 50 tons of pressure applied to the mast under normal conditions at
sea, and working out quality-control methods by computer simulation of hun-
dreds of sail and hull profiles. One challenge facing researchers who specialize
in sports is the rate of change. In aerospace it takes roughly 10 years to test
and validate a new technology, which then has a useful lifetime of at least 20
years. In the automotive industry, the test-and-validation phase is five years
with a production lifetime of 12 to 15 years. In sports, however, the length of
both the test and usage period runs from 1 to 2 years. Consider how quickly
materials and consumer tastes change in tennis rackets, golf clubs, protective
sports clothing, running shoes — or racing cars, bicycles or yachts.



2.1 Ezxperimental fluid dynamics

Computer simulation was critically important in designing Alinghi below the
water line as well as in the air. Mathematical modeling and numerical simula-
tion have been used to reproduce on the computer the complex flow dynamics
under a broad variety of sailing conditions, while fluid mechanicists developed
detailed flow measurements for the underwater elements, the mast, and the

rigging.

Experimental tests in laboratory and in navigation can supply important in-
formation on the flow around the boat. Measuring the free-stream turbu-
lence level and detecting laminar-turbulent transition in the boundary layer
of the keel and of the bulb is of paramount importance when devising math-
ematical models for numerical simulation . To experimentally determine the
laminar-turbulent transition line on a full-scale training boat under different
sailing conditions, a series of sensors on the underwater boat components were
mounted.

A statistical analysis of the skin friction fluctuations finally indicate whether
the flow is laminar or turbulent. The main challenges were to arrange cor-
rectly the array of sensors on the keel to avoid interference between sensors,
to separate boat motion from turbulence during data analysis, and to charac-
terize the transition location in a statistical sense (as the transition location
constantly moves around on a moving boat). In practice, it was also necessary
to distinguish between the output of a malfunctioning sensor (e.g. corroded
connections) and turbulence. For all this, digital filtering techniques and sta-
tistical data analysis have been carried out, taking advantage of the fact that
the frequencies of turbulent fluctuations are generally high with respect to
boat motion. Another important source of drag is flow separation from the
hull and the sails. This phenomenon is due to fluid particles that no longer
follow the surface of the hull or sail and thereby create regions of low-pressure
backwash that “hold” the boat back. One area particularly prone to separation
is the trim tab that is located on the trailing edge of the keel. This trim tab is
angled to increase the lift of the keel, which counteracts the wind’s tendency
to push the boat sideways.

2.2 Materials

In designing a boat, weight vs. strength is a key design trade-off. A boat makes
most efficient use of the wind if it stays as upright as possible because it then
exposes more sail area to the wind. To keep the boat upright, the builders try
to place as much weight as possible in the bulb. Every kilogram saved on the



hull was shifted 4 meters underwater to the lead-filled bulb to improve speed
and stability.

An International America’s Cup Class (IACC) boat has a race weight of some
25 tons, of which about 20 are in the underwater lead bulb. Placing weight high
above the water line, such as in the mast, is counterproductive. A light mast
must nonetheless be extremely strong. In high wind conditions, the standing
rigging on such a boat can experience 20 tons of tension, which pulls the mast
down toward the hull with a compression force in the range of 50 tons. Not
only must the mast not snap under these forces, the hull must be very stiff
so it will not buckle in the middle due to these enormous forces. Composite
materials represent the most adequate choice to satisfy these requirements
of lightness and stiffness. They have been employed for the construction of
both hull and mast. In particular, the hull have been realized with a sandwich
structure composed by two skins of carbon fiber composite material glued to a
light honeycomb core. As material breakage is a constant threat in the extreme
conditions of yacht racing, Alinghi’s critical mechanical pieces were tested on
a 1:1 scale in EPFL labs to insure their reliability. As previously noticed, in
contrast with aircraft engineering, where reliability and safety margins are
vast, in America’s Cup racing boat speed demands that such margins be kept
to a minimum.

After the researchers determined the optimum geometry for various vessel
components, the boat builders had to create them. The material of choice
for many components is “prepreg”, which consists of a fabric of carbon fibers
impregnated with epoxy resins. It comes in a pliable form, and it becomes
hardened when it is cured under temperature. Applying pressure by curing
it in an autoclave reduces the porosity in the material to levels below 1%,
enhancing its mechanical qualities. America’s Cup rules, however, allow the
use of such a pressure container only for some parts but not for the hull. The
reason is cost; an autoclave big enough to hold hull pieces becomes extremely
expensive, and this rule allows teams with smaller budgets to compete. Thus,
the curing process for the hull uses a vacuum bag at 1 bar (that is, at roughly
1 atm, and 14.5 1bs/in?)(This restriction doesn’t typically exist in industry;
with airplanes, for instance, one strives for the best strength, regardless of
the expense.) One key task for the EPFL team was to select the prepreg that
would produce the best results under a vacuum-bag environment, determine
the optimum curing cycle (how much heat for how long) and create a manu-
facturing process that the boat builders could easily follow.



3 The mathematical problem and its complexity

One trend that helps explain the importance of technology and testing in
the America’s Cup is, ironically, uniformity. A decade ago, racing teams ex-
perimented with a variety of hull and keel shapes; today, geometries have
converged toward standardized shapes, and the smallest details make the dif-
ference. Jerome Milgram, veteran of a dozen America’s Cup contests and a
senior professor at the Massachusetts Institute of Technology, affirmed the im-
portance of fluid dynamics for the design of an America’s Cup yacht: “Racing
yachts require very high precision in all aspects of the design of the boat and
sails. Just a 1% difference in hull resistance leads to a gain or loss at the finish
line of more than 30 seconds.”

The numerical simulation of the complete flow field around an America’s Cup
yacht has tremendous computational complexity. It may involve the solution
of nonlinear algebraic systems with up to 30 million unknowns to account for
the forces of the wind, the waves, and the potential interaction of two boats
in the heat of competition. The mathematical equations governing the flow
around an International America’s Cup Class (IACC) boat have to account for
hydrodynamic and aerodynamic flows, wave generation on the water surface,
and the interaction of the flow field with the structural components such as
the mast and the sails, including the effects from a competitor sailing nearby.

The complexity of the problem considered and the strict time constraints have
prompted to the definition of a hierarchy of mathematical models of lower dif-
ficulty characterized by different levels of accuracy, complexity, computational
cost, ease of use and acceptance within the design community.

3.1 A wvirtually- intractable mathematical problem

Ideally, a global complete model for IACC boats should be able to reproduce
several different aspects of the physical problem. On one hand, to simulate
accurately the hydrodynamic and aerodynamic flows around the boat (the
hull, the appendages, the mast and the sails), it should account for the viscous
effects, the transitional (laminar to turbulent) nature of the flow as well as
the wave generation on the water free-surface. On the other hand, the extreme
loads acting on the boat (several tons) and the high deformability of the sails
make the problem even more difficult, since the deformations induced by the
flow on the different components of the boat are relevant.

Let € denote the three;dimensional computational domain in which we solve
the flow equations. If €2 is a parallelepiped surrounding thg boat B, :che com-
putational domain is the complementary of B w. r. to €, Q := Q\B (see



Q)

Fig. 1. A two-dimensional section of the computational domain Q = Q\B

Fig. 1 for a two-dimensional sketch). In our simulations, Q features 300 m in
the direction of the boat motion, 200 m in the transverse direction, and 180
m vertically. The equations that govern the flow around B are the density-
dependent (or inhomogeneous) incompressible Navier—Stokes equations, which
read:

%—FV-(,OU):O (1)
%+V-(pu®u)—V-T(u,p)=pg (2)
V.ou=0 (3)

for x € Q and 0 < ¢t < T, and where p is the (variable) density, u is the
velocity field, p is the pressure, g = (0,0, g) is the gravity acceleration, and
T(u,p) = u(Vu + Vu’) — pI is the stress tensor with p indicating the
(variable) viscosity. Equation (1) translates the principle of mass conservation,
equation (2) enforces the conservation of linear momentum, while equation (3)
is the constraint of incompressibility.

The above equations have to be complemented with the initial conditions

u=1ug, p=p inQatt=0, (4)



and by suitable boundary conditions

u=¢ ond0<t<T, (5)
p=pmn on{xed:u-n<0},0<t<T, (6)

where n is the unit outward normal on 0f). Further, on the boat boundary 0B
we set u = 0 if we consider the boat (and the sails) undeformable, otherwise
we refer to the discussion at subsection 3.4 in this section.

In spite of the fact that the Navier-Stokes equations were introduced more
than a century ago, around them thousands of mathematicians, physicists and
engineers are still striving. Their complete understanding is far from being
achieved (indeed, this is one of the 10 unsolved problems which have been
endowed with a grant of one million dollars each at the beginning of the third
millennium).

A global existence result can be proven for the solution of (1)-(3) provided {2
is a bounded, connected, open subset of R® with smooth boundary (the latter
condition is not satisfied in the case at hand, indeed 0B is only Lipschitz-
continuous). In that case, if py € L®(Q2) and ug € (H*(Q))?, myg := puli— €
L*>*(92) then a weak solution exists which satisfies

p € L*(0,T; L>(Q2)),
u € L*(0,T; H}(Q))3,
plul®> € L*=(0,T; L'(Q)), (7)
Vu € L3(Q x (0,T)),

p € C([0,T]; LP(22)), V 1<p<oo

(see [11]). Moreover, the following energy inequalities hold

d 2 2
- . 2 <
dt/ﬂp\u| dm+/ﬂ,u(8,u]+8juz) de <
2/ pg-ude inD'(0,T)
Q
t
/Qp|u\2dw+/0 /Qu(aiuj—l-ajui)zd:cdsg

t
/|m0|2/,00d$+2/ /pg-nda:ds 9)
Q 0 Ja

a.e.t € (0,7),

where 0; denotes partial derivative w. r. to z;, D'(0,T) is the space of distri-
butions on (0,7") and summation convention on repeated indexes applies.



Uniqueness of weak solution is known to be an open problem; however, any
weak solution is equal to a strong solution if the latter exists. Uniqueness is
closely related to the regularity of solutions. In this respect, there isn’t any
further meaningful regularity result on w and p other than what stated in
(7), in particular very little is known on the pressure field p (which acts as
a Lagrange multiplier in (2)-(3)). Special considerations apply when (2 is a
two-dimensional domain and the viscosity pu is a positive constant which does
not depend on p, see [11], a circumstance which has little in common with our
problem, though.

3.2 Free-surface flows

In the case we are interested in, the computational domain €2 is made of two
components, the volume (2, occupied by the water and that €2, occupied by
the air. The interface I' separating €2, from €, is the (unknown) free-surface,
which may be a disconnected two-dimensional manifold if wave breaking is
accounted for. The unknown density p actually takes two constant states,
pw (in Q) and p, (in Q,). The values of p, and p, depend on the fluid
temperatures, which are considered to be constant in the present model. The
fluid viscosities p, (in Q) and p, in (€2,) are constants which depend on p,
and p,, respectively.

The set of equations (1)-(3) can therefore be seen as a model for the evolution
of a two-phase flow consisting of two immiscible incompressible fluids with
constant densities p,, and p, and different viscosity coefficients p,, and p,. In
this respect, in view of the numerical simulation, we could regard equation (1)
as the candidate for updating the (unknown) interface location I', then treat
equations (2)-(3) as a coupled system of Navier-Stokes equations in the two
sub-domains €2,, and €2,:

% + V (Pt @ Uy) — V + Ty (U, Pw) = pug,
V-.u, =0,
in Q, x (0,7),
O(pas)

ot +V'(paua®ua) _V'Ta(ua,pa) = a9,

V-.u, =0,

in Q, x (0,T). We have set T,(Uw, Pw) := to(VUy + Vg, ) — pud, while
T.(uq,pa), is defined similarly.



The free surface I' is a sharp interface between 2, and €2,. Since there is no
flow through it, the normal components of the two velocities u, +n and u,, «n
should agree on I'. Furthermore, the tangential components must match as well
since the two flows are incompressible. Thus we have the following kinematic
condition

Ug = U, onl. (10)
Moreover, the forces acting on the fluid at the free-surface are in equilibrium.
This is a dynamic condition and means that the normal forces on either side
of I are of equal magnitude and opposed direction, while the tangential forces
must agree in both magnitude and direction:

To(ug,pa) *n=Ty(Uy,Pw) M+ rKon onl, (11)

where o is the surface tension coefficient, that is a force per unit length of a
free surface element acting tangential to the free-surface. It is a property of
the liquid and depends on the temperature as well as on other factors. The
quantity & in (11) is the curvature of the free-surface, k = R;,' + R;,', where
R;, and Ry, are radii of curvature along the coordinates (t1,1s) of the plane
tangential to the free-surface (orthogonal to n).

3.8 Modelling the turbulence

The flow around a TACC boat in standard race regime exhibits turbulent
behaviour over the vast majority of the yacht surface. Turbulent flows are
characterized by being highly unsteady, three-dimensional, containing vortices
and coherent structures which stretch and increase the intensity of turbulence.
Even more importantly, they fluctuate on a broad range of scales (in space
and time). This feature makes the so-called direct numerical simulation (DNS)
unaffordable. By DNS we mean the numerical solution of Navier-Stokes equa-
tions by a computational grid fine enough to allow that all the significant
structures of the turbulence have been captured.

This would require the computational domain to be at least as large as the
largest turbulent eddy, the latter being of the order of few times the linear
length of the sailing boat. On the other hand, a simulation should capture all
of the kinetic energy dissipation, which occurs on the smallest scale whose size
1 has been determined by Kolmogoroft.

It turns out that in a DNS the number of gridpoints in each direction must be
at least L/n, but this ratio is proportional to Rei/ 4, where Rey, is the Reynolds
number based on the magnitude of the velocity fluctuations. (In our problem,
the Reynolds number is of the order of 10°.)

In the three-dimensional computational domain the total number of gridpoints



should therefore scale as RegL/ 4, a number which becomes easily prohibitive due
to the limitations on computer speed and memory.

Reynolds averaged Navier—Stokes (RANS) models move from the idea of de-
composing the velocity components u;, the pressure p and the density p into
a mean part and a fluctuating part

p=p+p, p=p+p, wi=u+u, =123

where the overbar denotes the Reynolds average, also called filter. The latter
can be operated in a variety of ways, such as the Fourier filter (which is the
truncation at a suitable order of the Fourier series of a function), statistical
average, time average for a statistically steady turbulence, volume average for
a statistically homogeneous turbulence, or ensemble (space-time) average in a
more general case.

Operating the average on the Navier—Stokes equations (1)-(3) and assuming
that the filter satisfies the following properties

(i) linearity
U+ A =1u-+ A\v, VA eC,
(ii) derivatives and averages commutation

Ozu

0,1,

(iii) double average (filters have no effect on filtered variables)

u =,
(iv) product average
uv = uv,
we obtain:
Op+u-Vp=0 (12)

0(pu) + V - (i ® @) — V - Tp(u,p) = (13)
pg+V-(R+09)

V.a=0. (14)

Here @ := pu/pis the so-called Favre average, while R represents the Reynolds
stress tensor

1y 1 __ 1,1

Ry = —puul = —puldl, 0,5 =1,2,3 (15)
with @" = w — @; finally, the extra stress S;; = p/O;u}, 1,7 = 1,2,3, is due
to the fact that p is not constant (for this derivation see e.g. Mohammadi-
Pironneau [16]).
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The new system of equations must be closed by introducing a suitable repre-
sentation (or model) of the Reynolds stresses. This can be done by resorting to
several strategies. One way (which is quite popular in the engineering commu-
nity) is to express them in terms of two additional quantities, the turbulent
kinetic energy k£ and its dissipation rate e, using the so-called Boussinesq
hypothesis. The two extra (closure) equations have to be added in order to
determine the unknown variables £ and €. A complete derivation for the gen-
eral case is long and tedious. A simpler form can be obtained when both p and
i are constant. This is actually the case when a domain decomposition ap-
proach is adopted, restricting the equations to the two sub-domains €2, and €2,
(wherein density and viscosity are constant) and introducing suitable interface
conditions (see Section 3.2). The formulation for the problem with constant
coefficients (in either €, or €,) is reported here for reader’s convenience:

Oi(pu) + V - (pu ® u) + Vp*—

o (16)
V. [(p+pr)(Vu + Vu' )] = pg

V.u=0, (17)

where pur = pvr, vp = C,k*/e is the (modelled) turbulent viscosity, p* =
P+ 2/3pk. The equations for k and ¢ read:

Bk +u-Vk—V-(wrVk)—vrE+e=0 (18)
2

e =V « (20 Ve) = CLEE + Gy = 0 (19)
C, k

where E = 1/2|Vu + Va'|? and being C,,, C., C; and C, suitable constants
(“magic” numbers are C, = 0.09, C. = 0.126, C; = 1.92 and C, = 0.07).
The physical meaning of ¢ and k is k = %\u_’|2 and € = 2"—p\Vu' +Vvau' 2. All

variables should indeed be denoted by the underscript “a” in {2, or “w” in

Q-

3.4 Sail deformation and fluid-sail interaction

A further set of equations should be considered to account for the sail defor-
mation. We denote by S; the current configuration of the sail at time ¢ and
by Sy C R? its initial configuration that we suppose unstressed.

Let f be the body force exerted on the sail (e.g. the gravity) and p; its
density. The equilibrium equations which govern the sail deformation in the

11



three-dimensional elastodynamics framework read
psatt'lp -V (0'(’(#)) = f, in S() X R+, (20)

where 1 : Sy x Rt — S, is the transformation map which must verify the
initial conditions % (x,0) = « and Oy (x,0) = 0.

For a Saint-Venant material, & = o (%) is the second Piola-Kirchhoff stress
tensor and takes the following form

o = \Tr(E)I + 2u,E, (21)

where A\; and p, indicate the Poisson ratio and Young modulus of the sail,
E = 1(V¢" V1 — I) is the Green-Saint Venant strain tensor and Tr(E) is
its trace.

Boundary conditions have to be provided as well on the sail boundaries. We
suppose that the boundary of Sy is divided into two parts, I'” where the sail
is fixed and I'! is the interface which is in contact with the fluid. It follows
that

Pz, t) =z, (x,t)eTl? xR (22)

In addition, we have two coupling conditions. The former is given by
Op(x,t) = u(y(z,1),1), (z,1) €' xR, (23)

which means that the velocity fields are continuous at the interface. The latter,
which expresses the continuity of the stress vectors at the interface, is given
by

(Vo) - ng = [(T(u,p) o) Cof(Vep)] +mg, on ! xRT,  (24)
where ng is the unit normal vector on I'!, Cof(V1) = Det(V4)Vyp ™7 the
cofactor tensor and T'(u,p) the Cauchy stress tensor of the fluid. If X is a
tensor and n a vector, ¥ - n denotes the vector whose i-th component is
Eijnj (sum on j)

It is convenient to make use of a reference domain as well, that we denote (2g.
Each point & € S is represented through the map ®,: Qs — Sy, & — ¢ =
®((&). The transformation map ® : Qg x Rt — S, is defined as follows

(&, 1) = p(2o(§),1). (25)
Transported on g, the equation (20) reads
000y ® —V -« (V®ay) = f,, in Q¢ xR, (26)
where py = psDet(V®y), f, = fDet(V®,) and
oo = V&, aCof(VPy). (27)

12



Let us denote by 'Y and I') the corresponding boundary conditions on g
such that ®4(I'Y) = I'P and ®¢(T'}) = I'!. Then, the boundary condition (22)
becomes

B(E, 1) =B9(€), (&1) €Ty xR, (28)
and the two coupling boundary conditions (23) and (24) read

u(®(E,1),t) = 0,®(€,1), (€,1) €T xR, (29)
(V®oy) - ny = [(T(u,p) o ®) Cof(V®)]-nj, onI)xR. (30)

Since sails are thin structures, several assumptions can be made in order to
reduce the general three-dimensional elastic model equations (20)-(21) to a
two-dimensional shell model. The reference domain {)g can be described as
a thin parallelepipedal domain of R® whose coordinates are (£,&,,2), with
(&1,6) € w C R? and —h/2 < z < h/2, h being the shell thickness. In its
initial configuration Sy the sail is described as

¢0(§1: §2; Z) = (p0(£17 62) + Zto(é.la 52)7 (31)

where ¢, : w — R® is the parametrization of the middle surface of Sy and t,
its unit normal vector which is defined as

01py X Datpy

tO = )
1010 X Oagpq |

(32)

where x denotes the cross product of R* and || - || the L?(w) norm.

To derive the two-dimensional shell model, it is assumed that the deformed
configuration S; of the sail is described as

(&1, &2, 251) = p(&1, &5 1) + 28(&1, &5 0), (33)

where ¢ : w — R® is the parametrization of the middle surface of S; and
t its unit normal vector. Furthermore, the stresses are assumed to be plane.
However, the latter hypothesis is in contradiction with (33) since the normal
fibers are supposed inextensible. This controversy is resolved at the expense
of modifying the constitutive law (21) as follows

2)\5 s
o = NTo(E)I +2u,E, with \* = &

S | 34
o (34)

Therefore, in this context the hypothesis of inextensibility of the normal fibers
is not physical. The fiber can deform in the real displacement.

The Navier—Stokes equations (in their RANS form) together with the struc-
ture equation (26)-(27)-(34) and the coupling conditions (29)-(30) provide a
globally coupled, fluid-structure problem.

13



4 On the numerical discretization

In this section, we give an overview on the numerical schemes adopted for the
discrete solution of the mathematical problems introduced in Section 3.

4.1  Numerical discretization of flow equations

The spatial discretization of the Navier-Stokes equations (1)-(3) is based on
a cell-centered finite-volume approach on unstructured grids. The governing
equations are integrated over suitable control volumes yielding discrete equa-
tions that conserve each quantity on a control-volume base. Then a SIMPLE
like strategy [14] is used to decouple the pressure computation from the com-
putation of the velocity field. The same kind of finite volume discretization
has been adopted for the solution of the k£ — ¢ turbulence equations.

For reader’s convenience, let us recall the general principles behind finite vol-
umes introducing the discretization of a simple steady advection-diffusion for
a scalar quantity 1:

V. (uVe-puy)=S,  inQ, (35)

where p is a given scalar function (say, the density), v is a given convective
field, p is a non-negative diffusion coefficient and S is a source term per unit
volume. For an arbitrary control volume ¢ C €2, the Gauss theorem yields:

pu-ndl=¢ pVi-ndl+ [ SdV, (36)
f f. I

where n is the outward unit normal vector on the control volume boundary
dc. The discretization of equation (36) on a given cell ¢ (now cell stands for
control volume) reads

Nrtaces Nrtaces
> prbpupeng|Agl =3 pup (V§)y-ny|Asl + S|VE, (37)
f f

where the index f represents quantities evaluated on a given face f, Npaces
is the number of faces of the cell contour, |A| is the area of face f and |V|
is the measure (volume) of cell c. Within a given cell, all the quantities are
supposed to be constant and their constant value is identified with the point-
wise value at the cell center of gravity. Consequently, the face values need
to be suitably defined. Those of the convective terms are typically obtained
by an upwind interpolation from the adjacent cell center values. In our com-
putations a second-order upwind scheme based on a multidimensional linear
reconstruction approach [1] has been used.

14



For the diffusion terms in equation (37) a second-order accurate central scheme
is used. The face value for a variable v is defined as follows:

Yy = %(% + 1) + %(V%,o 1o+ V1 1) (38)

where the indices 0 and 1 refer to the cells that share face, Vi, , and V1, ,
are the reconstructed gradients at cells 0 and 1, respectively, and = is the
vector directed from the cell centroid toward the face centroid.

The integration of the momentum equation (2) and the equations for the
turbulence quantities £ and ¢ (18)-(19) is accomplished by first linearizing the
equation at hand, then proceeding like for equation (35).

For every cell, equation (37) boils down to an algebraic equation of the fol-
lowing form:

a/cwc = Z anbwnb +b (39)
nb

where c is the cell index while the index nb ranges over the neighbor cells, and
a. and a,y, are suitable coefficients. This results in a set of algebraic equations
with sparse coefficient matrix for the vector {¢.,¢ = 1,---, N.} (with N,
denoting the number of cells).

In most of the simulations carried out in the present work, we have been
looking for a steady state solution. In that case, the momentum and continuity
equations (1)-(3) can be written in integral form as follows:

?{ pu@u-ndF—f T(u,p)-ndF:/png (40)
dc dc c

?gcpu-ndF:O. (41)

Upon linearization, the finite volume discretization of the z-component of
equation (40) yields:

Nrtaces

AcUe = Z AppUnp + Z pf nf -1 |Af| (42)
nb f

where 1 is the unitary vector in the z-direction and the u variable indicates
the first component of the vector field w. Similar equations hold for the y and
z components, however on the latter a source term —pg|V,| shows up on the
right hand side.

As previously mentioned, the solution algorithm is based on the SIMPLE
method, a pressure-correction iterative numerical scheme for incompressible
flows. The basic ideas underlying the SIMPLE method are more easily ex-
plained on the algebraic system arising from the discretization of equations
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(40)-(41), that reads:

C G U by
= : (43)
GT 0 P by

where U and P are the algebraic vectors corresponding to the velocity compo-
nents and the pressure, respectively. We denote with D the diagonal of matrix
C and R = —GT C~! G. Given an initial estimate of the pressure P*, the
SIMPLE method is described by the following iterative algorithm:

(1) Solve CU = b, — G P*.

(2) Solve RP' =b, — GTU.

(3) Compute U = U — D1 G P" and set P = P*+ P’ (note that D! is used
instead of the true inverse C~! to reduce computational complexity).

(4) If not converged, set P* = P and go to 1.

In the framework of the previous finite volume discretization, each iteration
of the SIMPLE method consists in the following steps:

(1) We solve the momentum equations using the value of pressure p* from
previous iteration and velocity, in order to compute an intermediate ve-
locity field @ which is not divergence free. Its z-component is:

Nfaces
aclle = z UppUnp + Z p} n-l1 |Af‘ (44)
nb f

(2) We denote the new pressure p = p*+p', p’ being a correction. By imposing
the mass conservation (41), we find by = GTU = GTC™! (by — GP) =
GTU + R P'. With the help of a little algebra, this yields the following
(Poisson-type) equation for the pressure correction:

a'cplc = Z anbp;w + by. (45)

nb
The right hand side term b is the net flow rate into the cell, defined as

Nraces

i)

where the face flux J; is computed using a momentum-weighted aver-
age based on the a, coefficients from equation (42). This is necessary to
prevent the checkerboarding that occurs if linear interpolation of cell-
centered velocities is used in combination with a collocated scheme (ve-
locity and pressure associated to the same position), as shown by Rhie
and Chow [18].
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(3) Correcting the cell pressure and face flux

p=p"+ap (47)
Jp = J; + Bds(ply — Pa) (48)

where o and 3 are positive dumping factors between 0 and 1 (which help
convergence to the steady state), pl, and p., are the pressure corrections
within the two cells on either side of face f and d; is a function of the

average of the momentum equation a. coefficients for the cells on either
side of face f.

The iteration loop is stopped when the convergence criteria, based on the
scaled residuals of each equation, are fulfilled.

The solution of the three linear algebraic systems in (44) (one for each ve-
locity component) and the one for the pressure correction in (45) can be
accomplished, e.g., by an algebraic multigrid method [6] with Gauss-Seidel
smoothing (or else by any Krylov method with suitable preconditioner, see

e.g., [17]).
4.2 Numerical approximation of the free-surface

The main problem encountered in the numerical simulation of this kind of
flows is the accurate computation of the dynamics of the interface separating
the different fluids, since neither the shape nor the position of the interface is
known a priori. Numerical methods for the solution of free-surface problems for
incompressible viscous flows can be classified in two categories: front-tracking
and front-capturing methods.

Fig. 2. Typical grid topologies in 2D for Lagrangian (left) and Eulerian (right)
free-surface methods. The solid line is the free surface.
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Front-tracking methods are based on a Lagrangian approach: the compu-
tational grid is adapted to the free-surface, moving and deforming with it
[9,23,7,5]. Usually, only the liquid phase is computed and the free surface is
treated as a boundary of the computational domain (see Fig. 2, left). The
free-surface motion is governed by the a kinematic condition,

oy oy oy

where I' = I'(z, y) is the height of the free-surface above the static waterplane
and u, v and w are the cartesian components of the velocity field. If the viscous
shear stresses and the surface tension are neglected, the dynamic free-surface
condition 11 can be reduced to a boundary condition on the pressure

D = Patm onT, (50)

where pgun is the atmospheric pressure. The free-surface boundary is initial-
ized as the static waterplane. As the calculation progresses, the boundary
deforms to match the free-surface height given by I' and the volume grid
is deformed consequently. These methods are usually limited to flows with
a smooth free-surface, in fact they are able to provide a sharp well-defined
interface but encounter difficulties in dealing with interfaces with high defor-
mations or changes of topology (e.g. breaking or overturning waves).

On the other hand, front-capturing methods are based on an Eulerian ap-
proach: the computational grid is fixed and both the regions occupied by liquid
and gas are modelled (see Fig. 2, right). The interface between the different
immiscible fluids is “captured” by solving an additional advection equation.
The most widely employed front capturing methods for predicting free-surface
flows with complex interfaces are the Volume of Fluid (VOF) method [8,10]
and the level set method [13,22,12,21,24].

In the VOF method, the location of the interface can be generally obtained
by advecting a function F'(x,t) representing the volume fraction of one phase
within each computational cell. This is done through the solution of a pure
advection equation for the discontinuous field F(x,t),

DF oF
- - .VF =0. 1
D1 5 +u-V 0 (51)

The Navier-Stokes equations are solved in the entire computational domain,
with the local values of density and viscosity calculated from the volume frac-
tion, namely

F((E,t) Puw + (1 - F((E,t)) Pa;
(iB,t) 227 + (1 - F(mat)) Ha-

)
—
8
~
~—
Il

(52)

=
8
=
I
~
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Numerical diffusion is usually introduced in the numerical solution of this
problem, leading to a lack of definition of the interface which may be smeared
over many cells. When adequate conservative schemes for updating the vol-
ume fraction are used, the VOF method behaves well with respect to mass
conservation [15]. On the other hand, the interface curvature, which is critical
in some application (e.g. when surface tension effects are relevant), is difficult
to estimate from the volume fraction distribution.

The Level Set method is based on the construction of a smooth function ¢,
defined in the whole computational domain as the signed distance function
from the interface: negative values correspond to one fluid, positive values to
the other. The zero level set of ¢ represents the interface. The interface is
determined by solving the following advection equation for ¢:

9 B
5 TurVe=0. (53)

The property of ¢ being a distance function is not preserved during advection.
It has been shown [22] that a reinitialization procedure is necessary in order
to restore this property to the level set function, at least in regions close to the
interface and that this procedure enhances the performance of the numerical
algorithm.

The reinitialization consists in constructing a new function ¢(x), with the
property that its zero level set is the same as ¢g(x) (¢ now denotes the
solution to (53)) and such that ¢ is the signed distance function from the
interface. This problem can be formulated as follows:

Find ¢ such that
V| =1, (54)
¢lr =0,

where I' = {x € Q : ¢o(x) = 0} is the interface.

Different reinitialization procedures have been proposed in literature, see e.g.
[22,2]. The most common, introduced by Sussman et al. in [22], requires the
solution of the following Hamilton-Jacobi equation to steady state

¢

— 4+w-Vop=S5 ,

5 T W ¢ = S(¢o) (55)
¢‘T:0 = ¢0

where w = S(¢g)V¢/|V¢|, S is the sign function and 7 is a pseudo-time.
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4.8  On the numerical treatment of the fluid structure interaction

The Navier-Stokes equations (1)-(3) around sails reduce to:

é?tu—l—V-(u(X)u)—iV-T(u,p):g (56)

Pa
V.u=0, (57)
for x € €2, t > 0, being p, the constant density of air.

These flow equations are coupled with equations like those in (26)-(27) for the
sail deformation, possibly reduced to a simpler two-dimensional stress model
as described in section 3.4. The coupling conditions are those on the velocity
field and normal stresses illustreted in (29)- (30).

To solve such a complex problem, the numerical solution of the equations that
govern the flow motion should be iteratively coupled with a mathematical
model that compute the structural deformations. To date, a numerical method
able to simulate correctly and efficiently in reasonable time the dynamics of
the complete fluid-structure interaction problem on complex configurations
such as the one of an America’s Cup yacht is not available.

As a matter of fact, after space and (implicit) time discretization of both
sets of equations (those for the fluid and those for the sail structure) plus
the coupling equations, we could end up with a nonlinear system which, in
compact form, reads:

N@®(t) :=SoF(®() —®() =0 onTl (58)

for all t > 0. The resolvant operators S and F have the following meaning.
For any given deformation ®, F(®) returns the solution (u,p) of the flow
equations (56) -(57) on a domain external to the sail whose deformation is @,
and with a Dirichlet boundary condition (29) for w. On its turn, the operator
S applied to the flow field (u,p) returns the deformation ® of the sail that
satisfies equation (26) under the equilibrium condition on normal stresses at
the sail skin (30). Should (26) be replaced by a two-dimensional shell model,
the stress equilibrium condition will transform in a forcing (source) term for
the shell equations.

The fixed-point equation (58) suggests the (obvious) fixed-point iteration pro-
cedure

" = So F(®"), n >0, (59)
that implies, at each iteration step n, the solution of the flow problem followed
by one for the sail deformation. Note that a new grid should be generated
on the deformed flow domain before undertaking the next flow computation.
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When looking for a steady-state solution, the fluid-structure interaction prob-
lem (58) reduces indeed to a problem of shape determination, namely the
problem of determining the shape of the sail at equilibrium. This implies that
we get rid of time derivatives in equations (56) and (26). Moreover, the dy-
namic equation (29) simplifies to

®(€,1),t) =0, (§1t) el xR, (60)

which implies that in iteration (59) the solution of the flow step F(®") depends
on the sail domain but not on the rate of deformation of the sail.

In more complex situations (for instance the unsteady case), fixed-point it-
erations do not converge due to their staggered character. In these cases the
Newton—-Rapson method could be the matter of choice for facing successfully
the intricacy of the coupled problem (58). Then, at any time step ¢", Newton
iterations entail the solution of the following substeps:

(1) set &0 = &"; then, for k > 0:
(2) solve J (@) §®), = —N (@),
(3) set @p = T + wy 6By, for a suitable wy > 0.

The critical step is of course the computation of the Jacobian and the solution
of the associated linear system (typically by GMRES iterations). In view of
(58), we have

J(®;) ¥ =S(F(®p) o F(RLT) - ¥ - T, (61)

where W is a solid state perturbation. Replacing the linearized flow operator F’
and/or structure operator S’ by inexact ones (based on either algebraic manip-
ulations or on the use of simplified physical models) leads to inexact Newton
methods. On the latter cases a wise choice of the parameter wy, (based, e.g.,
on line search or on Aitken extrapolation techniques) might reveal mandatory
in order to achieve convergence (see, e.g., [17]).

5 Devising hierarchical models to reduce complexity

The partnership with Alinghi gives EPFL scientists a unique opportunity to
apply immediately many of their basic research findings. As a matter of facts,
the techniques that have been used and the analyses which have been car-
ried out share many analogies with those applied in completely different do-
mains, such as, e.g., parallel numerical algorithms for external aerodynamics
in aerospace engineering, environmental or physiological flow modeling.
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5.1 Solving the flow equations

As pointed out in Section 4, the complete problem based on the coupling be-
tween Navier—Stokes equations with free-surface and the equations for struc-
ture deformation has a prohibitive complexity. This has called for employing
a series of models (or problems) of lower complexity and to properly (and
quickly!) integrate them in the design process.

Solving the complete problem by neglecting the deformability of the structure
is the first assumption that can be made in order to reduce the complete
model. By so doing, we are left with a problem which accounts “only” for the
fluid components, namely the flow in the water, the one in the air, and their
interaction at the waterline level (the free-surface), where waves are generated.

The approximate solution of this problem demands for robust and accurate
numerical algorithms that should be implemented on computers capable of
carrying out many billions of operations per second. However, solving accu-
rately these equations is well rewarding as the results that are obtained can be
used to simulate all tiny details of the flow field around the boat and the sails.
Many different kinds of boat configurations (e.g. different hulls, keels, bulbs or
winglets) have been simulated in both upwind and downwind sailing regimes.
Moreover, several kinds of atmospheric conditions have been accounted for by
properly changing the initial and boundary conditions for the Navier-Stokes
equations. More precisely, as previously noted, what we have solved are the
RANS equations, which are obtained from the original Navier-Stokes equa-
tions by taking suitable ensemble averages and using appropriate models to
describe the Reynolds turbulence stresses.

Although simplified by having neglected the structural deformations, yet ev-
eryone of these simulations has a tremendous computational complexity, as it
requires:

e translate a new configuration provided by the design team into its geomet-
rical description (using hundreds of patches of little surfaces);

e generate the grid around the boat consisting of hundreds of thousands of
triangles and quadrilaterals (see Fig. 3);

e generate the volume grid composed of tetrahedra and exhaedra to fill the
three-dimensional computational flow domain;

e solve the the RANS equations by parallel computers in the computational
domain.

This leads to the solution of nonlinear (fully coupled) algebraic systems with
up to 30 millions (or more) of unknowns by iterative procedures.

Two different types of computer systems have been used to perform the dif-
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Fig. 3. Surface grid for an TACC yacht.

ferent simulation tasks:

e a desktop workstation with two Intel Pentium 4 (1.7 GHz) processors and
2 GB memory (for the pre-processing and the post-processing),

e an SGI Origin 3800 central computer system with 128 MIPS R14000 (500
MHz) processors and 64 GB memory (for the solution of the Navier-Stokes
equations).

Concerning volume grid generation, to capture the high gradients in the boundary-
layer region close to the body, an anisotropic prismatic grid is extruded from
the wall surface grid. The first layer spacing, stretching and thickness of this
grid region are dictated by the Reynolds number, the turbulence model, and
the method used to resolve the inner region of the turbulent boundary layer.
The volume grid generation is then completed by filling the external volume
with tetrahedrons.

The grid sizes and computational times for a typical simulation in two sailing
conditions (upwind and downwind) are indicated in Table 1. The computa-
tional times are quoted for 16 processors of the SGI Origin 3800 computer
system. The grid generation process requires a considerable effort in generat-
ing the computational grid. Table 2 indicates the engineer and computer time
and required for the generation of a typical grid.
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Table 1
Mesh sizes and computational times

Configuration Downwind Upwind
Geometry Hull/Keel/Wlets  Hull/Keel/Wlets/Rudder
Surface mesh 180,000 faces 200,000 faces
Volume mesh 4,500,000 elements 5,500,000 elements
Runtime 8 hr 10 hr

Table 2

Estimates of mesh generation time requirements

Mesh Generation Step Engineer time Computational time

Geometry repair 15 min - 3 hr 5 min
Surface meshing 40 min 5 min
Boundary layer extrusion 15 min - 1 hr 15 min
Tetrahedral meshing 20 min 15 min
Total 1.5 hr - 5 hr 40 min

5.2 Further simplified models

The results obtained from our simulations have been analyzed by the design
team, compared and combined with those obtained by experimental analyses
(in the wind tunnel or in watertank) or by the computer using even more
simplified models which can be run in real time on a simple personal com-
puter. These simpler methods are usually based on potential flow (where fluid
viscosity is neglected as well as vorticity creation and propagation). They
can provide fast valuable information (surface pressure and global forces) for
non-separated flows such as the hydrodynamic flow around boat appendages
and the aerodynamic flow around upwind sailing configurations. The results
obtained by RANS models have been integrated into the overall design pro-
cess, in particular with the results coming from different computational tools
mainly used in the Alinghi design team. They include:

e a free-surface potential flow panel code (Splash™) for aero/hydrodynamic
design and analysis, to provide the free-surface location to be used then in
the RANS solver, the latter being applied separately on the two subdomains
Q, and €g;

e a 2D boundary layer solver (XFoil™) and a 3D boundary layer solver
(3C3D™) for non-separated flows, to compute the location where the tran-
sition from laminar to turbulent flow regime does occur. This information
is then used in the RANS solver to identify the subregions of the domain in
which the turbulence model should be switched on;
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e a potential flow panel code (Flow-MemBrain™) for fluid-structure simula-
tions of sails, to create the deformed sails geometry used afterward in the
RANS simulations.

6 Numerical simulations

Our numerical simulations have concerned three main subjects of research:
the analysis of different appendages configuration for a IACC yacht, the free-
surface flow around the hull and its interaction with the appendages and,
finally, the aerodynamic flow around the sails [3]. These calculations were used
to supply a large variety of information to the design team for integration into
various stages in the design cycle.

Extensive post-processing efforts were targeted at calculating component forces
and visualization of the local fluid flow near specific regions of interest. This
information was used to help the designers make shape variations, even in the
late stages of appendage component design.

6.1 “Optimization” of the appendages

A key factor for the success of an America’s Cup yacht is the design of a
set of appendages which can guarantee high performances in different sailing
configurations (upwind and downwind) over a large range of wind conditions
(and, consequently, of boat speeds). On one hand, the drag should be mini-
mized in order to obtain the highest downwind speed, on the other hand, in
upwind sailing, the efficiency (lift/drag) should be maximized. Other factors,
such as heeling stability and structural resistance constraints, must be taken
into account as well.

A broad variety of different appendage configurations have been analyzed.
The flow around the hull and a full set of appendages common to IACC
racing yachts (including keel, bulb, winglets, and rudder) has been simulated.
Due to the complexity of modelling the free surface a static water surface was
assumed for the appendage studies, with a free-slip boundary condition placed
at the waterplane.

The design parameters defining a bulb shape include the lateral and vertical
profiles and the cross section. Advantages and disadvantages of slender (long)
versus fuller (short) bulb shapes have been assessed by testing different con-
figurations. Longer bulbs usually perform better with respect to the pressure
drag, on the other hand they have larger wetted surface which increase the
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viscous component of the drag. The influence of different cross section shapes
has also been investigated. In particular, we have analyzed the influence of
lowering the center of gravity by using cross sections of the bulb more ellip-
tical than traditional shapes with the long axis running port-starboard. The
potential advantage is that a lower center of gravity increases the righting mo-
ment of the yacht. Also in this case, the numerical simulation of several bulbs
with different cross sections has given useful indications about the tradeoff
between advantages and disadvantages of each configuration. Other charac-
teristics, such as the bulb camber and the shape of the tail region, have been
analyzed as well (Fig. 4).
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Fig. 4. Streamlines showing the vortex detaching from the bulb tail.

As concerns the keel, numerical simulations have been performed in order to
compare different sections and planform shapes (Fig. 5).

Since 1983, when they were first adopted by the America’s Cup winner Aus-
tralia I, winged-keels have been extensively employed in TACC yacht design.
Similarly as in aircraft applications, the underlying idea is that the presence
of winglets at the tip of a keel (or an aircraft wing) can reduce the lift-induced
drag Cp, which is defined as

Ci
CDi N 7rAeff

(62)

where (', is the lift coefficient and A is the effective wing aspect ratio. Indeed,
this reduction is given by the increase of Ay when winglets are employed.
Moreover, in a sailing boat, winglets can also provide some trust (negative
drag) when the boat pitches and heaves in waves. In spite of their extensive use
in the last 20 years, an optimal winglet design still remains an open problem
in the yacht design community.
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Fig. 5. Surface pressure contours on the yacht appendages and streamlines around
the keel.

Several winglet design parameters have been considered in the present work:
longitudinal position, angle of attack, twist and sweep angles (Fig. 6). The re-
sults that can be extracted by those simulations are both quantitative (forces,
pressure coefficient distributions, wall stress distributions) and qualitative
(vector fields and streamlines visualizations to locate, e.g., regions with flow
separations).

Fig. 6. Surface pressure contours on the yacht appendages and streamlines around
the winglets.
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6.2 Free-surface flows

For America’s Cup yachts, the wave drag can be a significant fraction of the
total hull resistance, as much as 60% at 10 knots of boat speed in down-
wind sailing. An accurate determination of this component is important when
comparing the performances of two very similar hulls. Recent America’s Cup
efforts have shown an emphasis on delaying the sharp rise in the drag vs.
hull-speed curve by shaping the ends of the boat in a way that increases ef-
fective length without a penalizing increase in measured length. These local
geometric modifications require accurate experimental and numerical investi-
gations to predict correctly the performance differences deriving from these
subtle changes. In a typical hull design process, the naval architects will run a
matrix of hull shapes through a fast free surface potential solver to determine
a set of candidates to be tested in the towing tank. Force coefficients from
both the panel code (e.g., Splash™  see [20]) and experimental results are fed
into a Velocity Prediction Program (VPP) to calculate round-the-buoys per-
formance deltas versus a baseline configuration. RANS-based simulations can
be incorporated into this process in a number of ways. They can be used to
decrease the number of candidate shapes for which models are constructed and
tested in the towing tank. They can also be used to evaluate the free-surface
flow in situations where panel codes are unable to resolve critical differences
arising from viscous effects. A first example is the study of stern shapes where
the boundary layer and flow separation in the stern region result in an effec-
tive lengthening of the hull that alters the drag due to wave making. A second
example is the optimization of the tradeoff between wave and friction drag
associated with the addition of volume to the bow region, a current trend in
TACC design.

In the present work, we have investigated the effect of this increase in forward
volume by comparing different hull designs. In particular, a specific bow shape
study has been performed to help determine the range of boat speed for which
an increase in forward volume is beneficial (see Fig. 7 and 8).

In upwind sailing, the pressure distribution on the keel has a strong interaction
with the free-surface, in particular on the windward side of the hull, where the
suction side of the keel is closer to the free-surface. One method of decreasing
this interaction, thereby reducing any drag deriving from this interference, is
by increasing the distance between the keel load and the free-surface. In the
present work, the effect of lowering the load center of the keel by altering its
taper ratio (tip chord/root chord) has been investigated (see Fig. 9).

The free-surface computations presented here have been carried out using a

grid conforming Navier—Stokes solver based on finite volume spatial discretiza-
tion (see, for details, [4]).
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Fig. 7. Wave elevation around a TACC yacht sailing downwind at 10 knots.

6.3 Aerodynamics of sails

In downwind sailing, there are significant regions of separation on the main
sail and the spinnaker resulting from the large angle of attack. The design of
downwind sail shapes and their optimal trimming remain a critical element in
the search for speed gains in the America’s Cup.

The present study concentrated on the numerical simulation of the flow around
downwind sailing configurations. Three specific aspects of downwind sailing
aerodynamic simulation have been considered: calculation of forces, two-boat
interaction, and the evolution of the wind shadow.

6.3.1 Downwind Sail Forces

The geometries used in this set of simulations include the exposed hull, main-
sail, symmetrical spinnaker, and appendages. Appropriate values of the flow
conditions (sailing angle, true wind speed and hull speed) were prescribed.

Both the hydrodynamic and aerodynamic regions were modelled. The pri-
mary purpose of including both the hydrodynamic and aerodynamic compo-
nents was to provide a first approximation for solving the fully-coupled aero-
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Fig. 8. Wave elevation around a TACC yacht sailing upwind at 10 knots.

Fig. 9. Surface pressure contours on four keels with different taper ratio

hydrodynamic system. In the present case, the evolution of the free-surface is
neglected and a symmetric boundary condition is imposed on the flat static
waterplane. With the addition of both a free surface and a dynamic motion
of the geometry in response to the forces in an iterative process, it should
be possible, as a future possible development, to construct a simplified VPP
based on the RANS equations.

The surface grid on the whole boat geometry and the surface pressure distri-
bution are displayed in Fig. 3 and 10. For this simulation, a boat speed of 10
knots, true wind speed of 15 knots and true wind angle was 160 degrees have
been considered.
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Fig. 10. Surface pressure distribution for a TACC yacht sailing downwind.

Based on an analysis of the driving and side forces, as well as an examination
of the region of separation, the sails appear to act as a combination of a
parachute (with the lift aligned with the direct of thrust) and a vertical wing
(drag aligned with the direction of thrust), as observed by Richards in [19].

6.3.2 Two-Boat Simulations

The physics underlying the tactical advantage of the safe leeward position in
upwind sailing are well understood and are often treated in textbooks on sail
trim and tactical sailing [25]. Downwind match racing tactics are dominated
by downwind covering, or “blanketing”, which is governed by more complex
fluid dynamics. The large-scale regions of complex vortical flow leaving the
windward yacht interact with the wind gradient and manifest themselves in
a perturbation of the freestream conditions, which can adversely affect the
progress of the leeward yacht. This perturbation is known as the wind shadow.

Two boats sailing in a downwind coverage situation have been simulated to
provide a detailed view of their interaction through aerodynamic shadowing.
Rather than examine the properties of the wind shadow and indirectly deduce
its potential influence on another boat, the addition of a second boat in the
simulation allows this influence to be directly determined. By choosing two
identical boats, the influence of the different flow fields experienced by each
boat can therefore be assessed. In reality the boats will have their sails trimmed
differently to the different wind conditions. In the absence of fluid-structure
effects in the simulation, this more detailed interaction cannot be accounted
for.

The wind speed and angle over the full extent of the sails of the two boats
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greatly change. This results in a significant change in the aerodynamic forces
exerted on the leeward boat’s sails. The pressure on the windward surface of
the two boats’ sails is found to be substantially different both in magnitude
and in spatial distribution leading to a significant difference in the driving
forces of the two configurations. Some of this difference would normally be
compensated by an alteration of the sail trim of the leeward boat.

A visual indication of the perturbed flow encountered by the leeward yacht is
shown in Fig. 11.

Fig. 11. Aerodynamic interaction between two boats sailing downwind.

6.3.3 Wind-shadow evolution

A more detailed analysis of the wind shadow region behind an TACC yacht sail-
ing downwind has been performed by simulating the flow around the exposed
part of the hull, mainsail and symmetrical spinnaker. The inflow boundary
conditions on the velocity take into account the presence of the atmospheric
boundary layer. Because the hull was stationary in the simulation, the varia-
tion in both the magnitude of the apparent wind and the apparent wind angle
was prescribed. This was derived from the boat speed, sailing angle, and a
relation for the true wind speed obtained from an approximation of the at-
mospheric boundary layer. For this study, the so-called 1/10 law was used to
model the true wind speed TW .S in this layer,

1
10

TWS(2) = TWS(10) (12—0) (63)

where z is the vertical coordinate in meters measured from the static water-
plane.
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A qualitative assessment of the simulation results reveals the flow to be dom-
inated by the two trailing vortices generated at the head and base of the spin-
naker and mainsail. These vortices extend many boat lengths and can provide
a significant influence on the aerodynamic forces exerted on the downwind
boat. To localize the shadow region, an indicator that can be used is the
defect velocity

\/(um - ubcac)2 + (uy - ubcy)2 + ’U,g
where ©p. = (Upeg, Ubey, 0) is the inflow boundary velocity.

An overview of the wind shadow produced by the boat is presented in Fig.
12, where contour plots of the defect velocity at different lateral planes are
displayed. The propagation of the two trailing vortices downstream at different
displacements, corresponding to different angles, is clearly observed.

Fig. 12. Contours of defect velocity at different lateral distances showing the evolu-
tion of the wind shadow.

Information of this kind extracted from the simulations can support the tac-
tical decisions of both the leading and trailing yachts to maximize coverage or
minimize its damaging effects.

7 Conclusions

The mathematical models describing the different aspects that characterize
the hydrodynamic and aerodynamic flows around a sailing yacht have been
presented and discussed.

The equations governing two-fluids incompressible flows have been introduced
together with suitable interface conditions associated to the evolution of the
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free-surface interface between air and water. We have presented the derivation
of the Reynolds Averaged Navier—Stokes (RANS) equations for the considered
problem and an adequate model for the turbulent Reynolds stresses. The in-
teraction between air flow and sail structures has also been considered and a
formulation of the fluid-structure interaction problem has been proposed. We
have also discussed the discretization methods for the approximation of the
flow equations as well as the techniques for the fluid-structure interaction.

The numerical simulations performed in the framework of the collaboration be-
tween the EPFL and the Alinghi Design Team have been presented, highlight-
ing the role of Computational Fluid Dynamics simulations based on RANS
equations and their integration in standard yacht design process. We have
considered a hierarchy of computational tools characterized by different levels
of validity, complexity, computational cost, ease of use and acceptance within
the design community, describing the possible mutual interactions between
them.
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