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The investigation on the pressure wave propagation along the arterial network and its relationships with vascular
physiopathologies can be supported nowadays by numerical simulations (see e.g. [25]). One dimensional (1D)
mathematical models, based on systems of two partial differential equations for each arterial segment suitably
matched at bifurcations, can be simulated with low computational costs and provide useful insights into the role
of wave reflections. For instance, those induced by the stiffening of the arterial walls or a vascular endoprosthesis,
and their influence on the cardiac work. Some recent works have indeed moved in this direction ([19,6,25,24,33]).

The specific contribution of the present paper is to illustrate a 1D numerical model in which there is an effective
coupling between the heart action and the 1D system. Often, the action of the heart on the arterial system is
modelled as a boundary condition at the entrance of the aorta. However, it is well known that the left ventricle
and the vascular network are a strongly coupled single mechanical system (see [15,23]). This coupling can be
relevant in the numerical description of pressure waves propagation, particularly when dealing with pathological
situations. In this work we propose a simple lumped parameter model for the heart and show how it can be
coupled numerically with a 1D model for the arteries. Numerical results actually confirm the relevant impact of
the heart-arteries coupling in realistic simulations.

level of detail, from the ones based on the three-
dimensional (3D) Navier-Stokes equations down
to lumped parameters systemic representations
based on the analogy between hydraulic and elec-
tric networks (see e.g. [8,20,9]). In particular,
1D models, originally introduced by Euler [4],
seem to be appropriate for the study, in the time-
space domain, of the pressure wave propagation
induced by the fluid-wall interaction in the arte-
rial tree (see e.g. [18,19,25,30,29,7,6]). For this
reason they have already been adopted for the
investigation of the relationships between anoma-
lous “pressure wave” patterns and the presence of
mechanical or geometrical modifications induced

1. Introduction

The aim of this paper is to investigate quan-
titatively the pressure wave propagation in the
arterial tree by means of numerical models ac-
counting for the coupling between the heart and
the vascular system. We want to investigate dif-
ferent scenarios induced e.g. by ageing, by surgi-
cal operations and, in general, by a change of the
mechanical characteristics of the arterial wall or
the structure of the circulatory network.

Human arterial system can be mathematically
described by different models with a different
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either by stenoses or by the presence of stents or
prostheses (see [7,33]).

In this paper, we start from the arterial net-
work model proposed in [34], where the 55 largest
arteries are represented by 1D models suitably



matched at the bifurcations. The parameters
specifying the mechanical and physical features
of each vessel have been taken by [35] and [28§]
and later adjusted by Wang and Parker in [34].
The remaining part of the arterial tree (periph-
eral circulation) has been modelled by a terminal
impedance modelled on a three-elements Wind-
kessel lumped parameter model.

Normally, the action of the heart is repre-
sented by a boundary condition to be prescribed
at the inlet of the first artery of the network, i.e.
the aorta. However, it is well known that “the
left ventricle and arterial circulation represent
two mechanical units that are joined together to
form a coupled biological system” [15, Chap.13].
The relevance of the heart-arterial interaction in
mathematical modelling has been pointed out in
[23,22], in the framework of lumped parameter
models. The reduction of the heart action to a
boundary condition for the system does not ac-
count at all for this coupling. This approach
is unsatisfactory in particular when we want to
study the effect on the pressure and flow patterns
caused by changes in the geometrical or mechan-
ical characteristics of the arterial network. No
feedback from the arterial tree to the heart is in-
deed being modelled in this way. In this work,
we propose to overcome this drawback by a cou-
pled description based on the matching of the 1D
network model with a lumped parameter model
for the left ventricle. In particular, we refer to
the model illustrated in [15] and in [5], together
with a technique that accounts for the closure of
the aortic valve. A representation of the proposed
model is in Fig.1.

We have used the model to simulate the phys-
iological characteristics of individuals of different
age. In fact, arterial stiffness increases with age
and this reflects in a change of the pulse wave
pattern. In particular, we have investigated the
overload on the heart induced by the backward
travelling waves, whose relevance is increased by
the stiffening of the walls. In a similar way, some
pathological situations can be considered, where
anomalous pressure wave reflections could have
some consequences on the heart. Abrupt changes
in the compliance of a particular district, induced
for instance by the presence of an endoprosthesis,

Arterial System Peripheral
Vessels
Proximal Distal
Conditions Conditions

Figure 1. Representation of the simulated sys-
tem. The arterial network is described in terms
of 1D models, while the heart and the peripheral
circulation are given by lumped parameters mod-
els.

can still be described at the mathematical level
with an appropriate modification of the physical
parameters of the 1D network. Drastic modifi-
cation in the arterial network such as the ones
induced by an amputation can be described as
well as by modifying the arterial network accord-
ingly. Preliminary numerical results referring to
such pathological cases are presented here.

The outline of the paper is as follows. Sect. 2
and 3 are the “Materials and Methods” sections
of the paper, where we detail the proposed model.
More precisely, in Sect. 2 we introduce the math-
ematical model while in Sect. 3 we describe the
numerical techniques used for the numerical sim-
ulation. In particular we address the coupling
between arterial and heart models. In the “Re-
sults” Sect. 4 we define the numerical test cases
and present the obtained results, that are exten-
sively discussed in Sect. 5. Conclusions and fu-
ture developments are drawn in Sect. 5.1.

2. The Mathematical Model

The basic 1D model is derived for a single
artery approximated as a straight cylinder. More
details are found, for instance, in [20]. We obtain
a system of two partial differential equations de-
scribing the evolution of the vessel section area A



and the mass flux @ along the vessel axis, and, as
a consequence, of the mean pressure P. Indeed
the latter is taken to be linked to the vessel radius
(and thus A) by a relation derived by the mechan-
ics of the vessel wall structure. We will make use
of a full non-linear model, since the non linear
wave interactions are of importance (see [19]).

Since the human arterial system is formed by
a network of vessels we need to find a proper way
to account for branching. We address this issue
in Sect. 2.1.2.

Finally, the model is completed by accounting
of the peripheral circulation and the heart. The
former will be regarded as a boundary condition
for the 1D network distal sections. As pointed
out in Sect. 1, also the heart could be described
as a boundary condition for the proximal section
of the 1D model. We will show how this approach
is not suitable to investigate the effect at the level
of aortic pressure for changes of the network char-
acteristics. An alternative approach is thus advo-
cated, which consists in modelling also the heart
action through a differential equation (Sect. 2.3).

2.1. One-dimensional model of the arterial
network
2.1.1. The basic one dimensional model
The starting point are the Navier Stokes equa-
tions, which govern blood flow in large and
medium sized arteries, where the approximation
of Newtonian rheology is commonly accepted.
The equations are posed in a cylindrical domain
Q of length L, as depicted in Fig. 2. The do-
main changes in time because of the flow induced
wall movement, and we assume that the vessel
displaces only in the radial direction and the flow
is axi-symmetric. The pressure P is taken to be
constant on each axial section S = S(z,t) and we
assume that viscous effects are relevant only near
the wall boundary. We further postulate that the
velocity component along the vessel axis, u., is
dominant with respect to the other components.
After integrating the Navier-Stokes equation
over a generic axial section we obtain the follow-

Figure 2. The cylindrical domain ;. The cylin-
der axis is aligned with the coordinate z. We
assume that the axial sections z =const. remain
circular at all times.

ing system of two partial differential equations,
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for all z € (0,L) and ¢t > 0, where the unknowns
A, @ and P denote the section area, averaged
volume flux and mean pressure, respectively, and
they are defined as

A(z,t) :/ dydz,
S(z,t)
Q(Z,t) = fS(z,t) uz(a;’yazat)dw dy = Aﬁa

P(z,t) = (A(z,1) 7" s P(z,y,z,t)dy dz.
3)

Here Kg is a resistance parameter related to the
viscosity of blood, taken equal to 8wv (the value
that corresponds to a parabolic velocity profile)
and « is the momentum correction coefficient
a = ([guldy)/Au?®, which for a parabolic profile
would be equal to 4/3. Yet, following the argu-
ments in [27] we have here taken directly o = 1,
a value which also leads to several mathematical
simplifications [20].

System (1), (2) is closed by a relation for the
pressure P derived from a mechanical model for
the vessel wall displacement. For instance, by



assuming instantaneous equilibrium by Laplace
law we derive

VA -4
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Bo = Ehov/m, (4)
where hg is the wall thickness at the reference con-
figuration. f is in general a function of z through
the Young modulus E. Other relations may be
adopted as well (see e.g. [16]) and we refer to [20]
for a more thorough discussion and analysis. In
this work we have always used relation (4), and
we also set (without loss of generality) P.,; = 0.
The quantity

AP
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represents the speed of pulse waves relative to
blood flow. One immediately recognises that
whenever g/ Ap increases, either because of a rise
in the Young modulus (stiffening of the arteries)
or because Ay is decreasing (tapering), we have
an acceleration of the pulse waves.

We assume that the initial time is ¢ = 0, and
we prescribe suitable initial conditions for A and
@, respectively. Boundary conditions need to be
assigned as well. Their prescription will be dis-
cussed in the next Sections.

The mathematical analysis of this system out-
lines its hyperbolic nature (see [20]). The solution
is the non-linear super-imposition of two simple
waves, travelling in opposite directions with a ve-
locity given by

)\1’2 = % :I:Cl, (6)
respectively. The piece of information carried out
by each simple wave is made up by a special com-
bination of mass flux and pressure, the so called
Riemann invariants W; i = 1,2 (also called char-
acteristic variables - see e.g. [19]). The actual ex-
pression of the Riemann invariants (see e.g. [20])
is obtained by fixing a reference state. The choice
of the rest conditions (A = Ag, Q = 0) as the ref-
erence state yields

-

(A3 —Ag) = Tt4(c1—c1,0),

Q Bo
=214
Wia =7 2pAo

(7)

where ¢; o corresponds to the speed of the pulse
wave in (5) when A = Ay. Relations (7) can be
inverted, leading to

2 4
®

Q= AW1+W2

These relations play an important role for the
imposition of boundary conditions.

Boundary conditions on o cylindrical domain

Before addressing the network modelling, it
is worthwhile to remind some basic facts in the
boundary treatment of hyperbolic problems, re-
ferring to the single artery case (see Fig. 3). As
for the typical values of w and ¢; in blood flow
the two simple waves travel always in opposite di-
rections, on each boundary point we may specify
only a single boundary condition (see e.g. [21]).

In the domain 2 of Fig. 3 at boundaries I'; and
I'; we would like to prescribe conditions which
correctly account for the wave propagation. For
instance, the single wave propagating from the
left to right should exit boundary I's without any
backward reflection. A perfectly non-reflecting
boundary condition would thus force a null back-
ward wave, i.e. Wa = 0 on I's. In more general
situations, a non-reflecting condition prescribes
only the piece of information associated to the
entering wave. If the z coordinate local to each
artery is oriented in the proximal-to-distal di-
rection, at the proximal boundary the entering
simple-wave is associated to Wi, while W, enters
at the distal end. This means that non-reflecting
conditions are of the form

Wi(A,Q) =gi(t), on Ty 9)
Wa(A, Q) = g2(t), on 'y, (10)

g1 and g2 being given functions.

2.1.2. Modelling of bifurcations

The arterial system is characterised by the
presence of branching. Bifurcations and their
mathematical modelling are the subject of many



Figure 3. One dimensional model with non-
reflecting conditions.

recent studies (see [26,27,6]). In fact, the accu-
racy by which the mathematical models describe
major bifurcations is of utmost importance for a
correct simulation of pressure wave propagation
and reflection. Here we have taken a simple ap-
proach that ensures the conservation of mass flux
and total pressure. More precisely, in order to
solve the three problems in €; (main branch), Qs
and Q3 (sibling vessels) of Fig. 4 we impose

—05—0:=0
@1 —Q2—Cs at T,¢t>0, (11)
Piai=Pp="Fg3,
0\’
where P, = P+ g Z) , and T is the branching

point. Since in each branch we are dealing with
a hyperbolic system, these three conditions are
sufficient to close the problem at the differential
level. Moreover, conditions (11) are compatible
with global energy decay for the associated non-
linear system [6].

A potentially more accurate description of the
bifurcation that accounts for the angle among the
branches has been proposed in [6]. Numerical
evidence suggests however that at a quantitative
level, at least for the purposes of the present work,
the differences with respect the results obtained
with (11) are negligible.

Q2 Q Q3

Figure 4. One dimensional model of bifurcation
by domain decomposition technique.

2.2. Boundary conditions for the network

Boundary conditions are either distal or prox-
imal. The former has to simulate in a simplified
way the presence of the capillary bed. The latter,
which is imposed at the proximal node in the as-
cending aorta, accounts for the action of the heart
(or, more precisely, of the left ventricle).

2.2.1. Distal conditions (peripheral circu-
lation)

At the distal ends a common choice is to as-
sume that the peripheral circulation corresponds
to a purely resistive load (see e.g. [25]). This
corresponds to assume that

Pa = Rde- (12)

When resorting to non reflecting boundary con-
ditions reformulated in terms of Riemann invari-
ants, we can linearise system (7) in the form

Wi =a1Q +asp, Wao=a1Q —asp



where a; and as are assumed to be constant. Con-
dition (12) can be therefore rewritten as

Wi=Ws _ o Wit W
- R, ,

2(12 2a1

After trivial manipulation, we obtain

a; — ?2_21:
W2 = _70,2W1 = —RTW1 (13)
a1 + R,

where we have set Rt = (a1 - g—i) / (a1 + g—i)

This condition states in an immediate way that
the back propagating Riemann invariant is (up to
the sign) a fraction of the incoming one (see e.g.
[25]). Observe, in particular, that if if R, tends
to infinity, that means condition (12) corresponds
to a completely blocked end (@, = 0), Rt tends
to 1, as expected.

The hypothesis that the peripheral circula-
tion can be represented in terms of a resistive
impedance is correct for very peripheral vessels.
Our model will be used for simulating differ-
ent scenarios, considering different possible dis-
tal boundaries. We therefore generalise previous
condition when the lumped parameter represen-
tation of the peripheral circulation is given by a
complex impedance Z,. In particular, if we con-
sider the three-element Windkessel model repre-
sented in Fig. 5, the input impedance is

R,
1+ inlc'

Modulus and phase of this impedance are illus-
trated in Fig. 6. In the time domain, by setting
Ry + Ry = Ry, we have the following generalisa-
tion of the resistive condition (12)

Zy, =Ry +

R,Q + RoRCI2. (14

dp
p+ R, C— p

dt

When resorting to the (linearised) Riemann
invariants, after some manipulations, condition
(14) reads

ot g dWs

as + o dt 2 s
e L "
! ay+ g dt e+ 7 1'

R C

p C— % R,

Figure 5. Three-elements Windkessel model used
for modelling the peripheral circulation.

phase(z)

Figure 6. Impedance of the three-elements Wind-
kessel model: modulus (top) and phase (bottom).



Time integration of (15) (pursued at the numer-
ical level, as described in Sect. 3) provides the
distal boundary conditions.

Observe that if we suppose that Ry tends to
infinity (corresponding to a complete occlusion of
the peripheral boundary), if the initial data are
compatible (i.e. @p = 0 at the initial time) it is
possible to verify that we obtain Qp = 0 at any
time, as expected.

2.2.2. Proximal Conditions: Standard
model

At the inlet we need to simulate the presence
of the heart and of the aortic valve. Proximal
boundary conditions may be further subdivided
into two types: open walve condition (OV) and
closed valve conditions (CV). The change in con-
dition type is driven by the solution itself. For
the sake of simplicity, we detail here OV and CV
separately. How is it possible to switch between
the states in the numerical model is explained in
Sect. 3.4.
CV Conditions: When the valve is closed the
boundary condition imposed at a given instant
at the proximal aortic node is ) = 0 . In practise
we resort to a condition similar to (13), where
now the roles of Wi and Wy are exchanged and
Ry =1, yielding to

Wiy = —Wa. (16)

OV Conditions: In this situation a classical

methodology is to prescribe the flux or the pres-
sure at the proximal node using a well chosen
profile. We should note however that prescribing
pressure or fluxes is a reflective-type condition.
This means that part of the wave going toward
the heart will be reflected back into the network.
If this is what we expect when the aortic valve is
closed, it may otherwise give unwanted spurious
waves in the case of OV conditions, since we are
not accounting for the absorbing properties of the
ventricle. Smoother results are obtained using a
non-reflecting boundary condition, by imposing
the incoming Riemann invariant W; instead, ob-
tained from the profile of the ventricular pressure
P,. Namely, the incoming Riemann invariant W;
is written in terms of the pressure and W5 as it

Time

Figure 7. Function P, ((t) for the left-ventricle
pressure Py in the case of standard boundary
conditions. Ts = 0.3s is the end-of-systole time.

follows,

Wy =Ws + 4\/2 (Pv + \/’i_o> : (17)

In practise, P, has been chosen as an half sinus
of amplitude P, o and a half-period ¢, = 0.3s (see
Fig. 7); the profile will be restarted at every heart
beat (we will indicate the heart beat period by
T). If we assume that the ventricle acts as a per-
fectly absorbing chamber, the value of Wy must
remain unchanged and equal to its initial value
Wa,0, readily computed from the initial state at
the aortic proximal node. In the general case, the
actual value of W» is computed by extrapolation
(see Sect. 3).

With this method we will not impose the pres-
sure P, exactly at the proximal node, since we
are selecting just the piece of information corre-
sponding to the wave entering the network. How-
ever, we are now sure that the waves coming from
the periphery will be perfectly absorbed. As pre-
viously pointed out, this approach does not ac-
count at all of the behaviour of the heart and of
the coupling between the left ventricle and the
arterial system, since P, is given.
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Figure 8. Lumped parameters representation of
the heart during the systolic phase.

2.3. Lumped parameters description of the
heart

We describe here an alternative technique,
based on a commonly accepted phenomenological
model of the ventricle function. The basic idea of
this model, originally proposed in [32,31] (see also
[15,5,11,23]) is that the pressure in the left ventri-
cle and the ventricular volume are linked through
a time-dependent coefficient called elastance. In
particular, the cardiac elastance is low during the
diastole and increases in systole. In [32,31] it is
experimentally shown that the elastance function
is in fact independent of the ventricular load. We
will therefore assumed that the ventricle pressure
P, and the ventricular volume V,, are linked by
the following relation,

Pv(t) = Ev(t)(vv(t) - VO) + KEv(t)(Vv - %)
XQy(t) = Ey(t) (Vo (t) — Vo)(1 + KQy(t))
(18)

Here E, = E,(t) is a time varying elastance that
simulates the action of the heart muscular fibres,
V4 is a reference volume and K is a resistance co-
efficient (see [15, Chap.13, eq. (13.4)]). E,, K
and Vp are intrinsic properties of the ventricle.
K is usually rather small, so in a first it may be
set to zero. We also assume that V is constant.
Observe that the flow rate ejected by the ventri-
cle is given by Qy = —dVy /dt. During systole,

when the atrio-ventricular valve is closed, equa-

tion (18) is matched with the 1D network (OV

conditions). More precisely, a differential expres-

sion is obtained by deriving in time of (18),
ldbPy d ( 1 ) dv

Fa Ta\g)V=u =9

whose electrical analogue is illustrated in Fig. 8.

The presence of the venous system, which is re-
sponsible of the pressure increment in the heart
during the diastole, is not considered in an ex-
plicit way, since we are simulating here just the
left ventricle action. This means that (18) is
restarted at the beginning of each systolic cycle
(more precisely at the start of the isochoric con-
traction), when we impose the volume of blood in
the ventricle.

Referring to the electrical analogy, this corre-
sponds to a re-polarisation of the capacitor in
Fig. 8. The systolic phase will then coincides with
the depolarisation of the capacitor, yielding the
blood ejection into the arterial system.

3. Numerical methods

3.1. Discretisation of a single artery

We discretized system (1, 2) using a second
order (explicit) Taylor-Galerkin Finite Element
scheme [3,1]. This numerical scheme is well suited
to wave propagation problem as it has a good
phase accuracy for a large range of wave num-
bers. Details may be found in [20].

Each arterial segment of the network, €2;, is
subdivided into a number of finite elements of
size h;. For the sake of simplicity we have kept
h; constant on each artery, while it may vary be-
tween arteries. Time is advanced using a time
step At that has to satisfy a CFL stability con-
dition stating that the ratio Zt should be ev-
erywhere greater than a given fraction (v/3 in
our case) of the maximum wave speed ¢; + Q/A.
Since the wave speed is a function of the solution,
At should be adjusted during the computation.
However, for blood flow problems it is not dif-
ficult to estimate a reasonable upper bound for
the wave speed and thus guarantee a-priori that
the chosen At will always be within the stability
range.




In each arterial segment the scheme provides
the equations that link the approximation at time
t" to that at time t"*! at the interior finite ele-
ment nodes. The values at the boundary and at
the branching points are obtained as explained
in the next section. The approximation at time
t = 0 is computed from the given initial values.

Generalities on the imposition of the boundary
conditions

We have seen that the hyperbolic nature of the
problem implies that one boundary (or integral)
condition has to be imposed at each end. Yet, at
numerical level, we have to provide at the bound-
ary nodes two pieces of information at each time
step t"T1: the value of A"T! and Q. To ex-
emplify the techniques used to build the missing
datum, consider a distal boundary and assume
that the boundary condition is given in the form

W (AMH, QPHY) = gy (#7H1). (19)

The first Riemann invariant is associated to the
wave that leaves the domain through the distal
node travelling at speed A;. In the absence of
source terms W satisfies the equation

oW, oW,

—+M——=0

ot M og

and, therefore, is constant along the characteris-
tics curve dz/dt = A (A(t),Q(t) [10]. If z = L
is the coordinate of the distal node, we can write
the following approximation for W*! in (22)

Wit = Wi (8", L — ATAt) = WLy, (20)

a technique also known as extrapolation of the
outgoing Riemann invariant. If we have a source
term, the procedure is still applicable with some
minor modifications (see [20]).

We may note that, as a consequence of the sta-
bility limitation on At, the point x = L — AT At
falls necessarily inside the mesh element adjacent
to the distal node. Consequently, Wf;tclt may be
readily computed by interpolating between the
values at the two last mesh nodes.

The extrapolation of W; and the prescription
of W5 give now all the data sufficient to solve the
numerical problem. Indeed, we may compute the

boundary values for A and @ at the distal node
by solving the non linear system

Wi (A™E, Q) = Wi
’ (21)
Wo(4™H,Q"H) = go.

Similar considerations can be carried out on the
proximal node, where the incoming W; is pre-
scribed and the outgoing W5 can be extrapolated
along the characteristic curve driven by the eigen-
value ;.

3.1.1. Branching conditions

The extrapolation of the outgoing Riemann in-
variant can be used also for the branching con-
ditions. Let us consider Figure 4. The systems
provided by the Taylor-Galerkin scheme for each
artery has to be complemented by six relations for
the unknowns A7 QP*', i = 1,2,3 at the bi-
furcation point. By exploiting relations (11) and
the extrapolation of the outgoing characteristics
(W1 for Qq, Ws for Qs and Q3) we can build, at
each time step, a non linear system for the desired
quantities. The system can be solved numerically
with a few iterations of a Newton-Raphson pro-
cedure.

3.2. Peripheral circulation

At numerical level, relation (15) provides an
equation for the approximation at time t"*! of
Wi and Wy at a distal boundaries. More pre-
cisely, for the sake of notation we set

w5 @~ %
51=R1070 52=R1070
a1 ? a1
a2+R—p a2+R—p

az—g—;

83 = ——

“t R

L]

If we discretized (15) with a backward Euler
scheme, we obtain the equation

(55 — Atsz) W 4 5, WP — s, WP

Wn—‘,—l —
2 At —|— S1

(22)

As before, this relation is completed by the ex-
trapolation of the outgoing characteristic. Which
is also needed by the fact that the right hand side
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of (22) depends on W**'. We therefore obtain
the non linear system

Wi (A, Q1) = Wikl

Wa(4r,@nH) =

(52 — Atszs) WP 4+ 5, W3 — s W
At + 51 ’
(23)

still to be solved with a Newton scheme.

3.3. Proximal boundary
3.3.1. Standard conditions

In this case, the boundary condition we pre-
scribe is the incoming Riemann variable W;
through equation (16) when the aortic valve is
closed or (17) when it is open. The other condi-
tion is obtained by extrapolating Ws.

In the case of CV conditions, we will therefore
set:

n+1l __ n+1 n+l __ n+l __ n+1
W2 - 2,ezt7W1 - _W2 — T YWalext:
(24)

In the case of OV conditions, having prescribed
a ventricular pressure function P,(t), we will
force:

p
Wt = wpdl + 4\/; (P + £)
W2n+l — Wn+l

2,ext?

(25)

3.3.2. Heart model

When accounting for a lumped parameters de-
scription of the heart, conditions (24) are still
valid in the case of CV.

For what concerns OV conditions, given the
quantities at time ", we approximate (18) to ob-
tain the pressure at time $"*! as it follows

n+1 n
p‘gl-i-l — E(tn+1) V'Un _ qu 2+ Qv At — VO)
+R(t", V)QH,

(26)

where V" is the ventricular volume at ¢ = t". We
assume that when the aortic valve is open the
values of P, and ), at the proximal aortic node
coincide with P, and @Q,, respectively.

Equation (26) and the extrapolation of W, are
the boundary conditions for the open valve case.
We can then update the ventricular volume as
Vil =y - @O Ay,

To simulate the cardiac cycle, we re-activate
the model at each time t* = KT, k = 0,1,...,
being T the chosen beat period. At these times
we assume that the ventricle is completely filled
with V,(t*) = V* being the chosen stroke volume,
while E(t*) corresponds to its lowest value (end
diastole). While the aortic valve opens (see next
subsection for the modelling of the valve) we have
Q" = Qrtl = 0and V,* = V* (isochoric contrac-
tion) and (26) is sufficient to compute P"*1. Un-
til the aortic valve remains closed, the ventricular
model is completely decoupled from the network
model and the proximal boundary condition for
the latter is determined by the zero flux condi-
tion.

3.4. Aortic valve action

We have assumed that the valve opens under
the action of a differential pressure, while it closes
under the action of a flow reversal.

The diastolic cycle is started with the valve
closed and at each time step P"*! is compared
to that P! the pressure computed by the
1D model at the aortic proximal node. When
Pptl — prtl > ( the aortic valve is opened and
from the successive time step onward we adopt
the OV conditions, until the next closure.

Clearly, when the valve opens at the end of
the isochoric contraction the ventricular pressure
is still rapidly increasing and induces a positive
flux into the aorta. To determine the instant of
valve closure (end systole) we monitor the sign of
the flux at the aortic proximal node. At the first
time step when we have Q"' < 0 we “close”
the valve by adopting again the CV boundary
condition, until the next heart cycle. A flow chart
representation of the aortic valve action is given
in Fig.9.
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Figure 10. Arterial tree composed of a set of 55 straight vessels, described by 1D models. Physiological
case (see [34]).
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Figure 11. Arterial tree composed of a set of 55 straight vessels, described by 1D models. Pathological

test case: vessels outlined in the boxes are cut away from the system.



Table 1

Reflection

# | Name of Artery Length (cm) | Area (¢cm?) | Beta (8) | coefficient (R;)

- - (kg/s?) -
1 Ascending Aorta 4.0 5.983 388 -
2 Aortic Arch I 2.0 5.147 348 -
3 Brachiocephalic 3.4 1.219 932 -
4 R. Subclavian I 3.4 0.562 1692 -
5 R. Carotid 17.7 0.432 2064 -
6 R. Vertebral 14.8 0.123 10360 0.906
7 R. Subclavian II 42.2 0.510 1864 -
8 R. radial 23.5 0.106 11464 0.82
9 R. Ulnar I 6.7 0.145 8984 -
10 R. Interosseous 7.9 0.031 51576 0.956
11 R. Ulnar II 17.1 0.133 9784 0.893
12 R. internal Carotid 17.6 0.121 10576 0.784
13 R. external Carotid 17.7 0.121 9868 0.79
14 Aortic Arch I 3.9 3.142 520 -
15 L. Carotid 20.8 0.430 2076 -
16 L. internal Carotid 17.6 0.121 10576 0.784
17 L. external Carotid 17.7 0.121 9868 0.791
18 Thoracic Aorta I 5.2 3.142 496 -
19 L. Subclavian I 3.4 0.562 1664 -
20 Vertebral 14.8 0.123 10360 0.906
21 L. Subclavian II 42.2 0.510 1864 -
22 L. Radial 23.5 0.106 11464 0.821
23 L. Ulnar I 6.7 0.145 8984 -
24 L. Interosseous 7.9 0.031 51576 0.956
25 L. Ulnar II 17.1 0.133 9784 0.893
26 Intercostals 8.0 0.196 3540 0.627
27 Thoracic Aorta II 10.4 3.017 468 -
28 Abdominal T 5.3 1.911 668 -
29 Celiac I 2.0 0.478 1900 -
30 Celiac II 1.0 0.126 7220 -
31 Hepatic 6.6 0.152 4568 0.925
32 Gastric 7.1 0.102 6268 0.921
33 Splenic 6.3 0.238 3224 0.93
34 Superior Mesenteric 5.9 0.430 2276 0.934
35 Abdominal IT 1.0 1.247 908 -
36 L. Renal 3.2 0.332 2264 0.861
37 Abdominal I1I 1.0 1.021 1112 -
38 R. Renal 3.2 0.159 4724 0.861
39 Abdominal TV 10.6 0.697 1524 -
40 Inferior Mesenteric 5.0 0.080 7580 0.918
41 Abdominal V 1.0 0.578 1596 -
42 R. common Iliac 5.9 0.328 2596 -
43 L. common Iliac 5.8 0.328 2596 -
44 L. external iliac 14.4 0.252 5972 -
45 L. internal Iliac 5.0 0.181 12536 0.925
46 L. Femoral 44.3 0.139 10236 -
47 L. deep Femoral 12.6 0.126 10608 0.885
48 L. posterior Tibial 32.1 0.110 23232 0.724
49 L. anterior Tibial 34.3 0.060 36972 0.716
50 | R. external Iliac 14.5 0.252 5972 -
51 R. internal Iliac 5.1 0.181 12536 0.925
52 R. Femoral 44.4 0.139 10236 -
53 R. deep Femoral 12.7 0.126 10608 0.888
54 L. posterior Tibial 32.3 0.110 23232 0.724
55 R. anterior Tibial 34.4 0.060 36972 0.716

13

Data used in the computational model of the 55 arteries. The data is from the physiological data published
in [35] and [28] with the changes made in [34] and has been normalised with respect to the area of the
ascending aorta (artery 1).
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Figure 12. Comparison between the results obtained with standard proximal conditions (left) and the
coupling with the ventricular model (right). Values of velocity and pressure in the mid-point of selected
arteries are presented in the first three rows. The last two rows illustrate a comparison between the
Riemann invariants W; and Ws, respectively. We have simulated adult circulation in a physiologic
(solid) and pathologic (dotted) test case.



Artery 1, pressure(mmHg) and velocity (cm/s) Artery 1, pressure(mmHg) and velocity (cm/s)
T T T T 180 T T T :

health health
P pathologic pathologic

160 ~
120 4

2.4 2.5 2.6 2.7 2.8 2.9 3 23 2.4 25 2.6 2.7 2.8 2.9 3

Artery 27, pressure(mmHg) and velocity (cm/s)
health
pathologic

Artery 27, pressure(mmHg) and velocity (cm/s)

180 T
health
— pathologic

120 4

L L L L L _20 L L L L L
2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 23 2.4 25 2.6 2.7 2.8 2.9 3

Artery 37, pressure(mmHg) and velocity (cm/s)

Artery 37, pressure(mmHg) and velocity (cm/s)

health health
patholog pathologi

20 L L L

. . . _s0 . . . . . .
23 2.4 2.5 2.6 2.7 28 2.9 3 23 2.4 2.5 2.6 2.7 2.8 2.9 3
Artery 1, characteristic variables
3980 . T 4050 T " T T
health
pathologic
3960
4000 4
3940
3950
3920
3900 . . . . . . 3900 . . . . . .
23 2.4 25 2.6 2.7 2.8 2.9 3 23 2.4 2.5 2.6 2.7 28 2.9 3
-3900 T T T T T -3900
-3010 _a020
-3920 == R
\ == -3940
-3030 \ =7 R
N = -3960
-3940 < R
_3050| N o ] -3980
_3960 . . . . . . —4000 . . . . . .
23 2.4 25 26 2.7 28 2.9 3 23 2.4 25 26 2.7 2.8 2.9 3

Figure 13. Same simulation of Fig.12 for an elder individual.



16

(24) (2528804 (24)

=0

=0 <0

Figure 9. Flow chart representation of the aortic
valve modeling. The numbers inside the boxes
refer to the corresponding conditions in the text.
Numbers on the left hand side refer to standard treat-
ment, on the right hand side to the coupling with a
lumped parameters model for the heart.

4. Numerical tests and results

In our simulations we start from the basic arte-
rial network depicted in Fig. 10. In each of its 55
arterial segments, we assume Eqns. (1, 2) to hold,
while bifurcations are described by (11). The val-
ues of the physical parameters (lengths, rest radii,
Young moduli, etc.) have been taken from [34]
and are reported in Tab. 3.4. In the same work
suitable values for the distal impedances are pro-
vided and have bee adopted in this work for the
physiological test cases. The same network has
been used in [34], [24] and [25].

Here, we will compare the results obtained with
the standard boundary conditions for the heart
against the proposed coupled model. In the for-
mer, when the aortic valve is open P, is pre-
scribed to be a half-sinus curve, as pointed out
in Sect. 2.2.2 (see Fig. 7).

We have considered two different scenarios, in
order to assess the correctness of the numerical
model.

Age effects. We have modified the artery charac-
teristics to account for different ages. More pre-
cisely, the Young modulus has been reduced by
half in the case of an adolescent individual and
doubled for an elder.

Pathological case. In order to outline the on-rise
of wave reflections caused by pathologies, we con-
sidered the case of a complete obstruction of the
right femoral artery. This means that in this case
the network reduces to a set of 53 vessels, as indi-
cated in Fig.11, and the distal conditions on the
right femoral artery corresponds to a complete
blockage (i.e. Ry = 1). In the sequel, simulations
referring to network of Fig. 11 will be denoted as
pathological.

In Fig.12 we report the results for a mid-
dle aged individual and compare results ob-
tained within the standard treatment of proximal
boundary conditions (left column) and with the
left ventricle coupling (right column). In partic-
ular, we illustrate the pressure and the velocity
of blood for different arteries of the system. The
last two pictures in each column refer to the Rie-
mann invariants (W; and Wy respectively) com-
puted for the same simulations. Both the physi-



ological and the pathological network have been
considered. Fig. 13 refers to the same simulation
carried out in the case of an elder individual.

The next simulations have been obtained with
the left-ventricle coupling exclusively.

Fig.14, 15, 16, 17 and 18 refer to simulations
of the physiological case. In particular, Figure 14
shows the behaviour of the arterial pressure and
flow waves in arteries at different locations of the
system in the physiological case, for a middle aged
individual. We report results from the thoracic
aorta up to the tibial artery.

Figure 15 compares the behaviour of the arte-
rial pressure and flow waves in arteries of sub-
jects of different ages, while in Fig. 16 we report
the evolution of the ventricular pressure and the
aortic pressure during a heart beat (left) and the
Pressure-Volume curves for the heart for a middle
aged and an elderly patient. It is worth pointing
out that this curves refer to the diagram P — V
only during the systolic phase, when the arterial
network and the heart are in fact interacting.

The Figure 17 shows the behaviour of the pres-
sure wave forms as a function of location from the
ascending aorta to the iliac bifurcation compared
with the flow wave pattern in each chosen artery.

Fig.18 shows the behaviour of subclavian artery
pressure wave compared to that of aortic arch for
a middle aged individual.

Finally, Fig. 19 compares the results of the
physiological and the pathological cases. More
precisely, we report the different behaviour of the
abdominal aorta pressure waves.

5. Discussion

Physiopathological evidence suggests that ma-
jor differences in the shape of aortic flow and
pressure waves among patients occur either in the
presence or in the absence of cardiovascular dis-
eases [13,14]. In fact, the contour of pressure and
flow waves in major systemic arteries can be ba-
sically explained on the basis of wave reflections
and their interaction with the heart. The physi-
cal structure of the arterial system leads indeed to
the reflection of waves at critical regions such as
bifurcations, abrupt changes of the arterial stiff-
ness or radius. These reflections are by far rele-
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vant in determining the working point of the cou-
pled heart/arterial network system (see [15]).

The model presented here is able to describe
both the left-ventricle/arterial system coupling
and the wave reflections arising at the critical re-
gions.

Impact of the heart coupling in the numerical re-
sults

The impact of the coupling of the heart in the nu-
merical model is evident from Fig. 12 and 13. In
particular, it is worth to mention that the stan-
dard (uncoupled) treatment of proximal bound-
ary conditions underestimates the reflections in
the pathological case. This was to be expected,
since in the non-coupled case the action of the
heart is actually independent of the real over-
load induced on the heart by the increasing of
the peripheral resistances. This induces a sort of
smoothing effect, that strongly damps the wave
reflections. In particular, looking at the Riemann
invariants, in the non-coupled case the incoming
variable W is obviously independent of the out-
going waves, which is however unphysical. On the
other hand, the presence of wave reflections is felt
by the heart in the coupled model.

Another remark refers to Fig. 13, where an el-
der is considered. The sensitivity to the variation
of arterial stiffness of the model using standard
proximal conditions is significantly lower than in
the coupled model, as can be noticed by compar-
ing the results obtained for a middle aged indi-
vidual. The former results appear to be more in
line with what expected.

These results show the relevance of the heart
coupling.

Behaviour of the pressure/flow waves along the
arterial tree

From Fig. 14 it is possible to see how the nu-
merical model is able to correctly simulate the
behaviour of arterial flow and pressure waves as
they travel away from the heart. As shown in the
figure, mean pressure falls slowly but the pulsat-
ing pressure variation increases up to the tibial
artery. It may double that at the root of the
aorta. The flow oscillation, on the contrary, di-
minishes markedly from proximal aorta to tibial
arteries. Such behaviour can only be accounted
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Figure 14. Snapshot of flow and pressure variation along the aorta up to the tibial artery. The thick line
highlights the variation of the peak values.
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Figure 15. Time history of pressure and flow in the ascending (top) and thoracic (bottom) aorta for
different aged individuals. Physiological case.
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Figure 16. Time history of the left ventricle and aortic pressures during a heart beat (left) and pressure-
volumes diagrams for the left ventricle (systolic phase only) in a middle-aged and an elder individual
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Figure 17. Pressure waves at different locations (from ascending aorta to iliac bifurcation) for a middle
aged (left) and an elderly patient (right). On the bottom we report the flow rate in the ascending aorta.
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for by the presence of a strong reflection in the
small peripheral vessels, due to high peripheral
resistances. In fact, in the absence of reflections
(low peripheral resistances) damping would cause
a parallel fall in pressure and flow oscillations.
The region of this fall seems to be the small-
est arteries and proximal arterioles as well as the
splanchnic branches of the abdominal aorta (re-
nal, superior and inferior mesenteric). Yet in the
latter case there is no back flow and the flow con-
tour is similar to that of pressure. This can be
attributed to low peripheral resistance and to a
low reflection coefficient in vascular beds supplied
by these arteries (see [12], [14]).

Ageing effects

In Fig. 15 it is evident that the system is able to
simulate the major changes of the arterial pulse as
seen with hypertension or ageing. Usually these
alterations are attributable to arterial stiffening
and to the higher speed of pulse waves along the
major arteries, and the consequent early return
of wave reflection from the periphery of the body.
Comparing flow and pressure waves, one notes
that in the young adult the wave speed is low and
reflections arrive late, i.e. they arrive in diastole
back in the aorta. In the older individual wave
speed has increased and the reflections return in
systole. This is the reason for disappearance of
the reflected wave from diastole and its move-
ment into systole, with the characteristic boost
of late systolic pressure in elderly patients. De-
creased compliance per se also increases pressure
wave amplitude. Increased wave velocity causes
wave reflection to return earlier and often leads to
fusion of incident and reflected waves with gener-
ation of a pressure wave with a later systolic peak
in all major arteries. It is worth noting that the
increase of the arterial stiffness induces a heart
overload. This can be seen in the P — V dia-
grams on the right of Fig. 16. The increment
of the area spanned by the P — V curve is evi-
dent and corresponds to the ventricular overload
induced by stiffening.

The appearance of reflected waves is outlined
also in Fig. 17 where it occurs progressively ear-
lier in systole as the wave approaches the iliac
bifurcation. The amplitude of the reflection in-
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creases peripherally. As previously pointed out,
the morphology of the network induces the pres-
ence of reflections. Possible reflecting sites in-
clude branching points, a change of arterial cal-
ibre (tapering), or of the elastic properties of
the arterial wall [12]. At a given location in
the ascending aorta the forward pulse wave in-
teracts with the backward travelling (reflected)
wave while systole is still in progress. This re-
flected wave “adds up” to the forward wave and
yields the archetypal ascending aorta pressure
wave-form [14]. The interaction with the reflected
wave, as indicated by comparing flow and pres-
sure waves, occurs progressively earlier in systole
as we approach the iliac bifurcation. As the initial
portion of the reflected wave occurs progressively
early during the systole with increasing distance
from the aortic valve, the diastolic portion of the
reflected wave moves from diastole into systole
too. In addition to the earlier appearance of the
reflected wave, the amplitude of the reflection in-
creases peripherally. These observations further
support the evidence that the terminal abdomi-
nal aorta behaves as the major reflection site in
man[14] (see Fig.17).

Circulation in the upper body

Arterial terminations in the upper part of the
body are another relevant reflecting site. As a
matter of fact, in man peak and nadir of the
brachial artery pressure waves are considered to
represent systolic and diastolic pressure through-
out the whole arterial system. Moreover, the con-
tour of pressure pulse in the upper limb is quite
different from that in the femoral artery and its
peripheral branches. For instance, there are usu-
ally two systolic peaks in the brachial artery but
only one in the femoral artery. This suggest a sort
of amplification in the upper limb arteries due to
the shortest time period between the initial sys-
tolic peak and diastolic wave (see Fig. 20). In
normal circumstances the arterial pressure wave
is markedly amplified in transit from the ascend-
ing aorta to the radial artery [2]. Moreover, when
arterial pressure is taken on the upper arm by us-
ing a sphygmomanometer, we actually measure
the pressure in the brachial artery, which is dif-
ferent from the pressure in the aorta (or other
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Figure 20. Representation of the arterial sys-
tem, pinpointing the difference between upper
and lower parts of the circulation, at the basis of
the different pressure wave behaviour (see [15]).

distributing arteries) [17]. Our system is able
to simulate this amplification phenomenon in the
brachial artery due to the shortest time period
between the initial systolic peak and the diastolic
wave. In normal situations this difference may
be relatively small in absolute terms and may
warrant the assumption that central aortic and
brachial systolic pressures are identical.

Pathological case

Finally, in Fig. 19, it can be noticed that arterial
obstruction causes little perceptible changes in
flow and pressure wave contours of the proximal
aorta, while flow and pressure wave contours are
markedly altered in the diseased artery. This can
be explained by dissipation phenomenons from
abdominal to thoracic aorta. When the obstruc-
tion is at a distance, the net effect to the flow
is similar to that seen during peripheral vasocon-
striction, with a fall in the entire flow with the on-
set of a back flow. Arterial obstruction is associ-
ated to a decrease in amplification of the pressure
wave as a result of a local higher reflection phe-
nomenon. Local aortic systolic pressure in pres-

ence of iliac-femoral artery obstruction may ex-
ceed the normal aortic pressure by far 30-50 mm
Hg.

5.1. Conclusions and Future Developments
In this paper we have presented a novel ap-
proach for the simulation of the arterial network
with a low computational costs. Specific atten-
tion has been devoted to the coupling between
the left ventricle and the arterial system, as it
physio-pathological relevance is well known.

The mathematical model have given good re-
sults in the several numerical tests we have per-
formed, where it has demonstrated to be able to
describe the relevant features of pressure wave
propagation and reflections within the arterial
system.

Future developments will be devoted to further
applications of the model to simulation of patho-
logical cases, in particular the simulation of wave
reflections induced by the presence endoprosthe-
sis or by surgical operations such as the insertion
of a by-pass.

From the modelling viewpoint, a next improve-
ments will be the inclusion of the venous system
together with a more precise description of the
heart functioning, starting form the ideas pro-
posed in [23], possibly extended to include the
electric activation of the myocardium.
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