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1 Why anisotropy?

The straightforward answer to this question could be: because anisotropy is
everywhere! Actually, when numerically solving a problem in Computational
Fluid Dynamics (CFD), or in some other areas, there are many instances where
the solution shows directional features such as great variations along certain
directions with less significant changes along other ones, e.g. boundary and
internal layers, singularities or shocks. A typical example is provided by the
solution of an advection-diffusion problem, as shown in Fig. 1 [17, 18]. On the

Figure 1: Isotropy (left) versus Anisotropy (right): meshes and contour lines

computational domain Q = (0, 1)?, a standard advective-diffusive problem is
solved for the scalar u, in the presence of a convective field a = (2, 1)T and
with a diffusivity g = 10~%, completed with Dirichlet boundary conditions, i.e.
u = 1 on the left and top sides and v = 0 on the remaining ones. The solution
u exhibits an internal and a boundary layer of thickness O(10~2) and O(10™%),
respectively. As Fig. 1 shows, the isotropic mesh consists of more elements than
the corresponding anisotropic one (312 versus 64 triangles). In the latter case a
correct orientation and deformation of the mesh elements (longest edges parallel
to the boundary layers) yields a great reduction of the number of triangles.
Moreover, in the anisotropic case the layers are captured more sharply.
This simple but remarkable example highlights the “leitmotiv” of an anisotropic

analysis: for a fixed solution accuracy, reduce the number of degrees of freedom
involved in the approximation of the problem at hand by better orienting the



mesh elements according to some suitable features of the solution, or vice versa,
given a constraint on the number of elements, find the mesh maximizing the
accuracy of the numerical solution.

Going back to the utility of anisotropy, we observe that things may not
be so straightforward, of course. While anisotropy is proved to be superior in
terms of effectiveness for the most accurate computations in many cases, yet,
there are some instances where a structured Adaptive Mesh Refinement (AMR)
procedure turns out to be more simple to carry out, especially in view of an
implementation in a parallel environment. Moreover, in the unstructured case,
the main drawback of the anisotropic approach compared to the isotropic one,
is the more complex analysis required to fully describe the element dimensions
and orientation. Though, this heavier burden is the strength of the method.
For other approaches in the anisotropic context, see e.g. [1, 7, 8, 15, 19].

The outline of the article is the following. In Sect. 2 we introduce the
anisotropic framework by recalling some anisotropic interpolation error esti-
mates, representing the main tool used in the a posteriori error analysis ad-
dressed in Sect. 3. This analysis is discussed in the case of a general differential
operator, moving from the adjoint theory for goal-oriented error control, and
it is then detailed for the advection-diffusion-reaction and the Stokes problems.
Finally, in Sect. 4 the effectiveness of the anisotropic philosophy is assessed on
some numerical test cases.

2 The anisotropic setting for FEM

Let Q C R? be a polygonal domain and, for any 0 < h < 1, let {75}» be a
family of conforming triangulations of Q into triangles K of diameter hx < h.
Following the idea proposed in [10], in order to derive the additional information
for the geometrical description of the mesh triangles, we move from the standard
affine transformation Tk : K — K, with K = MK(I/(\') +bg, Mg € R**? and
bk € R?, from the reference triangle K into K , where K can be, e.g., the right
triangle (0,0), (1,0),(0,1) or the equilateral one (—1/2,0),(1/2,0),(0,+/3/2)
(see Fig. 2). Let Mg = Bk Zk be the polar decomposition of the invertible
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Figure 2: The map Tk

matrix Mg, with Bg and Zg a symmetric positive definite and an orthogonal
matrix, respectively. Then we factorize the matrix Bg in terms of its eigenvalues



Ai, k (With Ak > A2 k) and eigenvectorsr; g, fori =1, 2, as Bx = Rf(AKRK,
where Ax = diag(M\i,kx, Ao,x) and Rk = [r1,k, r2 x]|7. As Fig. 2 shows, the
eigenvectors r; x provide the directions of the semi-axes of the ellipse circum-
scribed to the element K, while the eigenvalues \; k measure the length of such
semi-axes. Thus, the shape and orientation of each triangle K is completely
described by the quantities r; x and A; k. The deformation of K with respect
to K can be measured by the so-called stretching factor sk = A k/A2,x(> 1),
being sp = 1.

2.1 Functional framework

Throughout, we use a standard notation to denote the Sobolev spaces of func-
tions with Lebesgue-measurable derivatives, and their norms [16]. In more de-
tail, let W*P(Q) be the Sobolev space of functions for which th p-th power of
the absolute value of their distributional derivatives of order up to k£ > 0 is
Lebesgue-measurable, with 1 < p < co. For p = 2 we let H*¥(Q) = W*2(Q). In
particular, L?(Q) is the space of square-integrable functions with norm || - || 2(q)
and scalar product (-, -), while for the space H*(2) we denote by || - || g#(q) and
| - | a* () the corresponding norm and seminorm, respectively. When the norms
or seminorms are referred to some subspace S of (2, they are written as [|-||z2(s),
Il % (sy and || gx(s), while the scalar product is denoted by (-,-)s. We also re-
call that L®° () is the space of bounded functions a.e., while W1 (Q) c L*>(Q)
is such that also the first derivatives are bounded a.e. Finally, C°(Q) denotes
the space of continuous functions on .

2.2 Anisotropic interpolation error estimates

The starting point for the a posteriori analysis in Sect. 3 has been the derivation
of suitable anisotropic interpolation error estimates [10, 12, 17].

We have proved estimates for both the Lagrange and the Clément-like inter-
polants [5, 6] to take into account different regularity of the function to be
interpolated. Denoting by W the finite element space of continuous affine
functions, let Il : C°(Q) — W}, and I, : L?(Q) — W be the Lagrange and
Clément linear interpolants, respectively and let their restrictions to each ele-
ment K € Tj, be IIx and Ix. Then we have:

Proposition 2.1 Let v € H?(K), for any K € T,. Then there exist two con-
stants C; = C1(K) and Cy = C3(K) such that

2 N 1/2
o = e ()22 00) < C [ S A L (v)] , (1)
ij=1
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where

Li’(j(’u) = / (ri:‘FK Hg (v) I‘j,K)2 dx, with i,j5=1,2, 3)
K
and Hg (v) is the Hessian matriz associated with v.

Proposition 2.2 Letv € HY(Q). Then there exist two constants C3 = C3(M, 5)
and Cy = Cy(M, C) such that, for any K € Ty,

2 1/2
llv — Ix (v)l| 22 (k) < Cs [ZA?,K (ri,TKGK(v)ri,K)] 7 4)
=1
2 1/2
v = Ik (v) () < Ca Mg [ZA?,K (rixGx (v)ri,K)] : (3)
i=1

where G (v) € R?*? is the symmetric positive semi-definite matriz with entries
(Gk(v)i,j = [5, Ov/0z; Ov/dz;dx with x = (z1, z3)T € K, Ak is the patch
of all the elements sharing o vertex with K, and M € N and C > 0 are the
constants defined through the relations

card(Ag) <M and diam(Ap) < c, (6)
with Az = Tg' (Ak).

Remark 2.1 Requirements (6) demand the cardinality of any patch Ak as well
as the diameter of the reference patch A g to be uniformly bounded independently
of the geometry of the mesh. In particular, the latter inequality rules out some
too distorted reference patches (see Fig. 1.1 in [17]).

A comparison of the inequalities in Proposition 2.1 and 2.2 with the correspond-
ing isotropic results shows that the anisotropic estimates are more complex. For
instance, let us consider the isotropic estimate corresponding to (1), given by

llv =k ()| L2 x) < CF h vl r2(x) 5 (7)

with Cf = Cf(I? ). From a dimensional viewpoint, we have both in (1) and
in (7) the square of the spacing parameters (i.e. hgk in the isotropic case,
A1,K, A2,k in the anisotropic one). On the other hand, the H 2_seminorm of v
in (7) is replaced by a suitable sum of the L?{j (v) quantities in (1). We claim
that the information provided by the seminorm |v|g2(k) has been split along
the directions ri g and ry g via the quantities L?{j (v) representing squared I2-
norms of directional second-order derivatives of v. As anticipated in Sect. 1,
we are replacing the “lumped” isotropic results with more “distributed” ones.
The pay-off of such a framework is that we are able to finely tune the adapted
meshes in terms of shape and orientation of the elements.

Finally, in view of the a posteriori analysis of Sect. 3, we have also derived
anisotropic estimates for the L?-norm of the interpolation error on the edges e
of the triangulation 7, (see [12] for the details).



3 Anisotropic a posteriori error analysis

Moving from the a posteriori dual-based approach developed in [3], we aim to
control suitable linear continuous functionals J(-) of the discretization error ey
associated with the considered finite element approximation. In CFD, examples
of J(-) are the lift and drag around bodies in external flows or mean and local
values, while in structural mechanics the torsion moment, the stress value or the
surface tension are typical goal-quantities. The leading idea of our a posteriori
analysis has been to combine the advantages deriving from an error functional
control with the richness of information provided by an anisotropic framework.

Let us sketch the procedure used to derive the anisotropic a posteriori error
estimator for a general differential problem

Lu)=f inQ. (8)

In the subsections below we particularize such a procedure to standard model
problems in CFD. We refer to [11, 12, 13] for a detailed description of such an
approach.

First, let us introduce the weak form associated with (8): find u € V' such that

a(u,v) = F(v) forany wveV, 9)

where V' is a suitable functional space accounting for the boundary conditions
completing the problem at hand, and a(-,-) and F(-) are the bilinear and linear
forms corresponding to the differential operator L and the source term f in (8),
respectively. The discrete form associated with (9) is obtained by projection
onto the space V, C V of continuous piecewise linear finite elements which
yields: find up € V3 such that

a(up,vp) = F(vy) for any v, € V. (10)

As shown in Sects. 3.1 and 3.2, the forms a(-,-) and F(-) have to be suitably sta-
bilized in the case of strong advective/reactive terms, or of the Stokes problems
in order to guarantee the absence of spurious oscillations or the well-posedness
of the problem, respectively.

By suitably combining the weak form, with v = vy, with the discrete one, we
get the well-known Galerkin orthogonality property

alep, vp) =0 for any vy € Vj, (11)

stating the orthogonality of the discretization error e;, = u — up with respect to
the discrete space V.

Let us introduce now the dual problem associated with (9): find z € V such
that

a*(z, ) = J(p) forany ¢eV, (12)



where J is a linear continuous functional to be suitably chosen according to the
physical quantity to control and a*(-,-) is the adjoint form to a(-,-), defined by
the relation a*(z, ¢) = a(y, 2), for any p € V.

We are now in a position to estimate the discretization error associated with
the goal quantity, i.e. J(ep). With this aim, let us first choose in (12) ¢ = ey.
Then by exploiting the property of the adjoint form a*(-,-) and the Galerkin
orthogonality property (11) with v, = 23, we get

J(en) = a*(z, ex) = alep, 2) = alen, z — z) = F(z — zp) — a(up, z — 2p),
(13)

where the last equality is due to the weak form (9) with v = 2 — 2. So far no
explicit choice has been made for z,. Usually, z; is identified with a suitable
interpolant of the dual solution z, according to the regularity of the latter. An
integration by parts of the right-hand side of (13) together with a suitable use
of anisotropic interpolation error estimates such as those cited in Sect. 2.2, lead
to an a posteriori error estimate of the general form

[T(en)| < C D pr(un) wi(2), (14)

KeT,

where px (up) = f—L(up) is the residual associated with the the primal problem
(8) and wk (z), which gathers the anisotropic information, depends on the dual
solution and weights the residual term. Notice that px (up) measures the error
related to the approximation up, while the term wg (z) takes into account the
propagation of such an error driven by the functional J(-) to control. The terms
pK (up) and wk (z) in (14) depend on the particular differential problem (8). In
the subsections below we explicitly provide two examples of the estimator (14)
by considering some standard problems.

3.1 The advection-diffusion-reaction problem

We address the standard scalar advection-diffusion-reaction problem with mixed
boundary conditions

L(u) =—-—pAu+a-Vut+au=f in Q,

u=0 OHFD, (15)
Ou

Ma—nzg onI'y

where I'p and 'y are suitable measurable nonoverlapping partitions of the
boundary 8Q of Q with I'p # 0 and such that 8Q = T'p UT'y; the source
f € L*(Q), the diffusivity u € R, the advective field a € (W>(Q))?2, with
V-a = 0, the reaction coefficient « € L*(Q) with @ > 0 a.e. in Q, and g €
L?*(T'w) are given data, while Ou/On = Vu - n is the normal derivative of u, n



being the unit outward normal to 2.
As we are interested in advection-reaction dominated problems, we have to
discretize (15) by means of a suitable stabilized scheme. The discrete form (10)
is thus replaced by the stabilized one

ar(up,vp) = Fr(vy) for any v, € V. (16)

For instance, by choosing a streamline-diffusion scheme [9], the stabilized forms
ar; : VxV = Rand F, : V — R for smooth enough functions v and v, are
defined as

a,(u,v) = /,uVu-Vvdx+/(a-Vu+au)vdx
Q Q
+ Z /TK(—uAu—}—a-Vu+au)(a-Vv)dx,
KeTh
F,(v) = /fvdx+/gvds+ Z /TKfa Vv)d

KeTn

where the coefficients 7k are elementwise stabilizing parameters for which sev-
eral proposals can be found in the literature (see, e.g., [2, 3, 4, 17]).

Following the procedure described above, we can derive an anisotropic a pos-
teriori error estimator for (15) which can be cast in the form (14) [13]. Let us
define the element interior and boundary residuals given by rx = (f + pAuy, —
a-Vup — aup)|x and

0 if e S FD ,
8uh .
je — -2 ( % — ) if e € FN, (17)
8Uh : int
—,u[anK] if e &M,

respectively. Here Oup/Ong = Vuy - nk is the normal derivative of uy, ng is
the unit outward normal to 0K, £ denotes the set of the internal edges of
the skeleton &, of the triangulation 75, and [Oup/dnk], stands for the jump of
the normal derivative of uy, over the edge e C 0K. Then the residual px (up) is
given by

1 .
prctun) = i (wn)lzae (1+ 57 allimae ) + 7z licliogonc - (19)
2,K 2,K

Concerning the weight wg (z), by assuming an H!-regularity for the dual solu-
tion z, we identify z; in (13) with the Clément interpolant of z, thus obtaining

2 1/2
- lZ/\fK (i GK(Z)Ti,K)] . (19)



Notice that all the anisotropic information A; x and r; x is contained in (19).
The a posteriori analysis above has been applied to a more realistic problem
in haemodynamics [11]. Moreover, the analysis above covers also the diffusion-
reaction problem by letting a = 0 in (15).

3.2 The Stokes problem

Let us consider the standard Stokes problem: seek the velocity u and the pres-
sure p of an incompressible fluid, subject to mixed boundary conditions:

—pAu+Vp=f=f in 2,
Vu=0 in 2,
(20)
p(Vo)i —pii=g onTy,
u=20 onIp,

where I'p, I'y and 7 are defined as in Sect. 3.1; the source term f € [L?(Q2)]?,
the viscosity u € RY, g € [L?(T'w)]? are given data. Notice that the differential
operator L(u) in (8) is replaced by the operator L(u,p) given by the left-hand
sides of (20)1-(20)2. Moreover, the weak space V' in (9) is replaced by the tensor
product space W x Q).

In order to guarantee the inf-sup condition, the discretization of the Stokes
problem requires a stabilized method. By using, for instance, the Galerkin Least
Squares method, the stabilized discrete form of (20) becomes: find (up,pp) in
Wh % Qp, with W, C W and @p C @ formed by continuous piecewise linear
finite elements, such that

aT((uhaph)a (vh7Qh)) = F‘r(vhaqh) for any (vh7Qh) € Wh X Qh7 (21)

where the stabilized forms a, : [W x Q]> - R and F, : W x Q — R are given
by

ar((wp),(v,0) = [uVu: Vvix— [pVvix- [¢Tudx

Q Q Q
- Z TK/Vp-qux (22)
KeTh K
FT(v,q):/f-vdx+/g-vds— Z TK/f-qux.
Q T'n KeTh K

As we have two unknowns, we can control two continuous linear functionals,
the first one Ji(-) associated with the discretization error €, = u — uy, of the
velocity and the second one Ja(-) related to the discretization error e, = p — py,
of the pressure. Likewise, we can define both the element interior and boundary
residuals associated with the momentum equation (20);, rk-(un,pr) = (f +



NAllh - Vph)|K and

0 if eeTp,
T = 2(g—(p(VuhﬁK) _phﬁK)) if (;‘EFN, (23)
—[((Vun k) — pr ik, if e€&,

respectively, and the interior residual 7% (up) = (V-up)|k related to the conti-
nuity equation (20)2. Estimate (14) is thus replaced by the new one

|71 (6u) + Ja(ep)| < C Y (P (un, pr) wi (F) + plc(un, pr) wi (1)), (24)
KeTh

with C = C(M, C,K ) and (@, r) the dual velocity-pressure pair, while

Mg+ 1/2
A3 K ’

E]

1
phcCun, ) = ke oo + 1720

TK
prc(un,pr) = ||rk (un)||L2(x) + o |17k (ans pr)l| 22 (x)

3

2 ) . 1/2 2 1/2
wke (@) = [ SR LZ @) 0k () = [ Xk (r % Cr ik ) |
=1

ij=1

(25)

where L% () is the straightforward extension to vector-valued functions of the
term (3). We point out that (24) consists of contributions associated with the
error propagation due to both the dual velocity and the dual pressure.

4 Numerical results

A typical numerical solution process of a given problem consists of an adaptive
iterative procedure based on a metric-based approach. Starting from the a pos-
teriori error estimate, a second-order tensor field, embedding the information
about the mesh spacing and stretching, is defined on the actual mesh and em-
ployed for the generation of the new mesh, as described in [13]. The software
BAMG [14] has been used for this purpose.

In this section we address the numerical solution of some test cases. In more
detail, we consider the advection-diffusion-reaction problem (15) and we show
the effectiveness of the adaptive algorithm for the construction of an “optimal ”
mesh, e.g., the mesh for which we have maximum accuracy for a given number
of degrees of freedom.

The “glass” test case

Let us define r = /(z1 — 1/2)? + (z2 — 1/2)? while choosing in (15), Q =
(0,1)2, p = 1074 f =1for 1/5 < r < 1/4 and zero elsewhere, a = (x5 —
1/2, —(z1 — 1/2))T, @ = 100 for r < 1/5 and zero elsewhere, and I'y = . The
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Figure 3: Sequence of meshes (top) and corresponding solutions (bottom)

Table 1: Degrees of freedom: the “glass” (left) and “channel” (right) test cases

# elements # nodes # elements # nodes
1312 697 1016 561
4203 2123 3763 1950
5838 2939 3991 2083

solution u exhibits a strong internal circular layer in the region 1/5 < r < 1/4
and a large gradient in the radial direction in the region 1/4 < r < 1. With
reference to Fig. 3, the adaptive process starts from a uniform mesh (top-left)
and is stopped after two iterations, yielding the meshes at the top-center and
top-right. The numerical solutions on the initial mesh, and on the other two
meshes are displayed in the bottom line. The functional J(-) has been chosen as
J(v) = ap(v,u) for any v € V, where the subscript 0 refers to the nonstabilized
bilinear form derived from (16). This choice allows us to control the energy norm
of the discretization error, as J(u — up) = ao(u — up,u) = ap(u — up,u — up),
thanks to the Galerkin orthogonality property. All the main directional features
characterizing the solution u are well captured by the anisotropic error estima-
tor as the mesh elements are stretched along the direction of the layers. Table
1 (left) collects the information about the number of elements and of nodes for
the three meshes.

The “channel” test case

Let  in (15) be the U-shaped domain given by the square (—1,1)2 from which
the rectangle (—1,0) x (—0.4,0.4) has been cut, and g = 107%, f = 0, a =
(22, —xl)T, a =0, and T'y = (). The nonhomogeneous Dirichlet datum takes
the value 1 on the sides ({z1 = —=1}N{0.4 < z3 < 1}HU{z2 =04}N{-1 < 2; <
—0.5}). The solution shows two circular-shaped internal layers, a boundary
layer near the top-left corner at o = 1, and an outflow boundary layer at

10



z2 = —0.4. With reference to Fig. 4, the adaptive process starts from a uniform
mesh (top-left) and is iterated two more times, with corresponding grids shown
at top-center and top-right. The numerical solutions on the initial mesh and
on the two adapted meshes are displayed in the bottom line. The functional
J(-) has been chosen as in the previous example. Notice how all the layers
are well represented on the last grid, though some oscillation is still polluting
the numerical solution. Table 1 (right) summarizes the information about the
number of elements and of nodes for the sequence of meshes.
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Figure 4: Sequence of meshes (top) and corresponding solutions (bottom)
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