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Abstract

The motion of water in a complex hydrodynamic configuration is charac-
terized by a wide spectrum of space and time scales, due to the coexistence
of physical phenomena of different nature. Consequently, the numerical
simulation of a hydrodynamic system of this type is characterized by a
large computational cost. In this paper, after introducing a quite general
setting for model coupling, we discuss two techniques to reduce such a com-
putational effort by suitably coupling different hydrodynamic models. The
first approach is based on a dimensionally heterogeneous–physically homo-
geneous coupling strategy, driven by a priori physical considerations. As
second strategy we suggest a dimensionally homogeneous–physically het-
erogeneous coupling. This time the “subdomain-to-model” correspondence
is identified automatically thanks to a suitable a posteriori modeling er-
ror estimator. The range of applicability of both the approaches is finally
examined on some test cases.

1 Introduction and motivations

Physical phenomena, taking place on large domains, are usually associated with
the coexistence of heterogeneous physical features, often localized in specific
portions of the domain. In view of a mathematical modeling of these phenomena,
it is reasonable to resort to a model computationally cheap enough, but, at the
same time, sufficiently accurate. It is obvious that a single model may not be
adequate. Instead, a suitable model coupling approach seems more satisfactory,
as it amounts to using simultaneously different mathematical models and solving
the most complex ones only where it is strictly necessary, that is on restricted
regions of the domain. As a meaningful example consider a typical aerodynamics
problem: the simulation of the flow field around an airfoil where the equations for
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compressible and incompressible fluids are merged. In more detail, the Navier-
Stokes equations are solved in the boundary layer and in the downstream wake,
the Euler equations in the surrounding region where the shock may develop,
and the full potential equation in the far field where the flow is irrotational (see
Section 8.3 in [1] and the references therein).

The heterogeneous nature of the physical phenomena suggests coupling het-
erogeneous mathematical models, supposed, for simplicity, only of non-overlapping
type. In this framework we have essentially two different strategies:

1. Dimensionally Homogeneous – Physically Heterogeneous Coupling. Un-
doubtedly, this is the most straightforward and classical coupling. A re-
duction of the computational cost is guaranteed provided that the most
complex model is solved on a reduced zone of the domain. To merge the
models, suitable matching conditions are required. This turns out to be
an easy or a hard task depending on the level of heterogeneity of of the
involved models.

2. Dimensionally Heterogeneous – Physically Homogeneous Coupling. This
technique allows us to considerably reduce the computational cost of the
approximation procedure, especially if 1D models are involved in the cou-
pling. Again, suitable matching conditions, this time relating dimension-
ally different quantities, are required.

Then both the strategies 1. and 2. can be performed according to the
following paradigma:

A. An a priori approach. The regions of the domain where the different models
have to be solved, are chosen only once, at the beginning of the approxi-
mation procedure. Usually, physical considerations drive such a choice and
no computation is involved.
The static nature of the “subdomain-to-model” correspondence makes this
technique particularly suitable for a computing parallelization. On the
other hand, there exist many physical configurations where the choice of
the zones where to use the different models is not immediate or feasible
(see Section 2.4).

B. An a posteriori approach. The choice of the areas of the domain where
to solve each model is made through an automatic tool. This can be
achieved via a more rigorous mathematical analysis, for instance via a
suitable modeling error estimator. Hence, using this approach, the a-priori
physical analysis of the problem at hand (in order to decide the areas in
which the more complex models have to be solved) can be avoided.
Two are the main drawbacks of this approach. First, the increase of the
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computational cost related to the required a posteriori analysis. Then a
computating parallelization is now less straightforward as the “subdomain-
to-model” matchings change at each time. On the other hand, this last
feature turns out to be favourable from a computational viewpoint, as the
error estimator aims at minimizing, at each time, the portion of the domain
where the more complex model has to be solved.

Overall, by suitably combining the strategies 1.-2., A.-B., we have four pos-
sible couplings.
The approach 1.-A. is strictly related to the domain decomposition theory and
it is rather recurrent in the literature (see, e.g., [2, 3] and Sections 8.2 and 8.3
in [1]). On the other hand, the choice 2.-A. has been largely investigated in the
haemodynamics framework (see [4, 5]).
The a posteriori analysis represents a very recent area of interest, and so far, es-
sentially only the 1.-B. approach has been covered. The first works were related
to the solid mechanics and to the elasticity theory (see, for instance, [6, 7, 8, 9]).
In more recent developments, a burdensome analysis has led to a posteriori mod-
eling error estimators also for steady Computational Fluid Dynamics (CFD)
problems [10, 11]. Moreover, notice that, in the references above, only rather
“nested” hierarchies of models have been employed. Namely, one model is ob-
tained from the others simply by neglecting some terms.
From a computational viewpoint, it is evident that the most convenient ap-
proach is the 2.-B. strategy. However, this still represents an open-problem. To
our knowledge, a first step in this direction is attempted in [12].

In this paper we provide an example of both the strategies 2.-A. and 1.-
B. in the free surface flows framework, while highlighting further the range of
applicability of the two approaches.

1.1 Coupling of hydrodynamic models

In the simulation of free surface flows a wide range of physical phenomena is
involved: just consider tidal flows, water motion in lakes, large basins, river
courses, channels, etc. Different space and time scales should be taken into
account to capture all the physical features of the hydrodynamic problem at
hand. Typically, the most suitable mathematical model is represented by the full
3D Navier-Stokes equations, whose computational cost is, however, excessively
high. This is one of the reason why a large spectrum of simpler hydrodynamic
models has been proposed in the literature (see, for instance, [13, 14, 15]).

By following the classifications 1. and 2. above, we distinguish between hy-
drodynamic models of different dimension (3D, 2D and 1D) and models derived
under physical assumptions varying from one model to the other. According
to the former classification, the most widespread three-dimensional models are
the 3D free surface Navier-Stokes equations and the 3D hydrostatic shallow
water system. Concerning the 2D case, the most popular models are the Saint-
Venant, Serre and Boussinesq equations. Finally, the 1D counterparts of these
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latter equations represent the simplest hydrodynamic models available in the
literature. On the other hand, the physical classification split the hydrodynamic
models into hydrostatic and non-hydrostatic models: the first category is essen-
tially comprised of the Saint-Venant equations, while in the second class we find
the Boussinesq and the Serre equations.

Now, moving from some standard hydrodynamic configurations, we particu-
larize the general coupling approach above to the free surface flows framework,
by providing an example for both the 2.-A. and the 1.-B. approaches, in Sections
2 and 3, respectively.

In Section 2 an a priori geometrical multiscale approach (which is a dimen-
sional heterogeneous and physical homogeneous coupling) is tested by consider-
ing the motion of water along a river bifurcation. In more detail, we solve the
2D shallow water equations in correspondence of the bifurcation and a 1D Saint-
Venant model after the bifurcation. This choice can be justified observing that
the 2D features of the phenomenon should be more evident in the area around
the bifurcation rather than along the straight branches of the river. Suitable
matching conditions are provided for this coupling.
On the other hand, this a priori approach fails when studying a more complex hy-
drodynamic configuration, namely the motion of a solitary wave along a channel
with an obstacle (see Section 2.4). In such a case an a priori “subdomain-to-
model” matching turns out to be inadequate.

In Section 3 we suggest a different approach. A dynamic model adaptivity is
suggested to improve the quality of the approximate solution. This is achieved
via a suitable a posteriori modeling error estimator, i.e. thanks to a more rigor-
ous mathematical analysis. Following a 1.-B. coupling strategy, we move from
a hierarchy of 2D Saint-Venant like equations, thus providing a numerical tool
able to automatically select the model of the hierarchy to be solved in the differ-
ent portions of the domain. The results of a test case concerning the simulation
of the motion of a soliton in a straight channel show the effectiveness of this
approach: in particular no significant loose in the accuracy of the solution can
be observed (see Section 3.4).

Finally, in Section 4, we sketch some possible future developments for this
research. In particular a possible merge of the two approaches 1.-B. and 2.-A. is
outlined.

2 An a priori geometrical multiscale approach

Let us consider the motion of water in a hydrodynamic system, where the vertical
scales are much smaller compared with the corresponding horizontal ones. This
feature allows us to exploit the shallow water theory, based on the hydrostatic
approximation of the pressure, i.e., the pressure of the fluid is assumed to depend
only on the total water depth only.
In the sequel, according to the coupling approach 2.-A., we merge the 2D with the
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1D Saint-Venant equations. The main difficulty of such a technique is to find the
proper matching conditions between the two models, as dimensionally different
quantities have to be related. With this aim, we extend the approach provided
in [16], where the 3D Navier-Stokes equations are coupled with a convenient 1D
model for the description of blood flow in a compliant vessel, to the case of free
surface flows. Though the dimension of the models is different, we resort to a
similar analysis to derive the appropriate coupling conditions.

2.1 The coupled models

For the sake of simplicity we are going to consider a flat bottom channel with no
friction effects. The 2D model is then represented by the Saint-Venant equations,
with conservative form given by





∂(hu)

∂t
+ ∇ · (hu ⊗ u) + g h∇h = 0 with (x, t) ∈ Q

∂h

∂t
+ ∇ · (hu) = 0 with (x, t) ∈ Q,

(1)

where u = (u, v)T is the average velocity, h denotes the total water depth,
Q = Ω × (0, T ] is the considered space-time domain, with Ω an open (regular)
subset of R

2, T > 0 and x = (x, y)T . System (1) will be completed with suitable
initial and boundary conditions to guarantee the well-posedness of the problem.
In the sequel a sub-critical flow regimes will be assumed.

In some situations (for instance when 2D effects can be neglected), the hy-
perbolic system (1) is replaced by the 1D shallow water model, by assuming
that the velocity is uniform over any cross section, that the channel is straight
enough and its slope sufficiently mild and uniform throughout the region of inter-
est. Moreover, the streamwise bottom slope and the lateral inflow are assumed
equal to zero and the bottom friction is neglected as in the 2D case.

In the sequel, we focus on the case of one-dimensional channels with a con-
stant rectangular cross-section. In such a case the 1D model reduces to the
hyperbolic system





∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂h

∂x
= 0 with (x, t) ∈ Q̃,

∂A

∂t
+

∂Q

∂x
= 0 with (x, t) ∈ Q̃,

(2)

where A is the area of the wet cross-section, h the total water depth, Q = Au the
discharge, u being the average velocity, and Q̃ = (a, b) × (0, T ] the space-time
domain under examination. It is understood that system (2) has to be supplied
with proper initial and boundary conditions.

To find the coupling conditions between the 2D and the 1D shallow water
models above, we have moved from the stability analysis of the two models. It
is well known that the 2D system is stable under suitable initial and boundary
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conditions and regularity assumptions (see, for instance, [17], or [18] for the
viscous case).
Concerning the 1D system, we refer to [19] for a detailed a priori analysis, while
itemizing here the corresponding main results.

It can be proved that the two real eigenvalues of the hyperbolic system (2)
are given by λ1,2 = u ± c, with c(A) =

√
gA/L the celerity of the system, L

being the width of the rectangular section. In such a case it is also possible to
compute the characteristic variables

W1,2(x, t) = u ±
∫ A

A0

c(τ)

τ
dτ = u ± 2

√
g

L

[√
A −

√
A0

]
, (3)

where A0 is the area of the cross-section wetted by the constant undisturbed
water of depth h0. Moreover, we assume that, for any time t ∈ (0, T ], the area A
remains strictly positive and that λ1 and λ2 have opposite sign (λ1 > 0, λ2 < 0).
This is the same as considering a sub-critical and unidirectional flow, that is the
most interesting situation in view of the coupling of (1) with (2).

We endow system (2) with the following general initial and boundary condi-
tions:

A(x, 0) = A∗(x), Q(x, 0) = Q∗(x) with a < x < b, (4)

W1(a, t) = g1(t), W2(b, t) = g2(t), with t ∈ (0, T ]. (5)

Let us introduce the energy associated with model (2):

E(t) =
1

2g

∫ b

a

A(x, t)u2(x, t) dx +
1

2L

∫ b

a

[A(x, t) − A0]
2 dx, with t ∈ (0, T ].

(6)
The energy E(t) turns out to be a positive function, for any t ∈ (0, T ] and for
any A strictly positive.

The following conservation property can be proved:

Proposition 2.1 For any T > 0, the equality

E(T ) +

∫ T

0

Q
(
(h − h0) +

1

2 g
u2

)∣∣∣
b

a
dt = E(0), (7)

holds, E(0) depending only on the initial values A∗ and Q∗.

Result (7) can be used to derive an energy estimate for the 1D problem (2).

Proposition 2.2 Let us assume that the boundary data g1 and g2 in (5) satisfy
for any t ∈ (0, T ], the following restrictions

g1(t) > −2

√
gA0

L
and g2(t) < 2

√
gA0

L
. (8)
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Figure 1: Sketch of a river bifurcation and the corresponding “subdomain-to-
model” representation.

Then there exists a positive function F = F
(
g1, g2,

A0

L

)
such that

E(T ) ≤ E(0) +

∫ T

0

F

(
g1(t), g2(t),

A0

L

)
dt , (9)

i.e., the 1D model (2) provided with conditions (4)-(5) is stable.

Remark 2.1 If homogeneous boundary conditions are chosen in (5), estimate
(9) simplifies to E(T ) ≤ E(0), provided that 2

√
A0/3 <

√
A < 2

√
A0.

We point out also that, so far, no energy estimate is available in the literature
in the presence of a general cross-section. However, stability results similar to
(7) and (9) can be proved for one-dimensional channels with triangular and
trapezoidal cross-section (see [20]).

2.2 The matching conditions

Let us consider the river bifurcation sketched in Figure 1, where Ω, ω1 and ω2

denotes the two-dimensional and 1D domains, respectively. The flow is assumed
to go from left to right. Let ak, with k = 1, 2, be the matching points between
Ω and ωk, and let Γk denote the cross-sections of Ω at the points ak.
We assume that ω1 and ω2 represent two one-dimensional channels with rect-
angular cross-sections of the same width L and outward normals along the x-
direction. In the subdomains ω1 and ω2, we solve the 1D shallow water model,
thus yielding the physical quantities A1D, Q1D and h1D and, consequently,
u1D = Q1D/A1D. At the left-hand side of a1 and a2, the 2D Saint-Venant
equations are solved with associated physical quantities A2D, Q2D and h2D.

The issue now consists of relating quantities of different dimension. Con-
cerning the coupling 2D-1D, the reduction of the two-dimensional information
to one-dimensional quantities is rather easy. We can, for instance, average the
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2D terms along the cross-sections Γk, for k = 1, 2. With this aim, let us introduce
the mean velocity, the mean total water depth and the mean discharge

u2D =
1

L

∫ L

2

−
L

2

u(a, y) dy , h2D =
1

L

∫ L

2

−
L

2

h(a, y) dy =
A2D

L
, Q2D = A2D u2D ,

(10)

where A2D =
∫ L

2

−
L

2

h(a, y) dy, u is the horizontal component of the 2D velocity

u2D, and a coincides with the x-component of a1 or a2, respectively. Thanks
to the unidirectional flow hypothesis, we have a subcritical outflow for the 2D
system (with two outgoing characteristics) and a subcritical inflow for the one-
dimensional problem (with an incoming characteristic). From a physical view-
point it seems reasonable to demand the continuity of the following quantities
at the interfaces x = a1 and x = a2:

i) the cross-section area: A2D = A1D, i.e. A1D = h2DL;

ii) the discharge: Q2D = Q1D;

iii) the entering characteristic: 2
√

h2D g + u2D = 2
√

h1D g +
Q1D

A1D

.

Actually, notice that ii) is automatically guaranteed when i) and iii) hold.

2.3 The domain decomposition algorithm

A sub-domain iterative procedure is carried out to solve the coupled 2D-1D prob-
lem sketched in Figure 1. In more detail, three sub-problems are simultaneously
solved on Ω, ω1 and ω2, while exchanging information one another through the
cross-sections Γk, for k = 1, 2. Moving from the stability results cited in Section
2.1, we provide each sub-domain with suitable boundary conditions to guarantee
the well-posedness of each sub-problem. In particular, at the matching points
a1 and a2, we assign:

condition i) for imposing the total water depth at the outflow of the 2D model;

condition iii) at the inflow of the 1D model.

Concerning the remaining parts of the sub-domains boundary, we impose:

a) the total water depth h(t) as a function of time at the inflow of the 2D
model;

b) a non-reflecting boundary condition at the outflow of the 1D model;

c) no slip boundary conditions on the rigid walls of the river.

In more detail, given the solution of the coupled problem at time tn, for k =
1, 2, . . . until convergence, let us
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• solve the 2D problem provided with conditions i) and a), to obtain hn+1
k ,

un+1
k ;

• compute 2
√

hn+1
k g + un+1

k , i.e. an approximation for the left-hand side of

condition iii);

• solve the 1D problem completed with conditions iii) and b).

Notice that the notation qn+1

k above, with q = h, u, u, is the valued yielded
by the iterative procedure at the k-th step at the time tn+1. The iterative
nature of the algorithm above is justified with the aim of ensuring that the
interface conditions above are satisfied within a fixed tolerance. We underline
that, in practice, after 2 or 3 iterations, the difference between the 1D and the
averaged 2D values is already very small. A more straightforward convergence
analysis of the sub-domain iterative procedure above is going to be provided in
a forthcoming paper.

Remark 2.2 The matching and boundary conditions assigned above on each
sub-domain are not the only ones possible. Alternative choices are currently
under investigation.

Remark 2.3 If the reduction of higher dimensional quantities to corresponding
lower ones is rather simple, the opposite process is less straightforward. Let us
consider, for instance, a 1D-2D coupling. The simplest approach consists of
assigning the same value along the whole 2D cross-section Γ, independently of
the location of points in Γ. Obviously more sophisticated choices can be made,
also taking into account the physical features of the phenomenon at hand.

2.4 Numerical results

In this section we provide some numerical results to assess the effectiveness of
the algorithm described in Section 2.

As for the discretization a space-time finite element scheme is adopted for
both the 1D and the 2D model. In more detail we use the cG(1)dG(0) method i.e.
a piecewise linear approximation in space and a piecewise constant (discontinuos)
approximation in time [21, 22].

The first test case is concerned with the simulation of a river bifurcation,
where a 2D model is employed in the area of the bifurcation and a 1D model is
solved dowstream of the bifurcation itself (see Figure 1). At the inlet of the 2D
model the following expression for the total depth is used:





h(t) = 5 + 0.5 sin

(
2πt

10

)
, t ≤ 5,

h(t) = 5, t > 5.
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Figure 2: Comparison of the solution obtained at time t = 250 (top) and t = 300s
(bottom) using the full 2D model (left) and the coupled one (right).

The time step is set to 0.1s, the total time of simulation is 300s and the mesh
size is about 0.8m.

Figure 2 shows a comparison between the results obtained using the full 2D
model and the coupled 2D-1D model. It is worthwhile noticing that the wave
amplitude, after the river bifurcation, provided by the coupled model is in good
agreement with the results of the full 2D model. Moreover, also the reflected
wave, due to the presence of the bifurcation, is correctly resolved by the coupled
model. The second test case is aimed to evaluate the sensitivity of the results
with respect to the extension of the zone where the 1D model is used. The
motion of a solitary wave along a straight, channel 200m long and 20m wide, is
simulated. The channel is characterized by the presence of a circular obstacle
centered at (x, y) = (30, 10)m with a radius r = 4.5m. Four different simulations
have been carried out: in the first one a full 2D model is adopted on the whole
domain; the other three simulations have been performed using the 2D model
only for the first 100m, 80m and 70m, respectively. The initial condition for the
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elevation and for the velocity are:

u(x, y, 0) =
√

11.76
0.2sech2(

√
0.15(x − 10))

5 + 0.2sech2(
√

0.15(x − 10))
, v(x, y, 0) = 0,

h(x, y, 0) = 0.2sech2(
√

0.15(x − 10)) + 5,

where the gravity g is taken equal to 1m/s2; the time step is 0.1s and we have
used quasi uniform meshes with an average mesh parameter equal to 0.8m.
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Figure 3: Elevations for the straight channel with an obstacle at t = 14s. From
the top: full 2D model, 2D-1D coupled models where the 2D one is solved for
−30 ≤ x ≤ 70, −30 ≤ x ≤ 50 and −30 ≤ x ≤ 40, respectively.

Figure 3 shows the results obtained using the full 2D model and the three
different coupled 2D-1D models at t = 14s: only the first part of the domain
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(namely for x < 40m) is shown. It can be noticed that the results of the coupled
models are in good agreement with those obtained using the full 2D model
provided that the junction between the 2D and the 1D model is sufficiently far
away from the obstacle. This suggests that in this case an a priori “subdomain-
to-model” assignement could yield a numerical not sufficiently accurate. Hence
an automatic tool able to detect the zones where it is possible to solve the simpler
model (without affecting the accuracy of the solution) would be very useful.

3 A posteriori model adaptivity for shallow water

equations

The last test case of Section 2.4 is an example of a physical situation where the
geometrical multiscale approach of Section 2 fails to provide a reliable numerical
approximation. In such a case the dimensional reduction of the chosen physical
model is not reasonable, probably due to strong 2D effects in the flow.

In this section we provide a different strategy to contain the computational
cost of the numerical simulation without reducing its accuracy. The idea is to
neglect, in some parts of the domain, some physical features of the phenomenon
at hand (e.g., the nonlinear effects related to the convective terms), thus intro-
ducing a hierarchy of simplified models with the same space dimension. The
issue is how to identify the areas of the domain where the full model or the
simplified ones have to be solved. This matter will be tackled by deriving an
a posteriori modeling error estimator, able to drive a suitable model adaption
procedure.
We extend the analysis in [10] for steady equations to the case of unsteady
free-surface flow problems. In more detail, a dual problem, associated with the
problem at hand, is solved in order to measure the influence of the model on a
user-defined output functional of the numerical solution. Standard examples of
meaningful functionals in CFD are the lift and drag around bodies in external
flows or mean and local values. In the framework of free surface flows we have
considered, for instance, the kinetic energy and the vorticity of the flow [23].
This dual-based approach is ideal for a goal-oriented adaptivity and it gener-
alizes to modeling error analysis the well-known dual-weighted residual method
provided in [24] for the a posteriori discretization error control.

3.1 The coupled models

Let us consider the hierarchy of free-surface flow models:





∂uα

∂t
+ α (uα · ∇)uα + g∇hα = 0 with (x, t) ∈ Q,

∂hα

∂t
+ ∇ · (hαuα) = 0 with (x, t) ∈ Q,

(11)

12



where uα(0) = uα
0 , hα(0) = hα

0 , uα
0 and hα

0 being the initial data, and α =
α(x, t) ∈ L∞(Q) is a piecewise constant function. In general we have 0 ≤ α ≤ 1,
but throughout we suppose that α assumes only the values 0 and 1. At each time
tn, the nonlinear convective term in the momentum equation will be “switched-
on” in the regions of Ω where α(x, tn) = 1, ideally only where the nonlinear
features of the problem at hand will be dominant. The unknowns uα and hα

preserve the same meaning as in (1). Moreover, proper boundary conditions
will be supplied to the hyperbolic system (11), depending on the considered
hydrodynamic problem. In the sequel we will refer to (11) as to the adapted
model.

The choice α = 1, for any (x, t) ∈ Q, provides us with the fine model, that
is with the Saint-Venant equations (1), written in the non-conservative form:





∂u1

∂t
+ (u1 · ∇)u1 + g ∇h1 = 0 with (x, t) ∈ Q,

∂h1

∂t
+ ∇ · (h1u1) = 0 with (x, t) ∈ Q,

(12)

with u1(0) = u1
0, h1(0) = h1

0 the initial data. Notice that, from a computational
viewpoint, system (12) is the most expensive one. The expectation is to never
solve the fine model on the whole domain, but only on a reduced portion of Ω.

On the other hand, if α is identically equal to zero in Q, the adapted problem
reduces to the coarse problem





∂u0

∂t
+ g ∇h0 = 0 with (x, t) ∈ Q,

∂h0

∂t
+ ∇ · (h0u0) = 0 with (x, t) ∈ Q.

(13)

Typically, problem (13) will be never solved on the whole Ω. Were this the case,
it could mean that the hydrodynamics involved in the problem at hand is simpler
than what expected a priori, and the coarse model would suffice to reasonably
describe the phenomenon.

To summarize, at each time tn, neither the fine problem (12) nor the coarse
one (13) will be solved on whole Ω. The discretized problem will be the adapted
model (11), according to the value of α(x, tn).

To shorten the notations, we introduce in the sequel the “global” unknown
Uα = (uα, hα).

3.2 A modeling error estimator for the shallow water equations

Let F be the output functional we are interested in, possibly nonlinear. We aim
to identify the regions of the domain where the two models (12) and (13) have to
be solved, so that the quantity F(U1)−F(Uα), at t = T , be below a prescribed
tolerance, while minimizing the computational cost. Such a task is achieved via
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a suitable a posteriori modeling error analysis, i.e. by controlling F(U1)−F(Uα)
in terms of the adapted quantity Uα.

With this aim, let us consider the weak form associated with the fine problem
(12) which reads as: find U1 ∈ W ≡ V ×Z such that, for any test function pair
Ψ = (v, q) ∈ W,

(∂U1

∂t
, Ψ

)
+ a(U1)(Ψ) + d(U1)(Ψ) = 0, (14)

with U1(0) = U1
0 = (u1

0, h
1
0) the initial data vector, and where

(∂U1

∂t
, Ψ

)
=

(∂u1

∂t
, v

)
+

(∂h1

∂t
, q

)
(15)

and

a(U1)(Ψ) = g (∇h1, v) +
(
∇ · (h1u1), q

)
, d(U1)(Ψ) =

(
(u1 · ∇)u1, v

)
(16)

are semilinear forms, linear with respect to Ψ but nonlinear in U1. Concern-
ing the choice of the functional spaces V and Z, they will be proper subspaces
of [H1(Ω)]2 and H1(Ω), respectively, suitably taking into account the bound-
ary conditions completing system (12); we refer to [25] for the defintion of the
Sobolev space H1(Ω).
We assume that the solution U1 of (14) exists unique in W. This hypothesis al-
lows us to write problem (14) as a constrained minimization problem, according
to an optimal control approach: find U1 ∈ W such that

F(U1) = inf
v∈M

F(v), (17)

with

M =
{

v ∈ W :
(∂v

∂t
, ξ

)
+ a(v)(ξ) + d(v)(ξ) = 0, for any ξ ∈ W

}
, (18)

F(·) being the chosen goal output functional. The minimum U1 of (17) coincides
with the first component of the saddle point x̃1 = (U1, Z1) ∈ X̃ = [W]2 of the
fine Lagrangian

L(x̃1) = F(U1) − a(U1)(Z1) − d(U1)(Z1) −
(∂U1

∂t
, Z1

)
, (19)

Z1 = (w1, κ1) ∈ W being the Lagrange multipliers (or influence functions)
associated with the functional F(·). The critical points x̃1 of L(·) are such that,
for any test-functions pair y = (Φ,Ψ) ∈ X̃,

L′(x̃1)(y) = 0, (20)

where

L′(x̃1)(y) = F ′(U1)(Φ) − a′(U1)(Φ, Z1) − d′(U1)(Φ, Z1) −
(∂Φ

∂t
, Z1

)

− a(U1)(Ψ) − d(U1)(Ψ) −
(∂U1

∂t
,Ψ

)
(21)
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denotes the derivative of L(·) applied to the test function y, and Φ = (ϕ, ϑ) ∈
W. The derivatives in (21) are Gâteaux derivatives, L(·) being a differentiable
functional on X̃. In more detail, we have that the semilinear forms

a′(U1)(Φ, Z1) = g(∇ϑ,w1) +
(
∇ · (h1ϕ), κ1

)
+

(
∇ · (ϑu1), κ1

)
, (22)

d′(U1)(Φ, Z1) =
(
(u1 · ∇)ϕ,w1

)
+

(
(ϕ · ∇)u1,w1

)
, (23)

preserve the nonlinearity in U1 but are linear in Φ and Z1, while the definition
of F ′(U1)(Φ) depends on the chosen goal functional F .
Thanks to (20), the minimization problem (17) is equivalent to solving the primal
fine problem (14) together with the corresponding dual one: find Z1 ∈ W such
that, for any test function pair Φ ∈ W,

(∂Φ

∂t
, Z1

)
+ a′(U1)(Φ, Z1) + d′(U1)(Φ, Z1) = F ′(U1)(Φ), (24)

with Z1(T ) = Z1
T = (w1

T , κ1
T ) the final data vector. Notice the linearity of the

dual problem with respect to the influence function Z1.
Now, let us consider the adapted model (11), whose corresponding weak form

reads as: find Uα ∈ W such that, for any Ψ = (v, q) ∈ W,

(∂Uα

∂t
, Ψ

)
+ a(Uα)(Ψ) + d(Uα)(αΨ) = 0, (25)

with Uα(0) = Uα
0 = (uα

0 , hα
0 ), and where the scalar product (∂Uα/∂t, Ψ) and the

semilinear forms a(Uα)(·) and d(Uα)(·) are defined as in (15) and (16), respec-
tively.

Let us repeat the minimization procedure used on the fine model (12). Thus
we are led to find the critical points x̃α = (Uα, Zα) ∈ X̃ of the adapted La-
grangian

Lα(x̃α) = F(Uα) − a(Uα)(Zα) − d(Uα)(αZα) −
(∂Uα

∂t
, Zα

)
, (26)

i.e., to look for the solution Uα ∈ W of the primal adapted problem (25), and
the solution Zα = (wα, κα) ∈ W of the associated dual problem: find Zα ∈ W
such that, for any Φ ∈ W,

(∂Φ

∂t
, Zα

)
+ a′(Uα)(Φ, Zα) + d′(Uα)(Φ, αZα) = F ′(Uα)(Φ), (27)

with Zα(T ) = Zα
T = (wα

T , κα
T ), and where the semilinear forms a′(Uα)(·, ·) and

d′(Uα)(·, ·) are defined as in (22) and (23), respectively.
To provide the desired modeling error estimator for the shallow water equa-

tions, let us introduce the following modeling residuals:

ρM (Uα)(Zα) = −d(Uα)
(
(1 − α)Zα

)
= −

(
(uα · ∇)uα, (1 − α)wα

)
, (28)
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ρM (Uα)(EZ) = −d(Uα)
(
(1 − α)EZ

)
= −

(
(uα · ∇)uα, (1 − α)(w1 −wα)

)
, (29)

ρM (Uα)(EU , Zα) = −d′(Uα)
(
EU , (1 − α)Zα

)

= −
(
(uα · ∇)(u1 − uα), (1 − α)wα

)

−
((

(u1 − uα) · ∇
)
uα, (1 − α)wα

)
, (30)

where EU = (u1 −uα, h1 −hα) and EZ = (w1 −wα, κ1 −κα) are the primal and
dual error, respectively. The residuals ρM (Uα)(·) and ρM (Uα)(·, Zα) measure the
extent to which the adapted solutions (Uα, Zα) fail to satisfy the fine problems
(14) and (24), respectively.

We are now in a position to state the main result of this section, while
referring to [23] for the corresponding proof.

Proposition 3.1 If the semilinear forms a(U1)(·) and d(U1)(·) defined in (16)
and the functional F(U1) are sufficiently differentiable with respect to U1, then
it holds that

F(U1)−F(Uα) = ρM (Uα)(Zα) +
1

2

{
ρM (Uα)(EZ) + ρM (Uα)(EU , Zα)

}
+ R(x̃α) ,

(31)
where the residuals are defined as in (28),(29) and (30), while R(x̃α) is a re-
mainder term.

According to [23], to get computationally useful information from (31), we
make some simplifying hypotheses on L′(x)(·) and on the semilinear form d(U)(·).
We assume that there exists a constant γ > 0 such that, for any xn and xm ∈ X̃,

‖xn − xm‖ �

X
≤ γ ‖L′(xn) − L′(xm)‖ �

X′
, (32)

where ‖ · ‖ �

X
and ‖ · ‖ �

X′
are the norms associated with the space X̃ and its dual

X̃ ′, respectively. Moreover, d(U)(·) and its derivatives are assumed sufficiently
small, for any U ∈ W.
Thus, the right-hand side of (31) reduces to the desired a posteriori modeling
error estimator ηα for the goal quantity F(U1) −F(Uα):

F(U1) −F(Uα) ' ηα = ρM (Uα)(Zα). (33)

3.3 The algorithm

Let us sketch the algorithm for choosing which model of the hierarchy (11) has
to be solved at each time on each mesh element K, to guarantee a prescribed
tolerance τ on the error functional F(U1) −F(Uα) at t = T . Let us introduce a
fixed space-time partition consisting of Nh elements and Nt time intervals. To
start the model adaption procedure we need to have a reference primal and dual
solution. With this aim, we first solve the coarse primal problem (13) on (0, T ],
together with the corresponding dual problem (namely equation (27) with α = 0)
on (T, 0]. Thus we are in a position to apply the adaptive procedure below:
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1) via a suitable localization procedure, the estimator ηα in (33) is evaluated
on every K ∈ Th, thus yielding the local modeling error estimator ηα,K =
ηα|K ;

2) then:

a) if ηα,K ≤ τ

NhNt

, then α|K = 0, i.e. the piecewise constant function α

in (11) is chosen equal to 0 on the triangle K;

b) if ηα,K >
τ

NhNt

, then α|K = 1, i.e. the piecewise constant function α

in (11) is chosen equal to 1 on the triangle K.

Notice that a sub-iteration on the points 2)-a) and 2)-b) will be likely required
to guarantee the global quantity F(U1)−F(Uα) to be really under the tolerance τ
at t = T , in spite of the localization procedure. Moreover the check at the points
2)-a) and 2)-b) entails a space-time equidistribution criterion of the modeling
error on the elements of the mesh Th.

3.4 Numerical results

In this section we are going to consider again the second test case presented in
Section 2.4. The discretization scheme and the parameters of the simulation are
the same.

The aim is to identify, at each time step, which are the areas of the domain
where the fine model has to be solved in order to keep the quantity F(U1)−F(Uα)
at t = T , less than a give tolerance τ . We have considered the following goal-
functional F(U) =

∫ T

0

∫
Ω
|U |2 dΩ dt.

First of all let us consider the evolution in time of the kinetic energy for the
fine, the coarse and the adapted models (see Figure 4, on the left). It can be
noticed that for τ = 10−3 the curves of the adapated and of the fine model are
almost coincident. Moreover by means of the adaptive procedure of Section 3
the number of elements where the fine model is solved is small compared to the
total number of triangles of the mesh (see Figure 4, on the right)

Finally figure 5 shows the evolution of the areas where the fine model has to
be solved for a tolerance τ = 10−3.
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Figure 5: Four snapshots of the areas (in black) where α is equal to 1: from the
top to the bottom at times t = 8s, 10s, 12s and 14s.
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Figure 4: On the left the evolution in time of the kinetic energies of the coarse
(α = 0), the fine (α = 1) and the adapted models (with two different tolerance
τ). On the right the evolution in time of the fraction of the elements of the mesh
where the fine model is solved for three different values of the tolerance τ .

4 Conclusions and...a look ahead

In this paper we propose two possible techniques to reduce the computational
effort associated with the simulation of a complex hydrodynamic configuration.
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The leading idea is to suitably couple hydrodynamic models, different from a
physically and/or a dimensionally viewpoint. In more detail, the first approach
is based on an a priori dimensionally heterogeneous–physically homogeneous
coupling strategy, while the second one moves from an a posteriori dimensionally
homogeneous–physically heterogeneous coupling. The reference hydrodynamic
models are the standard Saint-Venant equations.
According to the numerical results in Sections 2.4 and 3.4, we argue that if
the considered hydrodynamic configuration is simple (e.g., a straight channel or
a river bifurcation), then the a priori approach can suffice to get satisfactory
results. Otherwise, in the presence of a slightly more complex configuration
(for instance, a channel with an obstacle) the a priori strategy fails, unless the
region of the domain where the computationally cheaper model is solved, is very
limited. In such a case, the a posteriori approach seems to be more convenient.
The rigorous mathematical analysis driving the a posteriori strategy, provides
us with a more expensive but robust numerical tool.
From these considerations, we ansatz that the more convenient strategy could be
an a posteriori dimensionally heterogeneous–physically homogeneous coupling.
This approach is still rather unexplored in the literature ([12]). in a forthcoming
paper we will investigate this idea and try to make the two approaches described
in this paper mutually “feeding”.
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