PRESSURE-CORRECTION ALGEBRAIC SPLITTING METHODS
FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
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Abstract. In this paper we present a new family of methods for the effective numerical solu-
tion of the incompressible unsteady Navier-Stokes equations. These methods resort to an algebraic
splitting of the discretized problem based on inexact LU block-factorizations of the corresponding
matrix (following [21]). In particular, we will start from inexact algebraic factorizations of algebraic
Chorin-Temam and Yosida type and introduce a pressure correction step aiming at improving the
time accuracy. One of the schemes obtained in this way (the Algebraic Chorin-Temam Pressure
Correction method) resembles a method previously introduced in the framework of differential pro-
jection schemes (see [24], [19]). The stability and the dependence of splitting error on the time step
of the new methods is investigated and tested on several numerical cases.
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1. Introduction. The numerical computation of the unsteady Navier-Stokes
equations for incompressible flows in real applications requires the solution of linear
systems of large dimensions. These systems are typically not definite nor well con-
ditioned, and therefore the set up of efficient methods is mandatory. Perhaps one
of the most successful approaches is provided by the class of the projection methods
at the differential (see e.g. [2] and, more recently, [12]) and the algebraic level (see
[18] and [20], [21]). These method typically compute the velocity and pressure fields
separately, (i) by computing an auziliary (or intermediate) velocity; (ii) by solving a
suitable problem for the pressure; (iii) by correcting the velocity (end-of-step velocity),
by forcing the incompressibility constraint. In [21] we have introduced a general class
of algebraic splitting methods that can be regarded in this framework. We recall, in
particular, the Algebraic Chorin-Temam scheme (see [18]) and the Yosida scheme (see
[20]). These methods are based on a splitting that reduces the computational effort,
without affecting the time accuracy of the solution driven by the time discretization.
This is true for first order time discretizations, while for higher order accuracy the
set up of suitable splittings is still an open problem (see e.g. in the framework of
differential schemes, [8]).

In the present paper, we aim at investigating splitting methods that arise when-
ever, besides the velocity, also the pressure is obtained after a suitable correction step.
This step is set up in order to reduce the error associated to the splitting and obtain
definitively a higher order of accuracy in time.

After a brief introduction to algebraic splitting methods (Sect. 2), we will there-
fore provide a general approach for setting up such pressure correction schemes (Sect.
3). Then, we will in particular analyze the schemes arising from the pressure cor-
rection of both the Algebraic Chorin-Temam and the Yosida methods. The former
is investigated in Sect. 4. We analyze the splitting error reduction induced by the
pressure correction step and prove that in the Stokes (linear) case the scheme feature
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unconditional stability when starting from a Backward Difference (implicit) time dis-
cretization. Then (Sect. 4.4), we establish some formal analogies between our scheme
and other pressure correction schemes proposed at a differential level (see [24]).

The pressure correction formulation of the Yosida method is investigated in Sect.
5. In particular, it is possible to prove that the consistency error induced by the
splitting on the matrix to be solved at each time step depends on the cube of the
time step, which is an improvement of the original Yosida scheme introduced by the
pressure correction. On the other hand, we prove that the stability of this scheme
is in general conditional, even if applied to the Stokes problem discretized with a
Backward Difference (implicit) scheme.

In Sect. 6 we provide several numerical results, testing the properties of pressure-
correction schemes. We analyze in particular the improvements induced by the pres-
sure correction when applied to high order time discretization schemes. Some conclu-
sions are drawn in Sect. 7.

2. Inexact algebraic factorizations for the Navier-Stokes Equations.
Consider an open and bounded domain Q@ C R? for d = 2,3 with boundary 60
for a time ¢ > 0. The Navier-Stokes equations for an incompressible flows in terms of
the velocity, u = u(x, t), and the pressure, p = p(x,t), read as

ou
5 +(u-V)u—vAu+Vp=f{, 2.1)
V-u=0,

for any (x,t) € Qx(0,T], with T > 0. This system must be completed with the initial
condition u(x,0) = u®(x) (where u’(x) is a given function) and suitable boundary
conditions on 9). Since in the framework of algebraic splitting methods there is a
complete independence of the numerical methods of the boundary conditions, we do
not specify a specific boundary set. It is however understood that some (reasonable)
boundary conditions are prescribed on 0f).

In order to have a quantitative evaluation of the flow field in real applications,
a numerical approximation has to be carried out. To this aim, the problem has
to be discretized with respect to time and space variables. Concerning the space
discretization issue, we will basically refer to the Galerkin method and, in particular,
to the finite element method (FEM). The most part of what follows can be however
applied to other space discretization methods as well. For any details concerning the
FEM discretization of the Navier-Stokes problem, we refer, e.g., to [22]. In fact, we
choose functional spaces for the approximate velocity and pressure fields which satisfy
the inf-sup or LBB condition (see, e.g., [1]). We will denote by N, the number of
velocity degrees of freedom and by NNV, the number of pressure degrees of freedom.

For what concerns the time discretization, we will refer to classic backward dif-
ferences methods. Namely, we consider a decomposition of the time interval into
N sub-intervals (#",t"*!) with " = nAt, where At = T/N is the uniform positive
time step and collocate the equation in the instants ¢ = nAt. For the treatment
of the nonlinear convective term, we resort to the usual (semi-implicit) linearization
(u(t™*t) - V)u(t™t) ~ (u(t?) - V)u(t"t!) or similar featuring higher order of time
accuracy (see, e.g., [8]).

The fully discretized and linearized incompressible Navier-Stokes equations at the
time ¢"*! read therefore:

Awmtl = pntl (2.2)
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where the vector b* = [b’f, b’j] T contains forcing terms and contributions of the bound-
ary conditions, w”*t! = (u*!, p"*t1)T denotes the vector of the nodal values of the
discrete velocity and pressure and

C DT
A= (2.3)

D 0

Here D the discrete divergence operator (i.e. d;j = — [ V-v;g;, where {v,} band {g;}
Q

are the basis functions for the velocity and the pressure respectively). DT denotes the
discrete gradient operator and C collects contributions from the time derivative and
advection and diffusion operators. More specifically, we denote:

a
At
where M is the velocity mass matrix, « is the coefficient of the Backward Difference
scheme (briefly, BDF) at hand for the velocity field at time ¢"*! and K corresponds
to the discretization of the diffusive and of the convective terms. In the case of the
Stokes problem, K corresponds just to the Laplacian of the velocity and it is therefore
symmetric and positive definite (s.p.d.).

System (2.2) typically features large dimensions and bad conditioning properties.
The splitting between the computation of the velocity field from that of the pressure
is almost mandatory when large three-dimensional problems are faced. This can be
obtained through inexact block LU decompositions. These strategies stem from the
following “exact” LU-block factorization of 4

A= C 0 I ¢ ipT
~| D -DCIDT 0 I :

C=—-M+K

Since the inverse C~! is seldom available, we can set up different schemes, achieving
a reduction in the computational cost by suitably approximating C~! with a matrix
H; in the L-block and Hy in the U-block. This leads to the following inezact block
LU factorization (see [21] and also [4] and [5]):

E—[C 0 HI HQDT]_[C CH,D” ]

=|p -pH,DT || 0 1 D D(H, - H,)D” (2:4)

The corresponding algebraic fractional-step methods require at the generic time-level
t"*1 the solution of the following systems:

Cant! = b,

L-step (2.5)
Dunt! — DHlDTf)n'H — b721+1’
pn+1 — zntl
U-step (2.6)
e + H2DTpn+1 = qnt+i.

Different choices can be pursued for the approximant matrices H; and Hy. In partic-
ular, we could take
At

H; = Hy, = —M L.
«
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or else

At

H, = —M"!H,=C""!,

a
The former choice yields a scheme (see [18]) that can be considered the algebraic coun-
terpart of the Chorin-Temam scheme (ACT briefly), because of the formal analogy
with the original differential-splitting method. The latter choice yields the so-called
Yosida method, introduced in [21] and analyzed in [20]. See also [] and [5].

The main difference between the two possibilities is that in the Chorin-Temam
scheme only the discretized momentum equation is perturbed, while in the Yosida
scheme only the mass conservation equation is perturbed (see [25]). In the sequel,
we will say that an algebraic fractional-step method is of Yosida type if H = H
and Hy = C!, of Chorin-Temam type if Hi = Hy = H, being H any convenient
approximation of C~!. Note that the approximation of C~! with At/aM~! stems
from a truncation to the first term of the well known Neumann expansion:

-1 00 .
cl = % <1Nu + %M‘U() M~ = % > (—AamMTK) ML
=0

Here Iy, (In,) denotes the identity matrix of dimension Ny (). a is the coefficient
of the term evaluated at t"*! in the time discretization scheme adopted. For the
Implicit Euler scheme, a = 1, for a BDF scheme of order two, a = 3/2, for a BDF
scheme of order three, @« = 11/6. In order to improve the accuracy of the inexact
factorization, one could choose H by taking more terms in the Neumann expansion.
This strategy has been analyzed in [25] and it can lead to some relevant instabilities
even for the Stokes problem. In the sequel, we will set:
_ At

H=—M", (2.7)

so that
C™' =H+ O(At).

As previously pointed out, note that for both approaches the pressure is only
predicted (in the L-step) while the velocity is first predicted in the L-step (with the
so-called intermediate velocity, U"*!) and next corrected in the U-step, computing
the end-step velocity. One could expect some improvements in the accuracy of com-
putation by resorting to a correction also for the pressure field, leading to an end-step
pressure. In the next Section we investigate such schemes.

REMARK A popular modification of the schemes presented above is the so called
incremental approach. This approach can be applied to differential projection methods
and to algebraic splittings as well. It basically consists of a reformulation of the time-
discrete Navier-Stokes problem in such a way that the pressure field p”*! is computed
as the sum of an extrapolation op41p (which is a linear combination of the pressure
at the previous time steps) and an increment d,41p. This reformulation, for the
algebraic (fully discretized) problem reads:

b1 Un+1
= = A
b Oni P

Un+1
, (2.8)

b1 - O'n+1P
= b2

Pn+1
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having set P! = ¢,,,1P + §,,,1P. In this way, possible errors introduced by the
splitting affect the pressure increment rather than the pressure itself. This modifica-
tion improves the accuracy of the solution. For instance, in the Van Kan scheme (see
[14], [23]), we have:

Ont1p =Dp", Snpp=p"t" —opp =p"t —p7, (2.9)

which coupled with a Crank-Nicolson time discretization yields a second order scheme
(see also [8]). Recent results (see [13]) show that the incremental approach can improve
the accuracy of the solution also for higher order time discretizations, e.g. coupling a
BDF of order three with an incremental approach by setting:

Onp1p=20" —p" ', Gpp1p ="t —0pp =p" = 2" +p" (2.10)

In our analysis we do not consider the incremental approach, in order to put in
evidence the role of the pressure corrections proposed in the next sections. However,
in the numerical results section, we will present and comment the impact of the
incremental modification on pressure corrected schemes.

o
REMARK In literature, there is an open discussion about pros and cons of algebraic
or differential approaches in the splitting (see [9]). Here, we investigate essentially
an algebraic approach, even if we do not claim that this necessarily leads to more
accurate results. In fact, as previously pointed out, the algebraic approach has for
sure the advantage of including all the possible boundary conditions (not only Dirich-
let conditions) without taking care of the set up of special (approximate) pressure
conditions which is conversely needed in differential splitting schemes. This makes
the algebraic approach appealing in many real problems.

o

3. Pressure Correction Algebraic Schemes. Let us consider the following
modified inexact LU factorization of the matrix A, defined in (2.3),

C 0 I H,D'R
0 Q

where R and Q are square IV, x N, matrices that we choose in order to minimize the

R C CH,D”R
A= =

(3-1)

D -DH;DT D D(H,DTR-H;DTQ)

difference A — A in some sense. This (generic) factorization leads to new algebraic
fractional step methods, where the L-step is still given by (2.5), while the U-step

becomes:
Qpmtt =pntt,
U-step (3.2)

u"tl + HoDTRp™t! = antl.

Since we have now a pressure correction (3.2);, we give to schemes in the form (2.5),
(3.2) the name of Pressure Correction methods.

We still distinguish two approaches, the Chorin-Temam, and the Yosida one.

In the first case, we obtain:
C CHDTR

~

A= , (3.3)

D D(HD?R - HD'Q)
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If we select R = Q, the (discrete) mass conservation equation is satisfied without any
approximation. This choice will be investigated in the next Section.
In the second case, we have:

R Cc DR
A= : (3.4)
D TR-SQ
where:
¥ =DC'DT, S=DHDT. (3.5)

Matrix —¥ is the so-called pressure Schur complement of A. Observe that thanks
0 (2.7), S is O(At). In this case, if R = In,, the (discrete) momentum equation is
fulfilled exactly. We investigate this choice in Section 5.

4. The Algebraic Chorin-Temam Pressure Correction Scheme. Let us
investigate the choice H; = H,, with R = Q. Since we are introducing a pressure
correction in the ACT method, we will call this choice Algebraic Chorin-Temam -
Pressure Correction (CTPC) scheme.

The splitting error matrix is:

0 DT -DT R
E=A-A= , DT =cHDTQ (4.1)
0 0

thus the splitting error vanishes if
cup’qQ = 7. (4.2)

Matrix equation (4.2) is an overdetermined problem. In order to obtain a solution,
multiply both the sides of (4.2) by the matrix DH, yielding:

BQ=S
where
B = DHCHD”. (4.3)

This implies that the matrix equation (4.2) is solved up to a non-zero matrix Z such
that DHZ = 0. Observe that if the inf-sup condition is fulfilled, matrix B is non
singular, then we can compute:

Q=B"'S. (4.4)

REMARK
In the case of the Stokes problem, C is s.p.d. and the matrix Q corresponds to
solving (4.2) in the least square sense, where the solution yields the minimal error in
the norm || - ||c.
°

At each time step, the CTPC scheme reads (we neglect the time index n + 1 for
the sake of simplicity):

1. Intermediate velocity computation: CU = bs;
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2. Intermediate pressure computation: SP = D~I~J — by;

3. End-of-step pressure computation: SP = BP; B

4. End-of-step velocity computation: U = U — HDTP.
Observe that the two systems for the pressure computation share the same matrix S.
This is useful if S can be factorized once at all, allowing an effective direct strategy
for the solution of the related systems (see Sect. 6).
REMARK

In order to solve equation (4.2), another possibility resorts to manipulate it in

the form: HDTQ = C~'DT and then solve it in the least square sense with respect to
the matrix norm || - ||g1/2. This strategy yields:

Q=5"'%.
This means that the pressure correction step reads:
QP =P = P = SP.

This step involves the pressure Schur complement ¥, and it is, in fact, an (ineffective)
reformulation of the pressure matrix method (see [22]), corresponding to exploiting
the exact factorization (2.3). Therefore it is not feasible.

o

4.1. Stability and splitting error analysis of CTPC.

4.1.1. Preliminary results. We start with some preliminary notation and lem-
mas.
Starting from the identity

CH=Iy,+E;, E; =KH (4.5)
we have
B=DH(In, +E)D" =S+ W =S (Iy, + E,), (4.6)
where
W = DHKHD?, E,=S"'W. (4.7)

Observe that W is O(At?) thanks to (2.7). Consequently, E, is O(At). From (4.6)
we have:

B l=(Iy, +E) 'S '=B'S=(Iy, +E5) . (4.8)
Therefore, matrix D7 introduced in (4.1) admits the following factorization:
DT = CHD”B 'S = (Iy, + E;) D7 (Iy, + E2) . (4.9)

Observe that if H is proportional to Iy,, as it happens in a Finite Difference
discretization, it is possible to verify that the matrix DH is the Moore-Penrose pseudo-
inverse of DTS™!. In general (for a Finite Element or a Spectral discretization) this
is not true. In fact, it is possible to verify that H'/?DTS~! is the Moore-Penrose
pseudo-inverse of DH'/2. However, for the purpose of the present work, it is useful
the following Lemma.
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LEMMA 4.1. Matriz I, — DTS™IDH is similar to the matriz

[ U I“’u_Np ‘| .
P?OO’.

The singular value decomposition of the matrix H!/2D7 reads:
H'/?DT =UTv, (4.10)

where U is an orthogonal Ny, x Ny matrix, V is an orthogonal N, x N, matrix and
IT is the N, x N, matrix such that

_ [0 i i,
H”_{O'i if i=j

where {0;} are the singular values. Observe that, thanks to the inf-sup condition,
o; #0forany i =1,..., N,. Now, we have:

Iy, — DTS™'DH = H~!/2 (IN., _HY2pT (DH1/2H1/2DT) -1 DH1/2> HL/2
and, thanks to (4.10),
Iy, - H'/*D" (DH'/?H!/2D" ) CDHY2 =1y, - UTTIV (VITITUTUTIV) VI
Observe that II7TI is the N, x N,, diagonal matrix with the square of the singular values

on the diagonal. In the sequel we will set I12 = IITI. The thesis is a consequence of
the fact that U and V are orthogonal and that

INPO]
0 0]

I, 21’ =

4.1.2. Splitting error analysis. We are now in position of investigating the
splitting error matrix A — A associated to the CTPC scheme, that is:

R 0 DT -DT
Ecrpe =
0 0
Setting:
E=DT -D7 (4.11)

from the definition of DT we can straightforwardly verify that
DHE = 0. (4.12)

This was to be expected, since we have solved the overdetermined problem (4.2), by
projecting it into the subspace image of DH.
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From (4.9), it follows that
E=D— (I, + E1)D” (Iy, + Ey) . (4.13)

Assuming that At is small enough to exploit the Neumann expansion, which makes
sense since E, is O(At):

(I, +Es) " = S (Eo)*,

k=0
from (4.6), (4.7), (4.8), (4.5) we have:

DT — (Iy, + E1)DT (Iy, — B2+ E3 —...) =
(4.14)
DT — (In, + E1) DT (In, — E; + O(At?)),

yielding:

E = —E,D7|+D"E, |+ O(AF).

In the boxed term we put in evidence the specific contribution on the error given by
the pressure correction. Since both the matrices KHD? and DTS~'W are O(At), we
conclude that the splitting error is at least first order in time. Unfortunately, this
conclusion does not give significant improvements in terms of order of accuracy with
respect to the original ACT scheme. The main difference is that in the latter scheme
the splitting error is dominated by the term KHD?, while in the CTPC scheme the
matrix error is dominated by:

— (Iy, — DTS™'DH) E,DT. (4.15)

Thanks to Lemma 4.1, it is to be expected that the matrix into brackets, having N,
null eigenvalues, will reduce the error associated to the scheme, in comparison with
the ACT scheme, even if it is not possible to prove that the order of accuracy of the
scheme is improved. Numerical results confirm that the scheme is in general only first
order accurate in time (see Sect. 6).

However, for some special space discretization, it is interesting to point out the
following circumstance.

PROPOSITION 4.2. If KHD" = vDTM;'DHD?, the splitting error matriz E
vanishes.

Proof.

From (4.13) it follows that

E (Iy, + E2) =DT + DTE, — DT — E;DT = DTE, — E,D7 (4.16)
If E;D” = KHD” = vD"M;'DHD7, then we have:
E; = vS~'DHD'M,, 'DHD" = vM,'S.
Recalling that S = DHD?, from (4.16), it follows:
E (In, + E2) =vD"M, 'S — vD"M,'DHD” = 0.

Thus, since Iy, + Es is invertible, the thesis follows.
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d
Observe that the hypothesis in Proposition 4.2 reinterpreted at the continuous
level yields the identity:

—VvAV = vV - (V)V.

Moreover, in the context of Finite Difference space discretization the same hypothesis
has been advocated in [16] as a compatibility condition holding for special set of
velocity boundary conditions in rectangular domains.

4.1.3. Stability analysis. The main result is the following Proposition.

PROPOSITION 4.3. Consider the Stokes problem discretized with an Implicit Fuler
time discretization scheme (o = 1). Then, the CTPC scheme is unconditionally
stable.

Proof. We consider a problem where the forcing term and the boundary conditions
are null as well, since they do not influence the stability properties of the scheme.

The CTPC scheme actually resorts to solve the problem:

N 1
C DT ygrtl —MU"
[ D o ] [ prtt | = At 0 . (4.17)
1 .
where C = A_tM + K ( with K s.p.d.).
Eliminating the pressure unknowns in (4.17), we obtain:
urtl = Lo ivun - Lo1pT (DC*115T)_1 DC-'MU™ (4.18)
At At ' '

Observe that:
b7 (De1p7) " =
(In, + E) DT (In, + Eg)_1 <DC_1 (In, + E1) DT (In, + E2)_1)71
= (Iy, + E1) DT (DC™! (Iy, + E1) DT) ™"

Moreover, from the definition of E; and C, we have:

C™ (Tn, + B1) = AOM™ (I, + AKM™) 7' (I, + By) = AM™Y,

. oyl
so that DT (DCleT) reduces to (In, + AtKM~!)DTS~1. We have therefore
that the second matrix on the right hand side of (4.18) becomes:

N N —1
Aitc—lDT (Dc—lDT) DC~M = M—!DTS-1DC 1M,

yielding:
1 _
Ut = ~ (M*I -~M'D" (DM 'D") ! DM*l) MC'MU", (4.19)

or equivalently:

Ut =Mt (INu -7 (DM~'D7) " DM—l) M (In, + AIM7T'K) U™ (4.20)
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We prove that for any At > 0
|IM- (INu — D’ (DM~DT) ! DM—I) M (Iy, + ABMTIK) M, <1 (4.21)

For a generic matrix X, we will denote by px its spectral radius.
First of all, observe that

I (INu -7 (DM~'D7) DM—l) I, = 1. (4.22)

This is, in fact, a consequence of Lemma 4.1, since the matrix in (4.22) corresponds
exactly to the matrix Iy, — DS~ 'DH considered in the Lemma. If follows that the

matrix M~ (Iy, = DT (DM~DT) ™' DM~!) M has still unit spectral radius, being

similar to the one in (4.22). Now, due to the positiveness of AtM 1K with respect to
the scalar product weighted by the s.p.d mass matrix M, we have that:

Py t+amm-1k)-t < 1.

Therefore, we have:

M ! (Iy, = D (DM 'D7) DM 1) M (Iy, + AtM 1K) ||, <

-1 T -1pTy~t -1 -1\t (4.23)
M-t (Iy, = DT (DM~D7) ™ DM~ [} (T, + AM'K) T[], < 1
The first inequality is due to (4.22) and the fact that each matrix of the product is
s.p.d., so its norm corresponds to its spectral radius. (4.18) and (4.23) yield

1T, < [10™l;

for any At > 0, giving the unconditional stability result. O
REMARK With a similar approach, it can be proved that the unconditional stability
holds also for any implicit (unconditionally stable) BDF time discretization.

°
REMARK Tt is worth wile pointing out the fact that on the stability of the scheme the
error matrix Es does not play any role. Actually, since the error matrix E; of the
present scheme is the same of the original ACT scheme, the unconditional stability
of CTPC could be directly inferred from the unconditional stability of ACT. Es is
therefore set up in such a way that it should reduce the splitting error without affecting
the stability of the scheme. Other schemes featuring a high order splitting error do
not share the same stability properties. As we will see, also the pressure correction of
the Yosida scheme is affected by instabilities.

©

4.2. CTPC and differential pressure correction schemes. The introduc-
tion of a pressure correction for improving the numerical solution is not new in the field
of projection methods for the Navier-Stokes equations. In Timmermans et al. [24] a
variant of the second order Van Kan scheme (see [14]) is proposed for improving the
pressure computation in the framework of splitting (differential) schemes. Following
Prohl ([19]), who has extensively analyzed this scheme, we present the corresponding
formulation starting from the Chorin-Temam method. Suppose to have homogeneous
Dirichlet conditions on the whole boundary of the computational domain 2. First,



12 F. SALERI, A. VENEZIANI

compute the intermediate velocity U”t! as the solution of the advection diffusion
semi-discrete problem:
1
At
with @”*! = 0 on 0. Then, compute an “intermediate” pressure as the solution of
the Poisson problem:

(@ —u®) —vAT 4+ (- V) @ = 1. (4.24)

AtApT = v -ant! (4.25)

with 8,p"t! = 0 on 99, where n is the outward normal unit vector to Q. The
end-of-step velocity is now given by

u™ ! =t — Arvpnt! (4.26)

If we take p"t! as the end-of-step pressure we have actually the classical Chorin-

Temam scheme. In the Timmermans proposal, we take:
p"t =t vttt (4.27)

At the semi-discrete level (time-discrete and space-continuous) it is possible to verify
that this scheme is strongly consistent with the Stokes problem, that means that
solving the Chorin-Temam method with the correction (4.27) amounts exactly to solve
the Stokes equations, without any splitting error. This strong consistency however
fails to be verified in the case of the Navier-Stokes problem. Actually, in this case,
a Lagrangian treatment of the time derivative needs to be pursued ([24]). Prohl has
moreover proved that this pressure correction introduces a “smoothing effect” only on
the pressure error in the interior domain, and however, the pressure correction step
does not improve the order of accuracy of the method.

Here, we want to establish some relations between the Timmermans method and
our CTPC scheme. Indeed, exploiting (4.25) we can eliminate u™*! in (4.27), yielding:

P =t pAAPT = (T — vAtA) P (4.28)

where 7 denotes the identity operator.

On the other hand, concerning the CTPC scheme applied to the Stokes problem,
we assume that matrix A(KM~'DT can be factorized as vAtD” M, "DM D7 (as we
have assumed in Proposition 4.2). The end-of-step pressure of the CTPC schemes
becomes:

Pt = §~IBP™*! = (Iy, + S~'W) P! =
(In, + A2S~'DM'KM~'DT) P! = (Iy, + vA{M,'DM~'DT) Pt

A formal analogy with (4.28) can be drawn if we read matrix YDM D7 as a discrete
counterpart of the pressure operator —vA.

The algebraic reformulation, actually, has some advantages. As already pointed
out (also in [24]), in the differential framework there is the problem of determining
boundary conditions for the pressure problem, which in the algebraic approach are
not required. Moreover, we point out that the CTPC scheme naturally embodies the
presence of a convective term, and it does not necessarily need a Lagrangian treatment
of the time derivative or to an explicit treatment of the convective term, as required
in the Timmermans work.

We finally point out that the CTPC scheme provides discrete-divergence solu-
tions, which is not true for the Timmermans method (whose divergence is null at the
continuous level).



PRESSURE CORRECTION SPLITTING SCHEMES FOR THE NS EQUATIONS 13

5. The Algebraic Yosida Pressure Correction scheme. Let us consider
now the pressure correction approach applied following the Yosida strategy, i.e. Hy =
ClandR= In,. The splitting error matrix in this case is:

0 0

Evpc=A— Aypc = l . (5.1)

0 SQ-%X%

The problem of finding out a matrix such that the splitting error vanishes this time
is clearly well posed and the solution is:

¥-SQ=0=Q=5"1%, (5.2)
corresponding to the pressure correction step:
nprtl = gprtl.

This is another formulation of the pressure matrix method (see [22]) and therefore
this is not interesting in the perspective of the present work.

However, we would like to introduce an approximate computation of QQ which is
computationally affordable. It corresponds to solve again an overdetermined problem
related to (5.2). Multiply the two sides of the first equation in (5.2) by DTM,?,
yielding:

DM, 'DC~'D" = D"M; 'DHD”Q.
Since DTM;lD is non singular if the inf-sup condition is fulfilled, we can write:
C~'DT = HDTQ = DHD? = DHCHD?Q
corresponding to the choice:
Q=B7"S

which is exactly the same matrix set up for the CTPC scheme (see (4.4), (4.3)).
Dropping again the time index n + 1, the Yosida-Pressure Correction scheme reads
therefore: N

1. Intermediate velocity computation: CU = by;

2. Intermediate pressure computation: SP = DU — by;

3. End-of-step pressure computation: SP = BP;

4. End-of-step velocity computation: CU =b; — DTP.
Observe that still the two problems for both the intermediate and end-of-step pressures
are solved by solving the same matrix S.

5.1. Stability and splitting error analysis.

5.1.1. Splitting error analysis. Starting from (5.1), the splitting error is given
by the block (2,2) of £y pc where:

Eypc =SB 1S - DC'DT.
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Exploting (4.6), (4.7), (4.8) and (4.11) the previous matrix can be reduced to:
Eypc =S (In, + Ez)_1 —DH(Iy, +E;) 'DT =

DHDT (Iy, +E,) ' —DH(Iy, +E;) ' D7 =

1

DH (D7 (I, + ) ™" — (Iy, +E1) ' D7) = (5.3)

DH (Iy, +E1) ' ((INu +E;) DT (In, + s1w) ' - DT)
= -DH (INu + E1)71 E

The splitting error associated to the YPC scheme can now be estimated, by
assuming that At is small enough to exploit the Neumann expansion:

o0

(In, +E1)7 = (-Ey)f (5.4)

i=0

This makes sense, since as we have pointed out E; = O(At).
PROPOSITION 5.1. The splitting error matrixz associated to the YPC scheme is

O(At?)
Proof.
By exploiting the Neumann expansion (5.4), we have from (5.3) and (4.12):
DH (I, + E1) ' E = DHE — DHE,E + DHE2E — ... = —DHE, E + high order terms.
(5.5)

On the other hand, we have that H = O(At), E; = O(At) and (from the analysis
carried out in Sect. 4.1) E = O(At), so that the thesis is proven.
a

In order to have a better insight to the benefits introduced by the pressure cor-
rection, let us suppose that, besides the Neumann expansion (5.4), it is possible to
expand also (In, +S™'W)~1:

oo

(Iv, + E2) 7" = Y (-E»)'.

=0

This still makes sense since also Es is O(At). Exploiting the Neumann expansions
and recalling (4.8), we have:

Eypc =S (In, + Ez)_1 —DH(Iy, +E) 'DT =

S (INP ~|Es — B2 + O(A#) |) - DH (Iy, — By — B} + O(A#*)) DT

The boxed terms are the contribution of the error due to the pressure correction, i.e.
they were absent in the original Yosida scheme. This to outline how the pressure
correction acts. Indeed, by recalling the definition of E; and E, in (3.5) and (4.7),
the first two terms of the two Neumann expansions cancel themselves (in the original
Yosida scheme only the first ones were canceled), yielding:

Eypc = WS 'W — DH (KH)* DT + O(At4)
= —DHKH (I, — D¥S™'DH) KHD? + O(At*)
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the first term being O(A#?) as already proven. Observe that the matrix into brackets
in this term is the same investigated in Lemma 4.1 and its spectral radius is therefore
1.
REMARK From the expression of the splitting error (5.3) and Proposition 4.2 it fol-
lows that also for the YPC scheme the splitting error vanishes whenever KHDT =
VDTM; IDHDT.
°

5.1.2. Stability analysis. A different formulation of the matrix Ey p¢ is needed
in order to carry out a stability analysis. Let us introduce the following QR factor-
ization (remember that H is s.p.d.):

H/2DT = UR

where U is an orthogonal square (N, x N,) matrix and, if the inf-sup condition holds,
R is a triangular full-rank Ny x N, matrix such that:

R:[%O],

where Rg is non-singular and square (N, x N,). In this way, we have the Cholesky
factorization:

S =R{Ry.
Matrix SB—'S therefore reads:

SB-!S =S (DHCHDT) 'S =

RIR, (RTUTHY/2 (H-! 4+ K) HY/2UR) " RIR, =
RY (Rg "RTUTHY2 (H! + K) H/2URR;") ™ Ro
R ([lv, 0] (In, + UTHY?KHY2U) [Ty, 0]7) " Ro.

[u

Matrix ¥, on the other hand, can be resorted as follows:

Y=D (H—l + K)—l DT = DHL/2 (INu + HI/ZKH1/2)*1 H/2DT =
RTUT (Iy, + HY/2KHY/2) " UR = [RT 0] (Iy, + UTH2KH!/2U) ' [RT 0]"
(5.7)
Now set:

N = Iy, + UTH'/2KH'/2U

and since N is s.p.d., we denote:

Ni1 Nia
N =
[ N, Na» ]

where Nq; is N, x Np and Nag is (Ny — Np) %X (Ny — Np). Observe that, in the case

of the Stokes problem (i.e. K s.p.d.), from the Sylvester criterion both the diagonal
blocks are s.p.d. With these positions, we have that:

SQ-% =Ry (Nﬁl — (N — NuNElefz)_l) Ro (5.8)
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Observe that also matrix Ni; — N12N;21N%’; is s.p.d., being the first N, x N, block-
component of the inverse of N.
Since Ny is s.p.d., we can rearrange the previous matrix in the following way:

) -1
$Q - ¥ = RIN;,/? (INP — (I, = Np NN NN ) Ni/Ro.  (5.9)

Starting from this reformulation of the error matrix, unfortunately we are not
able to prove an unconditional stability result even for the Stokes problem with an
implicit Euler time discretization. Indeed, we have the following results:

PROPOSITION 5.2. In the Stokes case, discretized with the implicit Euler scheme,
error matriz SQ — X is symmetric and negative semi-definite.

Proof. Resorting to (5.9), consider the scalar product:

—1
s = xTROTNl—ll/z (INP . (INP _ N;11/2N12N521N1T2N;11/2) ) Nl—11/2ROx

We prove that s < 0 for each x € RV» .
Set:

V= N;11/2N12N521N1T2N;11/2-
and
-1
J=(y, = V) "

As previously pointed out, J is s.d.p. The thesis amounts therefore to prove that
In, — J is negative semi-definite. First of all observe that if we set:

v=Jy
we obtain by definition:
v-Vv=y=Jy-Vly=y= (Iy, - J)y =—Vly
Therefore, since J is s.d.p. we get, with obvious notation:
s = —yTVIy = —yTJ2J-1/2y g1 /2312y — _,T3=1/2y]1/2,

where y = Nl_ll/ 2Rox and z = J/2y. Since V and J are both symmetric and, by
construction, share the same set of orthogonal eigenvectors, it is possible to verify
that z7J~1/2VJ'/2z > 0, yielding the thesis. 0

The previous result is negative in view of the stability analysis of the scheme.
Actually, it implies that the scheme introduces a mass source in the fluid. This
clearly reflects negatively on the stability of the scheme.

PROPOSITION 5.3. In the case of the Stokes problem discretized in time with the
implicit Euler method, the Y-PC scheme is conditionally stable.

Proof. The Y-PC scheme associated to a Backward Euler time discretization, in
a homogeneous Dirichlet case with null forcing terms, resorts to solve at each time

step the system:
C DT untt
[—D SQ—E] [Pn+1 ] =| At

Lwmyn
0
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The conditional stability is proven by multiplying the two sides by [U"‘HP"‘H] T and
applying the Young inequality. We obtain, indeed:

1

1
n+1M n+1 n+1K n+l _ Pn+1 -y Pn+1 < ——Uu™Mu®”.
5 AtU Ut +U U | (8Q —-X) | < 5A7

Since SQ — X vanishes when At tends to zero, it is possible to select a time step Atpqz
such that for each At < A4 We have:

Un+1KUn+1 _ |Pn+1 (SQ _ E) Pn+1| >0,

yielding the (conditional) stability of the scheme. O
The actual impact of this conditional stability on numerical results will be dis-
cussed in Sect. 6.

REMARK In [25] the use of inexact algebraic factorizations (Yosida and Algebraic
Chorin-Temam without pressure corrections) as preconditioners for the Navier-Stokes
problem has been extensively investigated. Following the same idea, the inexact fac-
torizations with pressure corrections can be used in the same fashion. The outcome is
a fast preconditioner which seems to be an effective generalization of the well known
Cahouet-Chabard preconditioner for the Stokes problem. Preliminary numerical re-
sults about this preconditioner can be found in [7].

°

6. Numerical results. In this section we present some numerical results* that
confirm the analysis carried out above and give a deeper insight into the real accuracy
and stability properties of the methods presented. In particular, we consider BDF
schemes of order 1, 2 and 3, both in the non incremental and incremental formula-
tions. In particular, in the incremental case, we refer to the approach proposed in
[13], with a pressure increment like in (2.9) for BDF of order 2 and like in (2.10) for
BDF or order 3 (see Remark in Sect. 2).

We refer to 2D Navier-Stokes problem on the unit domain (0,1)% in the time
interval (0, 1) where (time-dependent) Dirichlet boundary conditions for the velocity,
initial conditions and the forcing term are prescribed in such a way that the analytical
solution is (see [9]):

w(z,y,t) = sin(z) sin(y + t),
v(z,y,t) = cos(z) cos(y + t), (6.1)
p(z,y,t) = cos(x) sin(y + t).

Similar results have been obtained also for other test cases, such as the Kim and
Moin (see [15]) and the Timmermans (see [24]) ones.

For what concerns the space-discretization, we have adopted an inf-sup compat-
ible couple of Finite Elements spaces. In particular, for the numerical results of the
present section, we resorted to a piecewise linear functions space P! for the pressure
fields and we have used P2 = P2 @b finite elements for each component of the velocity,
where b is a cubic bubble function. Following [3], the role of the bubble function is to
give non-singular (velocity) mass lumped matrices, which is useful in solving systems
for matrix S.

*Numerical results of the present section have been obtained with a Matlab code developed by
the authors.
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F1G. 6.1. Divergence of the computed velocity field in Ty = 1 for different values of At.
Comparison between the YS and YPC schemes, with a BDF1 (implicit Euler) time discretization
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F1G. 6.2. Divergence of the computed velocity field in Ty = 1 for different values of At.
Comparison between the YS and YPC schemes, with a BDF2 time discretization scheme.

Mass conservation and Pressure errors (Yosida and Yosida Pressure Correction
schemes). We start focusing our attention on the Yosida (denoted by YS) and YPC
scheme. In particular, we consider the divergence of the velocity field computed by
the two schemes at the final time (Ty = 1). From the analysis of Sect. 5.1, the first
effect of the pressure correction is to modify the dependence on At of the residual
of the mass equation, which changes from O(At?) to O(At?®), independently of the
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F1G. 6.3. Divergence of the computed velocity field in Ty = 1 for different values of At.
Comparison between the YS and YPC schemes, with a BDF3 time discretization scheme.
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F1G. 6.4. Space distribution of the pressure error for the YS (left) and the YPC (right) schemes.

time discretization adopted. This is clearly confirmed by Fig. 6.1, 6.2 and 6.3, where
for the three different order of BDF the divergence of the velocity field is computed
for several time step sizes. The effect of the pressure correction is evident. The
circumstance that the divergence of the computed velocity (independently of the time
discretization scheme) is O(At3) is shared also by other schemes proposed in the
differential splitting framework, which are an evolution of the Timmermans scheme
(see [11] and also [10]).

Another way for investigating the effect of the pressure correction is to check the
space distribution of the pressure error (see Fig. 6.4). From this picture we infer that
in the algebraic approach we actually do not have significant boundary layers for the
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FiG. 6.5. Errors in the L™ (L2)(left) and L2(H!)(right) norms for the velocity, in the case
of BDF2 non incremental time discretization. Note that in all the figure presented in this Section
the error reduction with the time step stops whenever the error is completely due to the space
discretization.
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FiG. 6.6. Errors in the L2(L%)norm for the pressure, in the case of BDF2 non incremental
time discretization.

pressure error (which is the case of “standard” differential splitting techniques) and
this is particularly true for the pressure corrected scheme, whose error associated is
significantly smaller than in the uncorrected case.

Accuracy tests (BDF2 and BDF3). We compare the numerical results obtained
for h = 1/40 for different sizes of the time step. We consider in particular BDF time
discretization schemes of order 2 and 3. The errors have been computed with respect
to the norms L> (0, T, L?(Q) x L?(Q) and L?(0,T, H*(Q) x H'(£2)) for the velocity and
L?(0,T, L*(f2)) for the pressure (in the sequel, these norms will be denoted L>(L?),
L?(H') and L?(L?) respectively).
In Fig. 6.5 and 6.6 we illustrate the results for the BDF2 non incremental schemes.
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FIG. 6.7. Errors in the L™ (L2)(left) and L?(H")(right) norms for the velocity, in the case of
BDF3 non incremental time discretization.
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FiG. 6.8. Errors in the L2(L?)(left) norm for the pressure, in the case of BDF3 non incremental
time discretization.

Results suggest that the pressure correction has a relevant effect for the Yosida scheme,
both for the velocity and the pressure. For the (Algebraic) Chorin-Temam scheme
(denoted by CT in the figures), the pressure correction gives a significant improvement
only on the pressure. In particular, in the L (L?)norm, YPC exhibits a second order
of accuracy which is not shared by the other schemes (in particular CTPC). In the
L?(H'Y)norm all the schemes are first order accurate, even if YPC features an error
significantly lower than the others. For the pressure, results suggest that YPC is
asymptotically second order accurate, while CTPC seems to be first order, even if
there is an evident error reduction with respect to the uncorrected CT scheme.

In Fig. 6.7 and 6.8 numerical results for the BDF3 non incremental schemes are
reported. For what concerns the convergence order, we observe that it is substantially
unchanged with respect to the case of a BDF2 time discretization. In particular,
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FIG. 6.9. Errors in the L>(L2)(left) and L?(H")(right) norms for the velocity, in the case of
BDF?2 incremental time discretization.
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F1G. 6.10. Errors in the L2(L2)norm for the pressure, in the case of BDF2 incremental time
discretization.

CTC is first order accurate with respect to all the monitored norms (even if the
pressure is by far more accurate with respect to the CT scheme), while YPC is second
order accurate in the L°°(L?)(velocity) and L?(L?)(pressure) norms. It is first order
accurate in L2(H')norm of the velocity error. This means that the pressure correction
by itself yields a splitting error O(A#?) which therefore does not affect the accuracy
of a BDF2 time discretization, while reduces the accuracy of the BDF3 one. It is
however worthy pointing out that the errors in the BDF3 case are slightly lower than
the corresponding ones of the BDF2 case.

Now, let us consider the errors in the incremental case. In Fig. 6.9 and 6.10
we present the results of an BDF2 incremental scheme with a first order pressure
extrapolation. Numerical results suggest that the method is second order accurate
with respect all the norms considered here. Actually, the improvements given by
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FiG. 6.11. Errors in the L (L2)(left) and L2(H?') (right) norms for the velocity, in the case of
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Fi1c. 6.12. Errors in the L2(L2)norm for the pressure, in the case of BDF3 incremental time
discretization.

the pressure correction are minimal on the velocity for the CTPC scheme and more
significant, if At is sufficiently small, for the YPC scheme. Pressure correction yields
a relevant improvement of the solution on the pressure solution for both CTPC and
YPC. For large values of At YPC exhibits some strange behavior which is probably
due to the poor stability properties of the method.
Specific considerations have to be deserved to the case of BDF3 incremental ver-
sion. From the numerical results presented in Fig. 6.11 and 6.12 we observe that:

1.

and third order accurate for the pressure;
. the CTPC scheme features very good results also for large values of the time
step, in such a way that it is difficult to draw an order of accuracy;
. the YPC method has a strange behavior when At is large, which is probably

the uncorrected YS method in fact is second order accurate for the velocity
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induced by numerical instability. Surprisingly enough, under a threshold on
the time step (which in our simulations is about 10~2) the scheme is extremely
accurate, reducing immediately the error to the contribution of the space
discretization solely.
REMARK The Pressure Correction yields improvements in the accuracy of the solution
in particular on the pressure field. However, the computational cost is clearly increas-
ing, since we need to solve two linear systems for S, rather than one. This increment
can be strongly reduced (at least in 2D problems) by resorting to a direct method of
solution. Since H is a s.p.d. matrix, we exploit the QR factorization H'/2DT = QR,
where Q is an orthogonal square (N, X N,,) matrix and, if the inf-sup condition holds,

R is a triangular full-rank N, x N, matrix such that: R = [Rg O]T, where Rg is a
non-singular N, x N, triangular matrix. In this way S = RI R, yielding the Cholesky
factorization of S. In this way, the solution for the system in S reduces to the solution
of two triangular systems, whose computational cost is really low (for more details,
see [25] and [17]).

o

7. Conclusions and Future Developments. In this paper we introduce a
new family of methods for the Navier Stokes equations, based on a pressure correction
step. The idea of pressure correction has been already introduced in the framework
of differential schemes (Timmermans scheme), but it is new in the field of algebraic
splitting. We give a mathematical basis to this approach and numerically verify that
it actually improves solutions, yielding a reduction of the errors or even, in some cases,
an increment of the accuracy order. The latter conclusion holds true in particular for
the YPC scheme. The accuracy improvement seems however limited to the second
order, at least in the non incremental approach.

The pressure correction with a BDF3 incremental time advancing gives interesting
results in the case of the CTPC scheme. While in all the other cases this method
was usually worse than the YPC, in this case it exhibits good results that need to
be investigated furtherly. YPC features very good results in the non incremental
approach. On the other hand, whenever it is coupled with the incremental approach
can be unstable. In fact, we proven that YPC is only conditional stable, but with
the non incremental formulation we actually never observed numerical instabilities in
a reasonable range for the time step sizes. Actually, it seems that the incremental
approach can be somehow less stable. Moreover, it is worthy to mention that from
preliminar numerical results the stability bound on At in the BDF3 incremental time
advancing is proportional to the inverse of the viscosity. For low values of the viscosity
(which means for high Reynolds numbers) our conjecture is that the stability bound
becomes less restrictive. This observation is in agreement with the circumstance
that the use of YPC as a preconditioner of the Navier Stokes solver is well suited in
particular for low viscosity problems (see [7] and also [6]). A more specific stability
analysis for this scheme and, in particular, the role of the incremental formulation
will be however the subject of a future development of this work.
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