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Abstract

In this work we consider the dual-primal Discontinuous Petrov-Galerkin (DPG) method
for the advection-diffusion model problem. Since in the DPG method both mixed internal
variables are discontinuous, a static condensation procedure can be carried out, leading to a
single-field nonconforming discretization scheme. For this latter formulation, we propose a
flux-upwind stabilization technique to deal with the advection-dominated case. The resulting
scheme is conservative and satisfies a discrete maximum principle under standard geometrical
assumptions on the computational grid. A convergence analysis is developed, proving first-
order accuracy of the method in a discrete H'-norm, and the numerical performance of the
scheme is validated on benchmark problems with sharp internal and boundary layers.
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Introduction

It is well known that there exist several physical problems (for example, flow in porous media or
semiconductor charge transport) where, at the same time, it is desirable to preserve interelement
flux continuity and to account for the presence of strongly varying coefficients. The numerical
approximation of these kinds of problems can significantly benefit from the use of mixed dis-
cretizations. These latter methodologies are well established for the approximation of elliptic
problems, but they still lack a robust extension to deal with advective-diffusive problems.

The idea proposed in [18, 17, 16] is to handle the diffusive term with a standard mixed
approach and to introduce an upwind technique (or a Riemann solver) to deal with the advective
term. Using the terminology introduced in [17], we will denote these approaches as Upwind Mized
(UM) methods. The UM methods proposed in the above references were proved to be stable
and convergent. Nonetheless, mixed methods may suffer from the computational cost associated
with the solution of the corresponding linear algebraic system. Lumping procedures of the stress
mass matrix can be designed to eliminate the mixed variable from the system, but these are
typically limited to finite element approximations of lowest order [5, 23]. In [31] an hybridized
method is proposed that allows for a significant reduction of the computational cost. With this
aim, a fractional step algorithm is introduced, that leads to the solution of a sequence of explicit
problems. In this context, the hybrid variable is recovered as a purely post-processed quantity,
its role merely being that of producing a discontinuous mixed field.

In this paper we propose an approximate formulation of the advective-diffusive problem that
is indeed solved as a function of the sole hybrid variable, as in standard mixed methods after
static condensation. The method here discussed is based on the Discontinuous Petrov-Galerkin
(DPG) formulation, discussed and analyzed in references [6, 11, 12, 10, 7]. The DPG method
is a dual-primal hybrid formulation that, after static condensation, reduces to a nonconforming
single-field method. It is on this form that we apply an upwinding technique in order to stabilize
the discrete scheme, as discussed in Sect. 5. This latter upwind formulation does not require to
introduce any secondary partition of the computational domain, as is the case with the upwind-
based nonconforming scheme proposed in [25]. Once the problem on the interface variable is
solved, we can recover the mixed structure of the method by applying a simple element-by-
element post-processing procedure, which provides an approximation of the advective-diffusive
flux that is both self-equilibrated and conservative over the computational grid.

The work is organized as follows. In Sect. 1 we introduce the advective-diffusive model.
In Sect. 2 we provide the DPG weak formulation of the advective-diffusive equation and its
corresponding finite element discretization in the lowest-order case. The static condensation
procedure which allows one to derive a nonconforming single-field Galerkin formulation is de-
scribed in Sect. 3. The construction of the stiffness matrix of this latter method, as well as its
stability analysis, are carried out in Sect. 4, where a standard limitation on the Peclet number
is shown to be a sufficient condition to obtain a numerical scheme enjoying a discrete maximum
principle. This latter condition, which can be quite severe in terms of the choice of the mesh size,
is overcome in Sect. 5, where an upwind treatment of the convective fluxes across the element
boundary is proposed. This, in turn, yields a conservative and monotone nonconforming finite
element method. A convergence analysis of the stabilized DPG formulation is carried out in
Sect. 6, where it is proved that the discretization error satisfies first-order accuracy measured in
a discrete H'-norm. We illustrate in Sect. 7 the post-processing procedure which allows for an
element-by-element recovery of the interface fluxes. Finally, the numerical performance of the
proposed method is demonstrated in the concluding Sect. 8, where the scheme is applied to rep-
resentative benchmark test problems of advection-dominated flows. Some concluding remarks
and future work are addressed in Sect. 9.



1 The Advection-diffusion problem

1.1 Mathematical setting of the problem

Let Q be an open, bounded set of R?, and let I' = 99 be the piecewise smooth boundary of Q,
n being the unit outward normal vector to I'. With reference to Fig. 1, we set

' ={zel|b(r) n<0}, rt=r-r-,
5 =TpNTe, s =TnyNI¥,
I'p=T}urs, Iy =T{Uly,

where the subscript D indicates the Dirichlet part of the boundary, while the subscript N
indicates the Neumann part of the boundary.

Figure 1: Computational domain and partition of its boundary.

We consider the following model problem

Lco(u)=f in €,
u=gp onTp, (1)
eVu-n—b,u=gn on I'y,

where Lo (u) = —div (eVu) + div (bu) is the linear advection-diffusion operator in conservative

form, and b is a given advective field with

by, + |bn| _ by — |by
b, =b-n, b::%’ bn:%_
The function f is a given source term, and the boundary data are
{ 9p onT'p, { an on I'y,
gD = gN =
g$ on F%, g?\} on I‘"Z\'].

On the inflow portion of the Neumann boundary the total advective-diffusive flux (eVu—bu)-n
is prescribed, while on the outflow portion of the Neumann boundary only the diffusive flux
eVu - n is prescribed (see Fig. 1).

The conservative form of the linear advection-diffusion operator L¢(u) represents a simplified
model for the compressible Navier-Stokes equations or the Drift-Diffusion transport model in
semiconductor device simulation [22, 19].



Under the assumption that b is solenoidal, and that € and b are sufficiently smooth functions,
the conservative form is completely equivalent to the semi-conservative form of the advection-
diffusion operator, i.e.

Lo(u) = Lsco(u) = —div(eVu) +b- Vu. (2)
The semi-conservative form represents a simplified model for incompressible fluid-dynamics prob-
lems in the presence of a variable viscosity [21].
1.2 Primal weak formulation of the advection-diffusion problem

Let S C R? be an open bounded set with Lipschitz continuous boundary 9S. For a non-negative
integer m, let H™(S) be the usual m-th order Sobolev space defined over S and equipped with
the norm and seminorm

1/2 1/2
[ollms = | > ID%Es | lolma={ D IID%IGs ]
la|<m al=m
where D%v is the distributional derivative of order « of a function v and || - ||o,s is the norm in

L?(S). We refer to [1, 20] for definitions and properties of Sobolev spaces. We set
V={veH(Q)|v=00onTp}

and we define the bilinear form on V x V as
B(u,v):/ (eVu —bu) - Vo dz u,v €V,
I9)

where we assume that ¢ € L*®(2) and b € (W1*(Q))2. The weak primal problem associated
with (1) reads: find up € V such that

B(ug,v) +/

. upvb-nds = (f,v)o,0 — B(up,v) —/
r

uDvb-nd3+/
N F+

N FI_V 1—‘N

(3)
where up € H'(f2) is a function such that up = gp on I'p in the sense of traces, f € L2(f),
gp and gy belong to appropriate trace spaces on I'p and I'y and (-,-)o,n denotes the L? inner

product. The primal problem (3) has a unique solution under the condition that there exists a
positive constant « such that

€0 .
C_gz - ||le b”oo,Q > o> 0,
where Cq is the Poincaré constant and ¢y = in(f2 g(x) > 0.
zE

2 DPG Formulation of the Advection-Diffusion Problem

Before introducing the DPG formulation, we need some additional notation. Let 7} be a given
triangulation of  into triangles K, with area | K|, boundary 0K and outward unit normal vector
ngx on 0K. We denote by hx the diameter of K and by px the diameter of the largest ball
inscribed in K. We assume henceforth that 7, is regular [13], i.e. that there exists a positive
constant x independent of h such that

hk

— <k VKeT. (4)
PK

vg;,ds+/+vgj\“,ds Yo eV,



It is immediate to check that the previous inequality implies also that

h%  4k?

L — VK € Th. 5

< i Q
Let &), denote the set of edges in T, and for each edge e € &, let |e| represent the edge length.
Moreover, let 0K,y = 0K NQ, 0Kp = 0K NT'p, 0Ky+ = 0K N I‘} and 0Ky- = 0K NT'y, so
that for each K € Tp,, 0K = 0Kt UOKp UOK y+ UOK -

Proceeding as in standard Discontinuous Galerkin formulations [3], we introduce the mixed
variable o = eVu associated with the diffusive flux and we formally integrate by parts both
equations in (1), yielding the following one-element Discontinuous Petrov-Galerkin (DPG) weak
formulation of the model advection-diffusion problem:

find (u,o, (A, 1)) such that for all K € 7Ty, and for all (7, v), we have

( /Ela-de —i—/udiv*rda:— / AT ngg ds = /PuD‘r-nade VT,
K K OK\0Kp 0Kp
</K(a'—bu)-Vvdac— /(u—b/\-naK)vds—/uvds+ / bA-ngxvds
OKint 0Kp OK y+
:/fvdx—/bPuD-nades—i- / Pgyv ds + / ’ng{,vds Vv,
{ K oKp OK 5 OK y 1

(6)

where P is the L?-projection over the constant functions, 7 and v are smooth functions inside
each element K € Tp, and

olg =(eVu)lk, A=ulsgx, p=o0-nlsgxg VK ET.

Two different kinds of variables are present in the DPG one-element formulation (6): the
internal — discontinuous — variables u and o that express (in a weak sense) the constitutive
and the equilibrium relations at the interior of each element, and the boundary variables A and
p that represent (in weak sense) the trace of the internal variables on the element boundary.
Formulation (6) is of Petrov-Galerkin type since the functional spaces for the shape and test
functions are different. We refer to [6] and [12] for a presentation of the DPG method and its
convergence and stability analysis in the case of diffusion problems.

In view of the finite element approximation of (6), we introduce some notation for the
polynomial spaces and the projection operators. For a given nonnegative integer k, we denote by
P (K) the space of all polynomials of degree < k on K, and by R;(90K) the space of all functions
defined over the boundary 0K of K whose restrictions to any side e € 0K are polynomials of
degree < k. Functions in Ry (0K) can be discontinuous at the vertices of 0K. Moreover, denoting
by x the position vector in R?, we let

RT(K) = (Px(K))? ® xP(K) VK €Ty, (7)

be the Raviart-Thomas (RT) finite element space of degree k [27]. In the case k = 0, we define
RTo(7) C H(div, Q) the space of RT polynomials of lowest degree having continuous normal
component across each internal edge of &,. Finally, we denote by lP’ICR(K ) the Crouzeix-Raviart
space of linear polynomials over the element K [15] and by P{%(T}) the space of affine functions



that are continuous at the midpoints of each edge of £, and whose restriction on each element
K belongs to P{R(K).

We define the projection operator Px from L?(K) onto Py(K) such that, for all v € L?(K),
we have

/ (Pkv—v)pgdx =0 Vpg € Py(K), VK € Tp. (8)
K

The operator Px associates a scalar function with its mean integral value over K. From the
operator P, for all v € L?(f)), we construct the global operator P}, as

Ph’U|K=PK’U VKE%

Then, we define the projection operator IT¥!" : H(div; K) — RT(K) satisfying the orthogonality
relation

/ (ME'T —7) -mgxrods =0 Vry € Ry(9K), VK € Th- (9)
oK

The operator TE! associates a vector function with its fluxes across the boundary K. From
the operator HﬁT, for all 7 € H(div;), we construct the global operator HfT : H(div; Q) —
RT(7y) as

07| =T VK € Th.

Finally, given a function 7 € H(div;Q) such that divT = 0, we define 7 = IOFT7 with
div HI}ETT = 0 for each K € 7. Function 7 is a piecewise constant vector over T, with a
continuous normal component across each internal edge of &p,.

The finite element discretization of (6) using the lowest-order DPG method reads:

find (up,oh, (Ap,pn)) € (Up X By, X (A X My)) such that for all K € T, we have

( / ety Ty do —I—/ up div Ty, do — / AL Th Ny ds = / Pup T, - nyg ds V1 € Qr(K),
K K OK\OKp 0Kp
) /K(O'h—guh)'VUh dr — / (Nh—gAh-naK)vh ds — / Up vy ds + / b, - nyx vy ds
OK it 0Kp OK y+
:/ fop dr — / bPup - ngx v, ds + / Pgy vn ds + / Py, vp ds Vo, € Wi (K).
{ K oKp OK OK 4

(10)
The discrete local trial spaces are defined as

Un(K) = Po(K), Sh = (Po(K))? VK € Tp,

Ah(E)K) = ’)’O,K(]P’lcR(K)), Mh(BK) = Ro(aK) VK € 771, (11)

where yox : H(K) - H 1/2(9K) is the linear continuous operator which associates with a
function defined on K its trace on K.
The discrete local test spaces are defined as

Qn(K) =RTo(K),  Wi(K)=Pi(K) VK €T (12)



The global finite element spaces of the DPG method of lowest degree are constructed as

Un = {unlx € Un(K)VK € Tn}, Sh = {onlk € Th(K)VK € Tp},
Ap = {n € 70,7, (PT*(T1)) | An = Pgp at the midpoints of Tp},  Mjy = {un|x € Mp(0K)VK € Tp},
Qn = {7hlx € Qu(K)VK € Tp}, Wi, = {vn|x € Wh(K)VK € Tp},

where vo,7, : [Ixer, HY(K) - Iker, H'/?(DK) is the linear continuous operator which asso-
ciates with a piecewise smooth function defined on 7}, its trace on &, in such a way that this
trace is continuous at the midpoint of each internal edge.

3 The single-field problem associated with the DPG formulation

In this section, we describe the static condensation procedure carried out on an element-by-
element basis, which allows for the elimination of the internal variables uhK , a',lf and also of the
boundary variable ufX from the DPG formulation (10) in favor of the boundary variable \j,. As
a matter of fact, from the definition of the space A, one can notice that the Lagrange multiplier
Ap represents the trace on the edges of the triangulation of a nonconforming finite element
basis. Exploiting this feature, we will end up with a nonconforming single-field scheme in the
sole unknown Ap, which makes the formulation computationally convenient (see [2] and [14] for
a discussion on the procedures to perform static condensation on hybridized mixed methods for

elliptic problems).

For ease of presentation, we assume that 0K NI = (), i.e. that the element is in the interior of
the domain 2, with a straightforward extension of the elimination procedure to the case where
also the boundary conditions in (1) are accounted for. Moreover, we indicate from now on, with
a slight abuse of notation, with the symbol A, the element itself of P{%(K) (and not only its
trace on 0K). Integrating by parts in (1); the boundary term, then gives

/ (e o — Vn) - Th do +/ (un—Ap)divrp dz =0 Vrp € Qu(K).  (13)
K K
Taking first 75, € (Po(K))? in (13), yields

ol =K VN VK eT, (14)

where

K (/Ke_l(x) d:v/\K|) - (15)

is the harmonic average of the diffusion coefficient € over K.
Taking then 7, = (z,y)? in (13), and replacing the function (e
yields

K)2! with its average (%)%,

3
1
uff:/K)\h dr/|K| = Pxdn =35> N VK €T, (16)
=1

where \; are the nodal values of A, at the midpoints of each edge of K. Notice that (14) and
(16) imply

/ uy, dr :/ Ap dz VK € Tp. (17)
K K



Let us now consider equation (10), and take vy, € P{%(7;,). Summing (10)5 over the elements
of the triangulation, and using the fact that uy, is constant on each edge of &, automatically elim-
inates this latter variable when each element boundary contribution |, ok BhUn ds is assembled
together over all the internal edges. Then, substituting (14) and (16) into (10)9, incorporating
the boundary conditions and using (17), yields the discrete problem:

find A, € V4, such that

> {/ (EVA, — bAy) - Vo, da —/

KET;, 3Kin¢U6KN+

{/ fon de + / Pgn vh ds +/a

KET;, Ky - K+

5)\}1 *NHK Up ds}

ng\', Vp, ds} V’Uh € Vh,(),

where, for a given function ¢ € L2(T'p), we have defined
Vie ={vn € P{E(T,) | vp = PE at the midpoints of the edges of T'p}.

Finally, using the fact that b is divergence-free, an integration by parts of the convective term
—f x bAn - Vupdz in the previous equation gives the following single-field form of the DPG
method (10):

find A, € V}, 4, such that

> {/(EVAh-Vvh+5-VAhvh) dz — / by -y vn ds}
K

KeTy

e (18)
{/ fop dx + / Pgy vn ds + / PgN Vp, ds} Yoy, € Vi o.
KeTy

K+

The Galerkin problem (18) can be interpreted as the nonconforming finite element approz-
imation of the advection-diffusion boundary-value problem (1) in semi-conservative form and
with harmonic averaging of the diffusion coefficient €. Notice that, the solution Ap of (18)
differs from the solution )\hN € of the standard nonconforming approximation of problem (1) in
semi-conservative form, which would in fact read:

find ANC € V}, 4, such that

Z {/(EV)\hNC-VUh—Fg-V)\hNth) dzr — / EAhNC-nath ds}
K
Ky

KeTy
(19)

{/fvhdx-l— / Pgy vn ds + / PgN'uhds} Vo € Vi,

KeTy,

where

EKsza(x) dz /|K|

is the usual (note, not the harmonic) average of € on K. It is well known that in the presence of
rough (or strongly varying) coefficients, the use of harmonic averaging provides superior accuracy
and stability than standard averaging (see [4] for the 1D case, and [9, 23, 12] for applications in
2D).



4 The plain DPG discrete formulation

In this section we explicitly construct the finite element equations that arise from the non-
conforming DPG formulation (18) and analyze the properties of the stiffness matrix K of the
associated linear algebraic system

KA=f{, (20)

where A and f are the vectors of nodal unknowns and the right-hand side, respectively. For ease
of presentation, we consider the special case I' = I'p (i.e., nonhomogeneous Dirichlet boundary
conditions in (1)).

Let us denote by Nel the number of triangles in 7, and by Ned the number of edges in &,
with Ni internal edges and Nb boundary edges. Correspondingly, we denote by ;, 3 =1,... ,Ni,
the global basis function of the space V},. The function @; has its support on the two trlangles
K1, K» that share the common edge e; (see Fig. 2 for the notation), and satisfies the following
property

/ ()51 ds = (5ip|e’i‘a b= iaja kal,m' (21)

€p

Figure 2: Basis function @; for V}, (left) and notation (right).

We let henceforth S; = K1 U K9 denote the support of @;, and write

Ned

Ap = Z Ar (:57"5
r=1

where A, is the nodal value of \j, at the midpoint of edge e,, with A, = Pup|e, for any e, € I'p.
For each element K € S;, we assume a counterclockwise orientation over 0K and denote by b,

~K
the value of b at the midpoint of edge e, € K. Then, we set 3K = b, ‘0, 5K|€er| = by-n, sxcler|
to be the convective flux across edge e, € 0K with outward unit normal vector n, g, such that

o @K =o. (22)

e,cOK

Taking now v, = @; in (18) and using the two-dimensional midpoint rule to compute the right-
hand side contribution [, s f vn dz, we obtain the following finite element equation associated
with each edge e; € &;

Y Kppy=fi, i=1,...,Ni. (23)
p=irj.kdim



The stiffness matrix coefficients K;,, p = 1, j,k,l, m, are given by

K=K K3 =4k, l,m, (24)
where
eK eiI'{T” if p £,
szpiﬁ - ok e .
(|K1|+|K2|)e"'ei tr=s
(25)
Lgox if p # 1,
K%Jdv _J) 37
0 if p =1,

are the separate contributions due to the diffusive and convective fluxes across each edge ep,
p = 1,j,k,[,m. Notice that the i-th row of K has (a priori) five nonzero matrix entries. The
i-th component of the right-hand side f is given by

1 . .
fi=5 (PO + O, i=1, N, (26)

where fK1 K2 are the values of the source function f at the centroids of K;, K>. From
(24)-(25), and using (22), it is immediate to check that:

(P1) b € RTo(Ty) implies that (I>Z-8K ! +(I>?K2 = 0, which explains why only a diffusive contribution
is present in the diagonal matrix entry Kj;, unlike the case of the off-diagonal matrix terms
Kip, p # 15

(P2) when 0S;NT =0
>, Kgt= ). Ki¥=q, (27)

p=1,5,k,l,;m p=1,j,k,l,m

that is, both the net diffusive and advective fluxes across 0.5; are zero when Ay, is constant
and b is divergence-free;

(P3) when e, € 9S; is such that e, € I', p # i, then the associated nodal unknown J\, is
eliminated from the system by setting A, = Puple,-

Having characterized the basic properties of the stiffness matrix of the DPG nonconforming
formulation (18), we are in a position to address the stability analysis of the discretization
scheme. In particular, we aim at obtaining sufficient conditions for K to be an M-matrix. This,
in turn, allows one to ensure that the solution of system (20) satisfies a Discrete Mazimum
Principle (DMP). In other words, when f = 0, the discrete solution A is nonnegative over Q
and attains its maximum value on the boundary I'.

To start with, let us recall the definition of an M-matrix [29].

Definition 4.1 A matriz A € R™ ", with n > 1, is an M-matriz if it is invertible, its entries
A;; satisfy A;; <0, 1 # 7, and (A_l)z'j >0,4,5=1,...,n.

The diagonal entries of an M-matrix are positive and an M-matrix is inverse-monotone, i.e.,

Ax < Ay implies that x <y, Vx,y € R™. The next result provides a useful sufficient condition
which allows to check whether a given matrix is an M-matrix ([29], Thm. 3.1, p.202).

10



Theorem 4.1 Let A € R™ "™ be an irreducible matriz such that

(a) Ay >0, AijSO, 1,7 =1,...,n,

(b) | Aiil ZZ\AUL 1=1,...,n,
J#

(c) |Agk| > Z | Akjls for at least one row indez k € [1,... ,n].
J#k

(28)

Then, A is an M-matriz with (A™1);; >0, 4,5 =1,... ,n.

Notice that a matrix fulfilling the assumptions in Theorem 4.1 satisfies a DMP.

From now on, we assume that the triangulation 7, is of weakly acute type (i.e., all the
angles of the triangles are less or equal to 7/2). Therefore, e; - e, < 0, p # i, so that the
diffusion contribution to the off-diagonal matrix entries is nonpositive. As a consequence, since
K > 0 for every i = 1,... ,n, it is easy to check that if b = (0,0)7 (i.e. when (1) is a purely
diffusive boundary-value problem) then stiffness matrix K satisfies Theorem 4.1, and, therefore,
a DMP ([29], p. 203). When b # (0,0)7, then the request that the off-diagonal entries of K are
nonpositive is satisfied if

~K
b, ;np K| <1
3K |e;| cos(Bip) —

pE {j,k,lam}, K € {KlaKQ}a

where p = {j,k} if K = K; or p = {l,m} if K = K, and 6;, is the angle between the edges
e; and e,. Denoting by h, > 0 the height relative to edge e,, noting that |K| = h,|e,|/2, and
letting v, = |e;| cos(8ip)/|€p|, with 7, € [0,1), we immediately obtain that the off-diagonal
entries of K are nonpositive if

~K
b, -ny,h

B tolle <1 pefibbmh  Ke (KiK. (29
Observing that h;, can be interpreted as the length of K in the direction of the convective flow
across edge e,, we can define the Péclet number associated with edge e, as

~K
|bp ' nP| h‘P

&T’ pE {j,k,l,m}, K e {Kl,KQ},

ap =
and conclude that, as usual in the finite element approximation of advection-diffusion problems,
the DPG nonconforming formulation (18) is stable (i.e. the associated stiffness matrix is an
M-matrix) if the local Péclet number is less than 1. Clearly, condition (29) can be too restrictive
on the mesh size when the flow is advection-dominated. For this reason, we introduce in the
next section a suitable stabilization of the plain DPG method (18), which allows to compute a
reasonably accurate solution even on a coarse mesh Tp,.

5 The Stabilized DPG Formulation

In this section we introduce a stabilization technique for the nonconforming DPG formulation
(18). The technique is based on a suitable treatment of the convective term in the finite element
equation (23) associated with each internal edge e; € &.

From relation (22) and (P1), it follows that the DPG nonconforming scheme is conservative
with respect to both the single element K (K7 or K3) and to the control volume K; U Ko. At
the same time, it is clearly seen that (22) prevents all the convective fluxes @gK , P # 1, to have

11



the same (negative) sign, except in the (trivial) case b = (0,0)”. This eventually prevents the
stiffness matrix from being an M-matrix for any value of the Péclet number o,.

A possible remedy is suggested by the fluz-balance interpretation of the nonconforming DPG
formulation discussed in Sect.4, and proceeds as follows. For every K € Ty, we let

oK™ =| J{er € 0K b, -my 9 <0}, 0K =| J{e, € 0K |b, - n; 55 > 0}

T T

denote the inflow and outflow boundaries of K, respectively. Moreover, we associate with every
edge internal e; an absolute unit normal vector n; by setting, for instance, n; = nsg,le; (cf.
Fig. 3). Accordingly, we define the upstream triangle K;' PSIrM associated with edge e; as

eupstrm _ { Ki  ifbiom; >0,
]

(30)
Ky if b; - n; < 0.

The definition of K' PSUII i) the special case b; - n; = 0 will be addressed at the end of this
section. Then, we introduce the following min-maz treatment of the edge convective fluxes

min (0, %¢3K> if p#£1,

Ki;;dv,upw — . (31)
3" max (o, §q>gf<> ifp =4
pFi

where the sum is taken over all the edges of 0.5;. The flux-upwind stabilized DPG finite element
equation associated with e; € &, \ I' reads

O @

p:iijik7lim

where the stabilized stiffness matrix coefficients Kis;ab, p= 1,J,k,1l,m, are given by
Kb = KB4 g2V p =k, m. (33)

Definition (31) obeys the classical upwind philosophy. Precisely, relation (31); amounts to setting
to zero the convective flux associated with an edge, whenever this latter edge belongs to K °Ut.
This procedure is equivalent to subtracting some edge contributions to the whole net convective
flux balance across 9S;. Accordingly, relation (31), allows to redistribute the missing convective
fluxes, in order to satisfy at the same time the net flux conservation property (27) and the
request of positive diagonal matrix entries, as stated by Thm. 4.1.

The redistribution procedure of the outflow convective fluxes is schematically illustrated
in Fig. 3 (left) and results into a fluz upwind-modified DPG nonconforming scheme, which is
conservative with respect to both the single element K (K; or K2) and to the control volume
K1 U Ky, as was the case with the plain formulation (18). Moreover, it is immediate to check
that the stiffness matrix K of the flux upwind-modified DPG method satisfies the conditions in
Thm. 4.1, which allows one to conclude that the scheme satisfies a DMP irrespectively of the
Peclet number o,.

An important issue in upwind finite element procedures is related to the appropriate treat-
ment of the integral | s f@idz. Tt is in fact well-known that upwind methods can produce a
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Figure 3: Left: redistribution procedure of the outflow convective fluxes. Right: definition of
K™ when b; - n; = 0 (the upstream triangle is the shaded area in the figure).

physically uncorrect solution in the presence of a non-zero source term f [24, 8]. For this reason,
we have devised the following “upwind” rule for the evaluation of the above integral if |b;| # 0:

qu}lpstrm |Kz}lpstrm |

: i b; -1 £ 0,
f i dz ~ f =

34
s L (el Kol | 34
' S\t == if b -m; =0,

2 3 3

while we obviously set ff*a® = f; if |b;] = 0. Fig. 3 (left) helps in providing a simple and
immediate interpretation for this upwind rule, by observing that in the case ®; # 0 the integral
in (34) is computed only over K;”*"™ according to a full-upwind treatment (in the present case,
we have K Zu pstrm. _ g 1), while in the case ®; = 0 the upstream triangle is defined as the union of
the two triangles having as sides the half of edge e;, the two edges lying on the inflow boundary
of K; and K5 and the two segments joining node ¢ and the two vertices of K; and Ko opposite
to i (see Fig. 3, right). The beneficial effect of the use of (34), in contrast to the application of
the two-dimensional midpoint rule as done in (23) to compute the approximate right-hand side,
will be examined in Sect. 8.3. A suitably different, although equivalent, interpretation will be
provided in Sect. 6 for the upwind relations (31) and (34). This will cast the DPG stabilized
formulation into a more conventional upwind framework, allowing a simpler error analysis of the
method.

6 Convergence Analysis

In this section we provide a convergence analysis of the stabilized DPG formulation introduced
in Sect. 5. Our approach follows the guideline of [25].

6.1 Bilinear and linear forms

Throughout this section, for ease of presentation, we assume that homogeneous Dirichlet bound-
ary conditions are enforced in (1), i.e., Ip =T, 'y = ) and gp = 0, and for brevity we shall
write V}, instead of V}, o. Since the discrete DPG upwind-stabilized formulation is of noncon-
forming type, we have that the finite element space V}, ¢ H} (). However, functions in V}, satisfy
the following compatibility conditions:

(C.1) For any K1, Ko € T, with e = 0K; N 0K, we have

/(’U}IL(I - U,Ifz) ds =0  Yup € V.
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(C.2) For any K € Tp, we have

/ U,If ds =0 Yoy € Vj.
OKNT

Let us introduce the following quantities
1/2 1/2

lonlln = D llowllie ] 5 lowha={ D loalix Yoy, € V.
KeT, KeT,

It can be shown that functions in V} satisfy the following discrete Poincareé inequality ([32],
Proposition 4.13)

[vnllo,0 < Cplvnli,n  Von € Vi, (35)
where Cp = Cp(2) is a positive constant. As a consequence, conditions (C.1)-(C.2) and (35)
imply that |- |1 5 is a norm over the space V}, (equivalent to || - |[1,4)-
We associate with each edge mid-point M;, i = 1,... ,Ned, the following index sets

I = {the pair of neighboring triangles K7 € Ty, j € [1,Nel], that share the edge ei} ,
Ji = {j #1; M; is the mid-point of the side of a triangle having M; as another one},

and denote any edge that is adjacent to e; by
Tis = {s #1; es € &, | e5 shares a vertex with e;}.

Then, we define the following bilinear forms on V}, x V}, for all wp, vy, € Vj,

a(wp,vp) = /AV'wh Vo, dz , b(wp,, vp) Z/ b Vwp) vy, dz (36)
KeTy, KeTy

and the linear form on V}, for all vy, € V},
ZZ(/ fhdz) M), (37)
=1 j€I;
where fn|xk = Px f for all K € Tj. Finally, we define for any wp,, v, € V}, the bilinear form
B(wp,vp) = a(wp,vp) + b(wp, vp),

in such a way that the plain DPG formulation (18) applied to the advection-diffusion problem
reads:

find A\, € V}, such that
B(An,vn) = F(vp) ~ Vup € Vp. (38)

Recalling (P1) of Sect. 4, it can be easily verified that

b(wn, vp) Z > (/ ij * Dij Wh d8> vh(M;)  Vop € Vi, (39)

i=1 j€T;
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where b;; is the value of b at the midpoint of edge I';; and n;; is the unit outward normal vector
along T';; N 0K, j € J;. We define the following modification of b(-, )

b wh,vh Z Z (/ ij * Dij ’w;lj ds) ’Uh(Mi) th,'uh € Vh, (40)
Tij

i=1 jET;
where
wflj = oMwp(M;) + (1 — o )wh(M )

.. 1 if / bi]' ‘1 ds Z O, (41)
a = Téi

0 otherwise.

Moreover, we define the modified form of F(vp) as follows

Z b (/ I dm) M;) Vv, € Vp, (42)

=1 j€I;

where we set
fl=pPg f+(1—p)Pg,f  if|b]#0,
1 if b; - m; >0,

43
,Bj: 0 ifbi-ni<0, ( )
1 .
5 if bi c1N; = 0,
and we set f,JL = fp if |b;| = 0. Finally, we define our modified form of B(:,-) as
Br(wn,vn) = a(wp,vn) + bu(wh,va)  VYor,wh € Vi,
in such a way that the DPG upwind-stabilized formulation introduced in Sect. 5 reads:
find \; € V}, such that
Bh()\z,vh) = Fh(’l)h) Yoy € Vp,. (44)

6.2 Consistency analysis for by(-,-)

The following result shows that the modified bilinear form by(-,-) is consistent with b(-,-).

Theorem 6.1 Under the reqularity assumption (4), there exists a positive constant Cy indepen-
dent of h such that

|b(wh,vh) — bh(wh,vh)| < Cbh |wh|1,h|vh|1,h th,vh S Vh. (45)

Proof.
From (39) and (40), we find that

|b(wh, vh) — bp(wh, vh)| ZZ/ bij - 1y (wp(s) — w (s)) va(M;) ds

i=1 jeT;

——ZZ / i i [0 (wn (5) — wi (M3)) + (1 — a) (wn () — wn (M;)))(on (M;) — v (M) dis

= 1]6.7

=—ZZ / i g 0 (i (5) — wn (M3)) (0, (M) = op (M) ds

=1 j€7;
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The last equality follows by noticing that frij (wp(s) — wp(M;))ds = 0. Using the mean value
theorem and noting that V wy, is constant over K, we have

_ [IVwnllo,xhk

lwp(x) — wp(M;)| = [Vwp - (x —x;)| < |Vwplhk TALC
from which, using (5) and the fact that o/ < 1, we obtain

s 4 K2
/ bij - nij o (wp(s) — wp(M;)) (vp (M;) — vp(Mj)) ds | < — |bij 0| |V wpllo,x ||V vnllo,x hi-
Iy

The consistency estimate (45) then immediately follows summing over &, and using the discrete
Cauchy-Schwarz inequality, with C, depending on  and ||b - n||« ¢, but not on h.
6.3 Coercivity analysis for By(-,-)

We have the following result.
Theorem 6.2 Let 0 < g = inge(x). Then, we have
x€

B (wh, wr) > € |’wh|ih Ywy, € Vj,. (46)

As a consequence, assuming o defined as in (41), problem (44) has a unique solution ;€ V.

Proof.
In order to prove the coercivity of By(-,-), we show that the modified bilinear form by(-,-) is
coercive with respect to the norm |- |; 5. For all wy, € V}, we have

b wh,wh Z Z (/ ij " nij wzj ds) 'wh(M,-)

i=1 jE€T;

= (since n;; = —nj;) = Z Z / b;; - n;; wh op (M) — wh vh(M ) ds

i=1jeT;

—_ZZ/ - mij (aPwl (M) — o' wl (M)) + wn(Mi)wa(M;) (1 — o — 1 + o)) ds

=1 jET;
= (since o/’ = Z Z / by -y (aVwi(M;) + o wi (M) — 20wy, (M;)wy(M;)) ds
=1 jET;
:—ZZ/ bi; - nij o (w(M;) — wn(M;))2 ds > 0,
i=1 jeT;

from which (46) immediately follows. Using this latter result and (45), we can also show that the
plain DPG formulation is stable only for small values of the Péclet number, while the stabilized
DPG method is stable irrespectively of the size of the Péclet number. We have

B(wp, wp) = Bh(wh, wp) + b(wh, wp) — ba(ws, wp) > (€0 — Cyh)|whl? ),
from which it follows that, taking a sufficiently small value A* > 0 of the mesh size, there exists
a suitable constant ¢* > 0 such that, for all h < h*, we have

B(wh,wh) > " |wh|ih Ywy, € V.

Using the Lax-Milgram Lemma and (35), we immediately get the a priori estimate

Cp ||f||0,n_

|Anl1n < =

5 —

(47)
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6.4 Consistency analysis for Fj(-,-)

The following result shows that the modified linear form Fj(-) (as well as F(-)) are consistent
with the ezact linear form (f,-)o.0-

Theorem 6.3 Assuming that f € W1°(Q), there exists a positive constant Cy independent of
h such that

|F(vn) — Fu(vn)| < Crhlvnlip  Vop € V. (48)

Proof.
For all vy, € V}, we have

F(vp) — Fp(vp) = ZZ(/ fh—fh)dHU) n(M;)

i=1jEeT;
__;];7(/ (= 1) ds ) oy (01 ZJZJ(/ - 1) ds ) w0

Using standard interpolation estimates ([26], Sect. 6.2.3), noticing that 47 < 1 in the definition
of f,]L and using the discrete Cauchy-Schwarz inequality, we obtain

|F'(v) = Fi(vn)| < Ch|Q|f]1,00,0 [vnllo0;
where C > 0 is a constant independent of h. The estimate (48) then immediately follows using
(35).
6.5 Error estimates

In this section we prove optimal error estimates for the nonconforming flux-upwind stabilized
DPG method. We start proving that the solutions of the two DPG problems (plain and stabi-
lized) are close in the discrete H'-norm | - | .

Theorem 6.4 Under the assumptions of Theorems 6.1, 6.2 and 6.3, we have

IAh = ALl ( ”f”“’ +C ) h, (49)
€0
where A\, and X\j denote respectively the solutions of problems (38) and (44).
Proof.
We have

Br(An — Ay vn) = ba( A, vh) — b(An,vn) + F(vh) — Fp(vp) Yoy, € Vp,
from which we immediately obtain
‘Bh(/\h — /\2,’0}1)| < Cbh|)\h|1,h|'vh|1,h + th|7)h|1,h Yoy, € V.

Taking vy, = Ap — Aj, we get

€0]|An —

AhlLhs
from which, using (47), we immediately get inequality (49).

The error analysis of the stabilized DPG formulation can now be easily concluded using
the convergence result of [27] for the primal-hybrid nonconforming finite element approximation

ANC solution of (19), estimating the difference |\ — A4|1 5 (by means of Strang Lemma, [23])
and then using the triangle inequality.
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Theorem 6.5 Under the assumptions of Theorems 6.1, 6.2 and 6.3, and assuming also that
u € H?(Q) N HY(N), we have

lu = Apl1,n < (Chlulzn + Co + C3) h, (50)

where C1, Co and Cs are positive constants independent of h and depending only on ||, €, b
and f.

7 Recovery of interface fluxes

Once the nonconforming single field problem (in its plain or stabilized form) has been solved,
the convective flux is immediately available, while the diffusive flux y; can computed using the
element-by-element recovery procedure illustrated in the following.

Going back to equation (10)s, the diffusive flux is obtained by solving on each K € T}, such
that 0K NT' = ) the following local subproblem of dimension 3

/uhvh ds :/(€V)\h—g>\h)-V1)h dx -I-/B-na[()\hvh ds —/ fop dz Yoy, € Wh(K).
K K
0K

oK
(51)

On the Neumann boundaries we have

Pyy on every e € I'},

Kh = ~
Pgy + bX - ngr P on every e € I'y.

Notice that standard linear Lagrangian nodal-based test functions are used in (51), this being
the same procedure adopted in primal-hybrid formulations implemented as nonconforming finite
elements (see [28], p. 691).

Problem (51) can be written in matrix form as

MKp,K:rK
where
0 ez [eg
Mic=g | led 0 lesl |\ m = (ur i, i), ¥ = (AR 4 ATONK £,
le1] lez] O

having introduced a local counterclockwise numbering of the edges of 0K, denoted by e;, i =
1,2,3, and where

X €;-€e; €e;-€ey e€1-e€3 (I)?K ‘I)gK (I)gK
. g 1
A%ﬂr = ——271{‘ €1 -€2 €2-€2 €9-e3 y A%)nv = § (I)?K ‘I)gK (I)gK y
€1-€e3 €z2-€3 €3-€3 ‘P?K ‘bgK ‘I’gK
K
K = %PKJC 1,1, 17, AK = (A1, A, Ag)T

Once pp, is available on each edge e, € &, (denoted by up, p = 1,... ,Ned), it is possible

to compute the approximate advective-diffusive edge flux J, = (yp, — by - npAp) |€p| and then

the corresponding approximate advective-diffusive vector field J;, = Z Jp Tp(x) over Ty, using
ep€ly,
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the RT((7) finite element space, where 7, is the RT basis function associated with edge e,.
The discrete advective-diffusive field J;, computed by the DPG formulation (18) enjoys the
conservation property at each element K € 7. An example of the flux recovery procedure will
be given in Sect. 8.1, while we refer to [12] for a comparison with other kinds of flux-recovery
procedures proposed in a standard primal-based Galerkin framework.

8 Numerical Results

To test the numerical performance of the upwind-stabilized DPG method discussed in Sect. 5,
we solve several benchmark test problems for advective-diffusive flows, both on structured and
unstructured meshes, characterized by the presence of steep interior and boundary layers.

8.1 Test case nr. 1: the Smith and Hutton test problem

We consider the classical Smith and Hutton benchmark model problem, with f = 0. In this test
case, a fluid enters the lower left edge of the rectangle Q = [—1,1] x [0,1] and exits at the lower
right edge of the domain, where a homogeneous boundary condition is enforced on the diffusive
flux. On the remaining sides of the rectangle, Dirichlet boundary conditions are prescribed so
that the total advective-diffusive normal flux is zero (see Fig. 4). Precisely, we set

b= (2y(1 —22), —2x(1 —y?))7,

and
1 + tanh(10(2z + 1)) on I'y={(z,y) €el'|ze€[-1,0], y =0},
u(z,y) =
0 on '\ (T,uTly),
dulz,y) 0 on T}
= N

on

Numerical computations have been performed on a structured uniform triangulation with 40

p
— —_— —
! - ~ - &
! ’ -
M h brp
! / A
T b
t | ‘L
I'p | ri

Figure 4: Computational domain and prescribed convective field b for the Smith and Hutton
test case.

subdivisions in both = and y directions, corresponding to h, = 1/20 and h, = 1/40, respectively.

In Figs. 5 and 6 we show the numerical results in the case ¢ = 1075, corresponding to a
nondimensional Peclét number Pe = (hy||b||e,n)/(2€) equal to 5-10% Fig. 5 displays the
surface plot of A\;. A nodally continuous interpolation of the nonconforming finite element
solution is employed for graphical purposes. The stabilizing effects of the flux-upwind procedure
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are clearly visible (right), in contrast with the severe oscillations arising in the non-stabilized
case (left). Fig. 6 (left) shows the contour lines of the computed solution, with no appreciable
numerical dissipation in the crosswind direction, as expected in this quasi-hyperbolic problem.
In Fig. 6 (right) the profile of the solution along the inlet/outlet boundary of the domain is
illustrated. No oscillations arise in the computed profile, which is in good agreement with other
results in the literature.

Finally, Fig. 7 shows the vector plot of the approximate advective-diffusive vector field Jp,
reconstructed using the recovery procedure discussed in Sect. 7. Two values of the diffusion
coefficient have been used in the numerical experiments, namely ¢ = 10! (left) and ¢ = 107°
(right), in order to better emphasize the (different) role played by the diffusive flux in the
computation of J,. In both cases, an accurate and smooth representation of the advection-
diffusion field is achieved, with continuous interelement fluxes over 7j,.

Plain DPG: £ = 107 Stabilized DPG: € = 107

Figure 5: Surface plot of A}. Left: plain DPG formulation, right: stabilized DPG formulation.

Stabilized DPG: & = 107
25 .

Stabilized DPG: € = 107° 2b

0.8F 18r

0.6

0.4
0.5F

0.2

Figure 6: Contour lines (left) and profile of A} along the inflow-outflow boundary (right).
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Stabilized DPG: € = 107 Stabilized DPG: & = 10°

/
,,1,:\\;\ @ 2o 02
S J// NN N R R TN,
ol oz %%/"i\\\&\\x\;, ol
/

-0.2f 1 02}
_oak ‘ ‘ ‘ ] o4k ‘ ‘ ‘ |
-1 -0.5 0 0.5 1 -1 -0.5 0 05 1

Figure 7: Vector plots of J,. Left: ¢ = 1071, right: ¢ = 1075,

8.2 Test case nr.2: advective transport of a discontinuity in the boundary
data

The domain 2 is the unit square, where we set f = 0, b = (cos(#),sin(8))? with 8 = tan=1(3),
and prescribe the Dirichlet boundary conditions

u(z,y) =1, forr =0, y<landz<1/3, y=0,
u(z,y) =0, elsewhere.

The presence of a discontinuity in the boundary data, together with a small value of the viscosity
€, gives rise to an almost-hyperbolic transport problem along the characteristic direction of b.
The corresponding solution in this latter case is very close to a discontinuous function, jumping
from the value 0 to the value 1 along the line y = 3z — 1, with a steep outflow boundary layer
along z = 1, due to the abrupt change in the boundary data from the (transported) value 1 to
the (imposed) value 0. The results are shown in Fig. 8 for ¢ = 10~? and with mesh discretization
parameter A = 0.05. The solution computed by the stabilized DPG method is again unaffected
by spurious oscillation, and the internal layer is well approximated, without introducing an
excessive smearing in the crosswind direction (i.e., the direction orthogonal to b).

£=107°

MM’Af;’,{@%ﬂ'ﬁ%ﬂ'@%

"

il

l
il
i

i

Mt

Figure 8: Solution for the discontinuity transport test case, using a structured grid.
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8.3 Test case nr.3: flow with a non-zero source term

The computational domain 2 is again the unit square, where we prescribe b = (1,0)”, f = 1 and
homogeneous Dirichlet boundary conditions, in such a way that the solution is a bubble function
with an outflow (“hyperbolic”) boundary layer along x = 1, the width of the layer becoming
stronger as the viscosity gets smaller, and two “parabolic” boundary layers along y = 0 andy = 1
[29].

In Fig. 9 and Fig. 10 we show the computed solution A, (after a suitable re-interpolation over
the space of continuous piecewise linear functions for graphical purposes), for different values of ¢,
using structured (h = 0.08) and unstructured meshes (h = 0.05), respectively. The results show
the ability of the scheme in capturing the steep outflow layer in the solution without introducing
neither any spurious oscillation, nor any appreciable amount of extra-viscosity along the direction
of the flow. Morever, notice how, in the case of a structured grid, the method can handle without
difficulties the case of a convective field aligned with the mesh itself (corresponding to the special
case b - n; = 0 discussed in Sect. 5).

Concerning this latter aspect, it is interesting to investigate the role played by the “upwind”
quadrature rule (34) in the performance of the stabilized DPG method. With this aim, assume
to consider the case of a uniform grid of Friedrichs—Keller type with mesh size h = 1/N ([29],
p. 206). This is equivalent to constructing two sequences of one-dimensional parallel grids, the
first (finer, identified by the label (A)) grid with mesh size equal to h/2, the second (coarser,
identified by the label (B)) grid with mesh size equal to h. Then, it is easy to check that the
use of exact integration of the right-hand side would produce the following discrete solution in
the hyperbolic limit (which amounts to assuming € = 0 in (1))

M =24 +h, i=1,...,2N —1,
A =0,

L 1a A h .
M= 5(/\22'—1 + A1) + bR i=1,...,N,
AB=0.

The two sequences of discrete nodal values of A\, are aligned on the straight line y = 2z, while
the exact solution in the hyperbolic limit is y = z. In the same case, the stabilized DPG scheme
with an upwind treatment of the source function f computes the following discrete solution

( h
)\;4:A24_1+§’ izl,...,N,
A =0,
<
1 h .
)\ZB: 5(/\%_1+)\124‘(Z_1))+Z; i=1,...,N,
PY

In this case, the two sequences of discrete nodal values of \;, are correctly aligned on the straight
line y = z. This result can be interpreted as the exact fulfillment of the patch-test for consistency
proof of the nonconforming formulation [30].

9 Conclusions

In this article we have extended the DPG finite element method to the numerical solution of the
advection-diffusion equation. A static condensation procedure was used to eliminate the internal
and the flux interface variables in favor of the remaining (hybrid) interface variable, leading to
a nonconforming single-field formulation of strongly reduced size. In order to deal with the
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e=10"1 £=10"°

Figure 9: Solution for the bubble test case using structured meshes for different values of e.

advection-dominated case, we have introduced a suitable flux-upwind stabilization technique,
that has been proved to produce an optimally converging approximation measured in a discrete
H'-norm. The performance of the method and a simple (and conservative) flux-recovery post-
processing have been successfully demonstrated in the numerical solution of several benchmark
problems characterized by the presence of steep boundary and interior layers. The promising
behaviour and economical (single-field) implementation of the proposed stabilized dual-primal
DPG formulation suggest its use and extension to the solution of more complex problems in
fluid mechanical applications.
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