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Abstract

In this paper a second-order Total Variation Diminuishing (TVD) finite dif-
ference scheme of upwind type is employed for the numerical approximation of
the classical hydrodynamic model for semiconductors proposed by Blgtekjzer
and Baccarani-Wordeman. In particular, the high-order hyperbolic fluxes are
evaluated by a suitable extrapolation on adjacent cells of the first-order fluxes
of Roe, while total variation diminuishing is achieved by limiting the slopes of
the discrete Riemann invariants using the so-called Fluz Corrected Transport
approach.

Extensive numerical simulations are performed on a submicronn* —n —n*
ballistic diode. The numerical experiments show that the spurious oscillations
arising in the electron current are not completely suppressed by the TVD
scheme, and can lead to serious numerical instabilities when the solution of
the hydrodynamic model is non-smooth and the computational mesh is coarse.

The accuracy of the numerical method is investigated in terms of conser-
vation of the steady electron current. The obtained results show that the
second-order scheme does not behave much better than a corresponding first-
order one due to a poor performance of the slope limiters caused by the pres-
ence of local extrema of the Riemann invariant associated with the hyperbolic
system.

*The first author was partially supported by the Initiative “Giovani Ricercatori”, Politecnico
di Milano. The second author was supported by the M.U.R.S.T. Grant Cofin 2001, “Advanced
Numerical Methods for Partial Differential Equations of Applicative Interest ”.



1 Introduction

In this work the classical hydrodynamic model (HD) for semiconductors developed
by Blgtekjeer (see [10]) and Baccarani and Wordeman (see [6]), is numerically ap-
proximated by a second-order TVD finite difference scheme.

High resolution schemes have been largely applied, in the last thirty years, in
compressible aerodynamics for the numerical computation of shocks, since they may
resolve strong discontinuities without smearing effects or generating spurious oscil-
lations.

In semiconductor device simulation, high-order shock capturing algorithms have
been applied in [17] and [19], where the HD model is solved by a third-order
ENO finite difference approximation, and in [3], [4] and [5], where the second-
order Nessyahu-Tadmor finite difference scheme is used for the solution of an im-
proved hydrodynamic model including viscous terms in the momentum-energy equa-
tions. In the aforementioned papers, numerical simulations of the one-dimensional
nT —n —n' diode are presented to illustrate the performance of the discretization
method. The computed solutions show the non-monotonicity of the steady electron
current profile, that is affected by spurious oscillations which become very large near
the drain junction of the device. This can be a serious problem in real-life applica-
tions, since the current is usually the most relevant outcome of numerical simulation.
Current flux conservation is thus a property of main concern in semiconductor device
modeling, and to the authors’ knowledge it appears that a thorough investigation of
the influence of the oscillations in the current profile on the numerical convergence
of numerical schemes for hydrodynamic models is still lacking.

In the present work, dealing with the same benchmark device as in the references
above, we want to investigate whether and how much the convergence of the TVD
high-order finite difference scheme used in the HD simulation is affected by the
(possible) non-monotonicity of the computed solution.

The numerical method adopted in this article is a suitable extension to the vector
case of the well-known second-order fully-upwinded scalar discretization developed
by Osher and Chakravarthy in [13]. The high-order fluxes are discretized by a
suitable extrapolation on adjacent cells of the first-order fluxes of Roe, and total
variation diminuishing is achieved by limiting the slopes of the discrete Riemann
invariants, according to the so-called Fluz Corrected Transport approach (FCT),
originally developed by Boris and Book (see [11], [12]) and applied to the discretiza-
tion of the HD model for semiconductors in [1, 2]. With this aim, several slope
limiters are employed in numerical computations, as extensively discussed in Sect. 4
of the article.

The evaluation of the high-order fluxes by extrapolation of the first-order fluxes
does not require the use of an approximate Riemann solver, so that the numerical
stability of the method can be furtherly enhanced by performing a semi-implicit time
discretization of the relaxation terms in the hydrodynamic model. Moreover, the
choice of a fully upwinded method attempts to minimize the loss of accuracy due to
artificial diffusion, since, if compared to a central scheme, an upwinded discretization
uses the information of the characteristic directions to introduce a smaller amount
of numerical viscosity in the discrete counterpart of the hyperbolic system.



Extensive numerical experiments are performed in the simulation of a semicon-
ductor model device, namely, a n* —n —n' one-dimensional diode, which is a
prototype of the channel region of a submicron MOS transistor widely employed in
contemporary microelectronics technology.

Computations are carried out at an external temperature of 77 K to investigate
the convergence of the discretization method proposed in this article in the numerical
solution of the HD system at supersonic regime conditions. In particular, it is
shown that the scheme, despite being TVD, does not entirely remove the spurious
oscillations in the computed solution. These oscillations are the main responsible
of convergence breakdown when the solution of the hydrodynamic model is non-
smooth and the computational mesh is coarse. The simulations show also that the
high resolution scheme does not achieve much better accuracy than the low-order
one, as far as the evaluation of the electron current at steady state is concerned, due
to a poor performance of the slope limiters caused by the presence of local extrema
of the Riemann invariant associated with the hyperbolic system.

The work is organized as follows: in Section 2 the hydrodynamic model is briefly
described. Then, the numerical method is presented in Section 3, where the FCT
technique is applied to systems of conservation laws via Roe linearization. The
numerical experiments are discussed in Section 4, while some conclusions are drawn
in Section 5.

2 The hydrodynamic model

The hydrodynamic model for electron charge transport in semiconductor comprises
the following conservation laws for electron mass, momentum and energy

( aa—::—i-div (nv) =0
d(nv) . nv n
. +div (nv®@ v+ nRTI) + — = ——nE (1)
ot Tp m
d(ne) . ne — neg Gn
+div (nev+nRITv+q)+ ——=——nE-v
\ Ot Tw m

In (1), n is the electron density, v = (u1, up, u3)” is the electron velocity and e the
total energy per unit mass, defined as e = 3/2RT + 1/2|v|? where T is the absolute
electron temperature, R = Kpg/m, m is the electron effective mass, Kp is the Boltz-
mann constant, |v| is the magnitude of the velocity vector, (v ® v), i = uiuj, and 1
is the identity matrix. Moreover, q is the heat flux, 7, and 7,, are the characteristic
times for the relaxation of momentum and energy, respectively, and ey = 3/2RTj is
the internal energy of the lattice, T being the temperature corresponding to ther-
modynamic equilibrium. Finally, ¢, is the electron charge (> 0) and E is the electric
field.

The hydrodynamic system (1) must be coupled with the Poisson equation for
the electric field

div (€E) = go (N — n) 2)
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supported by the constitutive relation
E=-V¢ (3)

between the electric field and the electrostatic potential ¢. In (2) € is the dielectric
permettivity of the semiconductor medium and N is a given function that models
the doping profile in the semiconductor device.

Notice that the hyperbolic part of the hydrodynamic system (1) corresponds
exactly to the Euler equations for compressible fluids. Nevertheless, if compared
to a gasdynamics problem, the hydrodynamic model for semiconductors is more
challenging to deal with, due to the high electric fields that are experienced in
submicron devices where strong variations of the doping profile occur (see Section
3). As for the constitutive relations in (1), the heat flux is described by the Fourier-
type relation

q=—kVT (4)
where the heat conductivity £ is given by the Wiedemann-Franz law
Ho 1-2
k= ky_r——KznT 5
w Fan BNlo ( )
and the relaxation times are given by the Baccarani-Wordeman relations
T Ty 3

T T "2, T T 202
where the low-field mobility g obeys the following law
__ Ap
14 (N/N,ep)®
Ap, Nyer and « being suitable parameters depending on 7.

The parameter ky,_, appearing in (5), which measures the amount of heat dissi-

pation, is left unspecified in order to perform a parametric study about its influence
on the numerical solution (see Sect. 4).

Ho

3 The numerical method

The numerical method used to approximate the hydrodynamic system of conserva-
tion laws (1) is a Total Variation Diminuishing (TVD) second-order fully-one-side
upwinded finite difference scheme.

Rigorously speaking, TVD is a purely scalar property, which ensures that spuri-
ous oscillations are completely removed from the numerical solution of a nonlinear
conservation law, as shown by Harten in [18]. A rigorous extension of this concept
to the vector case can only be done for linear hyperbolic systems with constant co-
efficients, that, passing to the characteristic variables, are equivalent to a diagonal
system of scalar hyperbolic equations. Hence, we have decided to use for the numer-
ical approximation of the hydrodynamic problem, a finite difference scheme that is
TVD when applied to nonlinear scalar conservation laws and to linear hyperbolic
systems with constant coefficients.



3.1 TVD fully upwinded semi-discretization of a linear hy-
perbolic equation

For ease of presentation, we describe the numerical method and its properties start-
ing from the discretization of the model linear hyperbolic equation

ou n of (u)

ot ox

on the space-time domain z € R, ¢t > 0, where f(u) = au, a being a real constant.

With this aim, let us introduce a uniform time-space grid of collocation nodes
tr and z;, and define time and space intervals At =t5,1 — tx and AX =z, — ;.
Then, let us consider the spatial discretization of the flux derivative

—0 (6)

a.f . 1 high high
oz|, ~ AX (si2)2 = 59 (7)
where
i _ 1 1
fi}ir‘({]/lz =atu; +a Ui + §a+ (ui — ui1) — 54 (Uit2 — Uit1) (8)
and
L 1
o= =5 (a=£al) (9)

The discretization (7)-(9) is a second-order fully upwinded 5—point scheme, where
the high-order flux (8) is evaluated starting from the low-order flux

1 1
iliqf/z =3 (fiyr + fi) — 2 la (uiy1 — u;) (10)

and performing the following fully one-side upwinded extrapolation on adjacent cells
(see [14], [20])

. 1 1
high
fixdpe = e+ 3 (fi = Fi%)0) + 3 (firr — £155)2) (11)

where fr = auy at each space grid point x. Substituting (8) in (7) one gets

of| _ of a’ a”
oel, = dol, — Ax ) Fa )
+ 2. + L — .
4@ (wi—ui—1)  a® (uim1 — ui—p) (12)
AX 2 AX 2
i a (Uir1 — u;) o (Uito — Uiy1)
AX 2 AX 2

Let us now discretize the time derivative in (6) by the forward Euler scheme, so that
the numerical approximation of (6) becomes

uf+1—uf+ of k .
At or|.

L

0 (13)



% :1 being given by (12) where each quantity u; is evaluated at the time level #.
The approximation (12)-(13) is not TVD, and, in order to achieve total variation
diminuishing, we apply the so called Fluz Corrected Transport technique (FCT).
Following this approach, relation (12) is replaced with

of at -
Sz N = AX (Uz - ui—l) AX (Uz+1 )
a+ (ui—ui—1) at . (uim1 — ui9)
AX L2 1/2 2 T AX \Iji—3/2 2 (14)
\I!_ (wit1 — uz) \Il_ (Ui — Uit1)
AX i+1/2 9 AX i+3/2 )
where ‘IIZ+1/2, W, 1/, are the so-called flux limiters. Setting \Il;t =1 for all j in (14)
clearly recovers (12). Notice that, if
U5, =1+ 0(AX) (15)

the numerical approximation (14) is still second-order accurate. Indeed, define the
so called antidiffusive flux

high high
fif{/z - fz'—zg/z _ z'lﬁ)/z - ilguf/z _ at (Uz - uifl)
AX AX AX 2
_ at (w1 — uip) n a” (U1 —u) a7 (Uir2 — Uit1)
AX 2 AX 2 AX 2

Then, it can be checked that the anti-diffusive flux is O (AX) accurate, so that a
second-order correction is introduced if (15) holds. Notice also that the first-order
Roe scheme is recovered if W3 172 = 0.

Away from local extrema of the computed solution, we can compute the ratios

Uiy2 — Ui41 - U; — Uj—1
pr = 2 Tl 0 Rt
/2 Ui41 — Uy ’ i+1/2 Uit1 — Uy (16)
and rewrite (14) as
of at 1 19 3/2
= = — |14 =Uf — 2 (uy — uie
sol, = Ao | T2V R (s = =)
- (17)
- 1__ 1 ¥it32
Tag |t Tag | e )

Setting

\Ij;:—l/Q =V (0;:1/2) J \I’z_+1/2 (@11/2)

it can be shown (see [20]) that the scheme (13)-(17) is second-order accurate (away
from local extrema) and TVD if the function W satisfies

U(1) =1 (18)
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and
~ (o) <2 (19)

for all values of # and 0. Notice that the function ¥ works directly on the slopes of
the unknown variables, and, actually, behaves as a slope limiter.

The discretization above is not well defined at the local extrema of the computed
solution, where the ratios (16) are null or cannot be defined. To overcome this
limitation, we shall set

=0} i+3/2 i—1/2

i+1/2 =0

ey

for those ¢ such that
Uipr — U = 0
By doing so, the accuracy of the method reduces to first-order near local extrema.

Let us now define the still unspecified flux limiting function ¥. Among the
several examples present in the literature, we consider the following functions, that
will be denoted, for the sake of brevity, by SL1 (), SL2 (#) and SL3 (), respectively:

e the minmod limiter

min (6,1) if 6 >0
U (§) =SL1(9) =
0 if 9<0

e the limiter proposed by Van Albada et al. (see [22])

6> +0
U (0)=SL2(0) = ;o

e the Superbee limiter
¥ (f) = SL3 () = max [0, min (260,1) ,min (0, 2)]
Finally, notice that by simply setting
v()=0

the scheme (13)-(17) reduces to the first-order Roe semidiscretization (see [21]).



3.2 The second-order scheme for the discretization of a hy-
perbolic system of conservation laws

In this section we extend the second-order difference scheme illustrated in Sect. 3.1
to the discretization of the following nonlinear system of conservation laws

oU  OF
= T 5. =0 (20)

System (20) corresponds to the hyperbolic part of the hydrodynamic model (1) in
one spatial dimension, provided that we set

n nu
U=| nu |, F=FU)=| nu®*+nRT
ne nue + nuRT

d
Let A(U) = EF(U) be the Jacobian matrix of the vector of convective fluxes,

and let R and diag()q,...,\,) be the eigenvector and eigenvalue matrices of A,
respectively, p being the dimension of the vector of the unknowns. Moreover, we
define

1
Af = diag()\f,...,)\j)

A* =RA*R™, Al = At — A~

Let us consider the Roe Jacobian matrix A;y1/2 = A (Uj;1/2) such that (see [21])

Ai+1/2 (Ui+1 - Ui) =Fi —F;
and let us define the characteristic increments

— _ -1
AVZ'+1/2 = AU1¢+1/2a ceey Avpi+1/2] =R,

z+1/2AUi+1/2

where, for any vector S, we denote by A the difference operator
ASi12=Si41—85;

We consider the second-order spatial discretization

oF 1 high high
ozl T AX (Fz‘+g1/2 - Fi—gl/Q) (22)

Zi




where the high-order fluxes

; 1
Ff+91’;2 = 9 (Fi+Fip1) — |A‘z—|—1/2 (Ui — Uy)
+35 Az 1/2 (Ui —Ui) - AZ__|_3/2 (Uiy2 — Uig1) (23)

are evaluated starting from the low-order fluxes

low

Fillp=5Fip +F;) - |A|Z+1/2( i+1 — Ui) (24)

NN

and performing the fully one-side upwinded extrapolation

1
high low low
Fz+gl/2 = Fz—|—1/2 9 (F F~ 1/2)

1
5 (Fi —Fiz5..) (25)

Clearly, (22), (23), (24) and (25) are the extension of (7), (8), (10) and (11) to the
case of hyperbolic systems.
The scheme (22)-(23) can be rewritten as

OF 1 ~ )
% AX |:‘LAH'1/2 (Ui+1 - U; ) + Az 1/2 (UZ - Ui—l) + §A:—_1/2 (UZ — Ui—l)
1 - —
A:— 3/2 (Ui —U;j9) + §Az’+1/2 (Ui = Uy) — Az+3/2 (Uirs — Uiy)

which is the counterpart of (12) in the case of hyperbolic systems.
As in the scalar case, in order to make the scheme TVD, we replace the expression
above with

OF 1 _
9zl T AX [Az+1/2 (Ui — Uy) + AZL—1/2 (Ui = Uia)
" 1 1
+§‘§;|—_1/2A:__1/2 (Uz - Ui—l) - §H;—_3/2A2—_3/2 (Uz'—l —_ Ui—2) (26)
1 _ 1_ _
+2‘I)z+1/2Az+1/2 (Uit —Us) — 2Hz+3/2Az+3/2 (Uitz — Uipa)
where <I>Z /2 His Jo are suitable matrices of flux limiters, that must be equal, up

to O (AX) terms, to the identity matrix, in presence of regular solutions and for
almost all the nodes of the mesh. Clearly, (26) is the extension of (14) to the case
of hyperbolic systems.

Now, by directly limiting the slopes of the characteristic variables, we want to
get a TVD scheme when applied to nonlinear hyperbolic equations and to linear
hyperbolic systems with constant coefficients. With this aim, for A =1,...,p, let
us define the quantities



_ Ath'+1/2 + _ AIuhz+1/2
hit1/2 Avhi » ’ hiyi2 — Avhl-q-s/z
_ _ Avhi—uz + vhz+3/2
Pit1/2 Avhi+1/2 ’ A AU’%Ll/z

A
h;_ —_
- )\_’71/2 it A, i+1/2 70
€h¢+1/2 =9 Mhisiye
\ 1 if Ahi+1/2 =0
r )\,’;Hm .
3
e T it Ay s #0
hH_l/Q - hit1/2
N
\ 1 if )‘h¢+1/2 =0

where U is the flux limiting function defined in Sect. 3.1. Moreover, let us introduce
the diagonal matrices

+ s + + + +
Qi+1/2 = dZCI,g (le_l/?, . ,Ldpi+1/2> ; @i+1/2 - dmg (91 it1/27 "0 91%’4-1/2)

+ ; + + ==* — s + +
\Il1—|—1/2 dzag <w1i+1/2’ ey pi+1/2> ; =it1/2 dZG,g (§1i+1/2’ ] Pi+1/2>

Now, in order to obtain a scheme that is second-order accurate and TVD along the
characteristic directions, we set

(I)z_+1/2 = R2+1/2‘I’z+1/2 z'_—|—11/2 (27)
H;+3/2 = RZ+3/2\IJ1—|—3/2Q;+3/2Rz—|—13/2R"+1/2'_'z+3/2®z+3/2R;+3/2 (28)
CI’:F 1/2 = = Ri_ 1/2‘I’z 1/2Rz:11/2 (29)
H;’_3/2 = Ri—?r/?\I’;——?,/zQ:— 3/2 ;—13/2R4—1/2E;r—3/26:—3/2Rz'_—13/2 (30)
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Substituting (27)-(30) into (26), we get after some elementary matrix calculations
the desired second-order TVD spatial discretization of the flux derivative

OF

1 _
BN [Ai+1/2 (Ui —Uy) + A;——1/2 (U; —U;_y)

T AX

1 1 )
§Ri_1/2\11;1/2Ri—11/2A;1/2 (Ui = Ui)

1 -
_§Ri—3/2@;3/29;3/2Ri—13/2A;L—1/2 (Ui - Uz’—l)

1 _ _ _
+§Ri+1/2\I}i+1/2Rz'+11/2Az'+1/2 (Uir1 — Uy)

1 _ _ _ _
_5Ri+3/2\I’i+3/2ﬂi+3/2Rz‘+13/2Ai+1/2 (Ui - Uz)] (31)

that can be written in the following compact form

OF| _6F| . 1 1 o R
1 _ ow
—ERi3/2\P:—_3/292——3/2Ri—13/2] (FZ - Fé*1/2)
32
1 1 o (32)
+E I+ §Ri+1/2\11i+1/2Ri+1/2

1 - - — low
_5Ri+3/2‘I'i+3/2ﬂi+3/2Ri+13/2] (Fz'—|-1/2 - F,)

For those 7 where some of the entries in the vector AV;,;/; vanish, the matrices
\Iljirl/Q, @;’_3/2, \I'i_+3/2, Qz'jid/w Q;’_?’/Q, Qi_+3/2 cannot be constructed by the proce-
dure above. Asin the scalar case, the procedure to overcome this problem consists of
setting to zero the entries of such matrices that cannot be computed due to division
by zero.

Let us now discretize the time derivatives in (20) using the forward Euler scheme,

and consider the fully discrete approximation

Ukt —uk  sE|F
i - =0 33
At Gz, (33)

where ‘;—1;‘: is computed at each time level ¢, according to relation (32).
Proposition 1 When applied to linear hyperbolic systems with constant matriz A

the numerical scheme (32)-(33) is TVD along the characteristic directions.

Proof: It is enough to notice that taking the product to the left of equations
(32)-(33) with the constant eigenvector matrix R leads to the TVD formulation
(13)-(17) in each characteristic variable. Notice also that Proposition 1 holds true
also for nonlinear hyperbolic systems with constant characteristic directions.
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Proposition 2 The numerical scheme (32)-(33) applied to nonlinear scalar con-
servation laws is TVD.

Proof: The result immediately follows by noticing that relation (32) degenerates,
in the scalar case, into the form (17) that can be proved to be TVD (see [20]).

Proposition 3 Away from local extrema, in presence of a reqular solution and
choosing a sufficiently smooth function U, the spatial semi-discretization (31) is
second-order accurate.

Proof: The proof immediately follows from the fact that the quantities ®

I, /2> <I>;:1 /2 and H:[?, /2 due to the consistency requirement (18), are first-order
approximations of the identity matrix, away from local extrema of the characteristic
variables. On the other hand, at local extrema, it can be shown that the numerical

scheme reduces to first-order.

i+1/2:

Remark 3.1 We explicitly point out that, since the time derivatives in (20) are
discretized by the forward Fuler scheme, the second-order accuracy of the numerical
method must be intended in space, only.

Remark 3.2 It is well known that the numerical solutions computed by the Roe
scheme may exhibit nonphysical expansion shocks, due to the small amount of arti-
ficial viscosity introduced near sonic points. To avoid this problem, we modify the
low-order fluzes in (32) using the entropy correction proposed by Harten in [18], that
consists of evaluating the matrices AL as

A+Q
)

AF =

where Q is the diagonal matriz

Qnph =19 2 (34)
4—Z+6 if | Anl < 2

€ being a given tolerance. In the numerical experiments we take € = 0.05¢y, where
co = /5 RTy/3 is the speed of sound at thermodynamic equilibrium.

Remark 3.3 For the numerical approrimation of the remaining spatial differential
terms, namely, the divergence of the electric field in (2), the gradient of the electro-
static potential in (3) and the divergence of the heat fluz in the energy equation, the
usual centered finite difference approrimation is employed. Moreover, in order to
enhance the stability of the numerical scheme, the semi-implicit time discretization
of the relaxation terms

12



nv  nktlyhtl ne —ney . nFtleftl — pktle

T, T Tw Tk
is performed without any additional computational effort (the relazation terms having

a diagonal form in the hydrodynamic system (1)).

4 Numerical results

This section is devoted to the discussion of the numerical results obtained in the
simulation of a submicron n* —n —n* diode in the one-dimensional case. Namely,
we study a 0.6um silicon diode with 0.1 ym source, 0.4 um channel and 0.1um drain.

In our experiments we have used the following quantities (which are similar to
those in [16]): m = 0.26 m,, m,. being the free electron mass, € = 11.7¢, ¢ be-
ing the vacuum dielectric permettivity, and N,.; = 1.44 x 102 m™3, a=0.659,
v, =12 x 10°ms™, Ap=138.

The device doping profile is defined as follows

(35)

( 5x 102m=2 if0<x<01umor0.5<xz<0.6um
N(x) =
1 x 102'm=3 if0.1 <z <0.5um

Appropriate boundary conditions are (see [16]):
e at the source (x =0): n=N(0), T =Ty, ¢ = Gpuitt—in
e at the drain (z = Lyo): n = N(Lgot), T = To, ¢ = Pvuitt—in + Pias
KzT, [ N(0)

conductor and the I;lletal contaczt and n; is the intrinsic concentration in the semi-
conductor. As in [16] we have used n; = 2.84 x 10~ m™>,

In all the numerical experiments, the lattice temperature is Ty = 77 K and the
applied biasing potential is ¢y = 2 Volt. It is well known that at such a working
temperature electron flow is supersonic and shock waves are experienced by the
electron density, velocity and temperature distributions (see [16, 7, 8, 9]).

At t =0 we set u =0 and T =T}. In order to investigate the influence of the
smoothness of the initial electron concentration on the convergence of the numerical
scheme, at t = 0 we set

where dpyirt—in = log is the built-in voltage arising between the semi-

5 x 108m™2 if0<z<0.1umor 0.5 <z <0.6um
n(z) = (36)

1 x 102'm=3 if014+6<2z<0.5—dum
and we connect the above piecewise constant values by a C' smooth cosine law.
Notice that, according to (36), the initial electron profile is equal to the doping

concentration on all the semiconductor device except on two intervals of length equal
to &, where the jumps at the junctions of the initial electron density are smeared
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out. We have performed a parametric study on ¢ in the range [0,0.15 ym]. As we
will see, this parameter, measuring the regularity of the initial solution, can strongly
affect the convergence of the numerical method.

We remark that a similar analysis has been performed on the abruptness of the
doping profile, where the function (35) has been regularized with smooth cosine
connection as follows

5x 102m™ if0<z<01umor0.5<z<0.6um
N(z) =
1 x10%m™3 if0.1+6<x<0.5—dum

However, the numerical experiments have revealed that choosing ¢ in the range
[0,0.15 um| does not influence the properties of the discretization scheme. As a
conclusion, the convergence of the numerical method is affected by the jump of the
doping density (which determines the strength of the electric field at the junctions),
but not by the abruptness of such variations.

In order to investigate the influence of the regularity of the solution on the sta-
bility of the numerical scheme proposed in Sect. 3, different values of the quantities
kw_r and ¢ are used in the simulations, according to the following schedule:

e Test case 1: kyy r=0,6=0.

e Test case 2: kyy r=0,6 =0.1um.
e Test case 3: ky_r =0, =0.15um.
e Test case 4: ky _r = 0.2, § = 0um.
e Test case 5: kyy _r =0.2, 6 =0.1um.

In the numerical experiments, all of the three slope limiters SL1, SL2 and SL3 intro-
duced in Sect. 3 are employed. Computations have also been performed using the
Roe first-order approximation, corresponding to taking ¥ = 0. The quantity NV, de-
notes the number of spatial nodes (N, = 200 and N, =400 in all of the examples).
The experiments show situations in which the steady state is not reached. Concern-
ing this point, Tables 1, 2, 3, 4 and 5 illustrate, for each test case, if the numerical
method converges or fails to converge (‘conv’ and ‘no conv’ indicates convergence
and failure to convergence, respectively).

U(@) =0 | ¥(F) =SL1(A) | ¥() = SL2(0) | ¥() = SL3(A)
N, = 200 conv no conv no conv no conv
N, =400 conv no conv no conv no conv

Table 1: Test case 1.

As we can see, the first-order scheme does reach convergence in all of the experi-
ments, while the second-order scheme, in some situations, does not. We have ex-
perienced in all the simulations, in correspondence of convergence breakdown, the
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V(@) =0 | ¥(H) =SL1(#) | ¥(#) = SL2(0) | ¥(§) = SL3(0)
N, =200 conv no conv no conv no conv
N, =400 conv no conv no conv no conv
Table 2: Test case 2.
U(f) =0 | ¥(F) =SL1(f) | ¥(P) =SL2(0) | ¥(F) = SL3(H)
N, =200 conv conv conv no conv
N, =400 conv conv conv no conv

Table 3: Test case 3.

following behaviour of the computed solution: during the transient to steady state,
the solution is non monotone, and the conservative variables U are affected by spu-
rious oscillations at the drain junction (see Fig. 1 and Fig. 2). The oscillations make
the electron density (shown in Fig. 2), become negative, so that also the electron
temperature becomes negative, and the numerical simulation stops.

Some remarks are here in order:

1. Reducing the time integration does not change the behaviour described above.
To assess the validity of this statement, we have used values of At up to 1000
times smaller than the time step at which the first-order approximation works,
but the numerical instability has not been removed. On the contrary, once the
space interval AX is fixed, the instability occurs always at the same time, that
is not influenced by the value of At.

2. Failure to convergence is influenced by the spatial discretization. To see this
point, we have carried out a numerical simulation of Test case 1 (choosing
the slope limiter SL1) on a very refined mesh of 2000 nodes (N, = 2000),
and the steady state has been reached. This seems to suggest that failing to
converge does not necessarily indicate the lack of an analytical solution to the
hydrodynamic system of equations (we have performed only one simulation
using 2000 spatial nodes, since the computational cost of working with such a
refined mesh is very expensive).

The fact that the computed solution is affected by spurious oscillations reveals
that the numerical method is actually not TVD. Indeed, as already pointed out in
Sect. 3, the scheme can achieve total variation diminuishing only in the case where
the characteristic directions (the eigenvectors R) are constant. Now, at the drain
junction of the device, the solution experiences very strong variations, due to the
presence of a high electric field (see Fig. 3), and the characteristic directions are far
from being constant. For this reason, some spurious oscillations occur, and their
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V(@) =0 | ¥(A) =SL1(A) | ¥(9) = SL2(0) | ¥(§) = SL3(0)
N, =200 conv conv conv no conv
N, =400 conv conv conv conv
Table 4: Test case 4.




V(@) =0 | ¥(H) =SL1(#) | ¥(#) = SL2(0) | ¥(§) = SL3(0)
N, =200 conv conv conv conv
N, =400 conv conv conv conv

Table 5: Test case 5.

amplitude, despite being moderate, is large enough to make the electron concen-
tration, which is small at the end of the channel, become negative, thus yielding
the numerical instability. Comparing Tables 1, 2, 3, we notice that the method
achieves better stability when the regularity of the initial solution increases. This
can be explained by the fact that, when the solution is smoother, the characteristic
directions tend to become constant on adjacent grid points, leading to ’a more TVD’
approximation. The same argument can be applied to explain why the stability of
the method can be improved by increasing the number of nodes of the mesh.

We remark that a ‘monotonicity improvement’ of the steady electron current due
to grid refinement has been already observed in [17].

Numerical stability can also be enhanced by increasing the amount of heat dis-
sipation present in the physical model (see Tables 4 and 5). This is not surprising
since, in such a case, we are adding a diffusive and regularizing contribution to the
whole set of equations.

Concerning the influence of the choice of the flux limiter on the numerical stabil-
ity, it is worth noticing in Tables 1, 2, 3, 4 and 5 that SL.1 and SL2 exhibit the same
behaviour, while SL.3, looking at Test cases 4 and 5, reveals to be more unstable.
This can be explained by the fact that the function SL3 actually coincides with the
boundary of the region where the approximation is TVD, i.e. if ¥ (8) > SL3 (6),
then the discretization is no longer total variation diminuishing (see [20]). For this
reason, the attitude of the numerical method to become non TVD, and to generate
oscillations, in the nonlinear regime is greater when SL3 is used rather than SL1 or
SL2.

Let us now investigate the spatial accuracy of the numerical method. First of
all, we point out that the main difference between the second-order scheme and the
first-order one concerns the approximation of the electron current, which is, among
the physical quantities, the most sensitive to numerical errors, as already shown in
[3] and [15]. For instance, as we can see in Fig. 4, the second-order approximation
of the steady electron velocity and the first-order one are almost the same, while the
steady electron current profile is very sensitive to the order of approximation used.

In particular, Fig. 5 shows that the steady electron current profile is affected by
wide oscillations at the drain junction of the device when the second-order scheme is
used, experiencing also a jump there. Since the electron current must be a constant
function at steady state, the amplitude of the spurious oscillations and of the cor-
responding jump can be assumed as a measure of the numerical error. As already
observed in [15], the deviation of the steady electron current from its mean value is
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quite relevant, and decreases after mesh refinement. However the numerical experi-
ments show that the error is reduced only by a factor of one half when the number
of nodes is multiplied by two (see Fig. 6), which implies that the numerical method
is first-order accurate at the drain junction of the semiconductor device. We remark
that the electron current profile computed at steady state suffers the same loss of
accuracy when the slope limiters SL1, SL2 and SL3 are used.

A closer look at numerical results explains the inaccuracy of the high-order ap-
proximation: at the drain junction the slope limiters, which should counterbalance
the large sources of error due to the strong variations of the solution, actually per-
form quite poorly. Let us denote by ¥;, U5, and U3 the slope limiters acting on the
characteristic increments Avy, Awvy, Avs, associated with the eigenvalues \; = u — ¢,
Ao = u+ ¢ and A3 = u respectively, ¢ = /5 RT/3 being the speed of sound in the
device (since the flow at the end of the channel is subsonic only ¥y, U5, ¥4 matter).

Fig. 7, Fig. 8 and Fig. 9 show the profiles of the slope limiters at the drain
junction, obtained, at steady state, using SL1 (the choice of SL2 or SL3 would give
similar results). As we can notice, the functions ¥; and ¥, are quite far from 1, and,
moreover, they are not 1+ O (AX) since at the end of the channel the Riemann
invariants vy, vy associated with the hyperbolic part of the hydrodynamic model
and computed as the discrete summation of the characteristic increments Avy, Av,
exhibit, at steady state, two local extrema (see Figs. 10 and 11). Near these points,
the ratio between two consecutive increments of Av; and Av, cannot be 1 + O (AX),
and the slope limiters evaluated accordingly are not 1 + O (AX) as well.

Fig. 9 shows that, unlike in the case of ¥y and Wy, the function U3 is indeed
1+ O (AX), due to the fact that the discrete Riemann invariant vz (shown in
Fig. 12) has no local extrema at the drain junction (actually vs exhibits a mini-
mum before the end of the channel, but this is not a relevant source of error since
the solution does not attain significant variations there).

We point out that a local extremum (a minimum) is experienced by function
v1 also at the source junction where the electron current profile is affected by some
O (AX) oscillations as well.

As for the computation of shock wave in the electron velocity profile, we can
notice that the high-order scheme produces a satisfactory approximation of the
shock that is generated at steady-state at z = 2.25 um, both in terms of resolution
of the discontinuity (see Fig. 4) and of electron current conservation (see Fig. 5).

Finally, we do mention that, in all the experiments, the numerical solution is
affected very weakly by the entropy correction (34). Indeed such an enforcement is
effective only at sonic points, so it does not remove the numerical instabilities, and
does not produce any relevant changes on the computed solution.

5 Conclusions

In this paper the hydrodynamic model for semiconductors is solved by a TVD
second-order upwinded finite difference scheme. In particular, the high-order fluxes
are evaluated by a fully upwinded extrapolation on adjacent cells of the first-order
fluxes of Roe, allowing the semi-implicit discretization of the relaxation terms. Suit-
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able TVD properties are then achieved by limiting the slopes of the discrete solution
along the directions associated with the characteristics of the hyperbolic system.

The numerical simulation is carried out on the one-dimensional n™ —n —n
diode benchmark problem, and several slope limiters are employed and compared,
namely, the minmod function (SL1), the slope limiter of Van Albada (SL2) and the
superbee limiter (SL3), together with the Roe first-order approximation scheme,
corresponding to taking ¥ = 0.

Several test cases are numerically solved in order to investigate the convergence
of the numerical method as a function of the smoothness of the solution of the
hydrodynamical problem. In particular, it is shown that the scheme, being TVD
only when applied to hyperbolic systems with constant characteristic directions, does
not completely preserve the monotonicity of the discrete solutions. On the contrary,
some spurious oscillations arise, which, despite being of moderate amplitude, can
lead to convergence breakdown by making the electron density become negative.

The numerical instabilities are experienced in correspondence of strong variations
of the computed solutions, and do not occur if the initial electron concentration is
a smooth enough function. This gives a strong indication on a proper choice of the
initial solution when the hydrodynamic model is applied to the simulation of more
complex and multidimensional devices.

The experiments reveal that the spurious oscillations can also be controlled by
suitably reducing the size of the computational grid, a phenomenom that we heuris-
tically explain by the following argument: on a very refined grid, the characteristic
directions of the hyperbolic system can be considered to be constant on adjacent
mesh points points, leading to a ‘more TVD behaviour’ of the numerical approxi-
mation (see Proposition 1).

A further control on the numerical instabilities can also be achieved by increasing
the amount of heat conductivity present in the physical model, a fact that does
not surprise, as we are adding a regularizing contribution to the whole set of the
equations.

Concerning the influence of the choice of the slope limiter on the convergence
of the method, it is interesting to notice that SL3 is more unstable than SL1 and
SL2, since the superbee limiter coincides with the boundary of the TVD region of
the numerical scheme, hence it is more sensitive to escaping from it in the strongly
non-linear regime.

Finally, we remark that the first-order scheme reveals to be capable of reaching
convergence to steady state in all of the numerical experiments.

As for the accuracy of the numerical method, the simulation results highlight
that the electron current profile is non monotone both at the source and the drain
junction of the device. In particular, the spurious oscillations become very large at
the drain end of the channel, where the computed electron current profile is not flat
at steady state, but exhibits significant variations from the mean value, thus suffering
a considerable loss of accuracy. The simulations reveal that such a numerical error
can be reduced by mesh refinement, but it is O (AX) only. This phenomenum is
due to the poor behaviour of the flux limiters, that are quite significantly far from
1 at the drain junction, thus spoiling the performance of the high-order scheme in
a spatial region where the solution experiences steep gradients and therefore the

+
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discretization error is relevant.

The experiments show also that the poor convergence of the flux limiters is
related to the shape of the Riemann invariants of the hyperbolic part of the hydro-
dynamic set of equations, whose slopes are used to limit the anti-diffusive high-order
fluxes. In particular, the Riemann invariants associated with the eigenvalues u — ¢
and u + ¢ have two points of local extremum at the end of che channel, causing the
corresponding slope limiters be not 1+ O (AX) there.

Concerning this latter point, we notice that the same argument could be used to
explain the considerable loss of accuracy on the steady electron current at the drain
junction that is experienced by Anile and co-workers in [3, 4, 5], where an extended
hydrodynamic model taking into account the first five moments of the Boltzmann
equations is solved by the Nessyahu-Tadmor scheme: in this case the slope limiters
act directly on the primitive variables U, and, looking at the results presented in
the above works, at least two functions in the set U, the electron energy and the
heat flux, exhibit points of local extrema at the end of the channel at steady state.

Finally, we have investigated the properties of the numerical scheme depending
on the regularity of the doping concentration: this analysis has shown that the
convergence of the numerical scheme is not affected by the abruptness of the doping
concentration, at least when the jumps of the doping profile are smeared within a
physically reasonable length.

We also mention that the numerical method has been also validated on the
solution of the shock-tube problem dealing with the Euler equations of gasdynamics,
which, from the mathematical standpoint, corresponds to taking only the hyperbolic
part of the hydrodynamic system (1). In this case (results not reported here),
the resolution of the discontinuities by the second-order scheme is excellent. Both
this fact and the accurate computation of semiconductor shocks produced by the
second-order scheme reveal that the discontinuity present at the drain junction of the
nt —n —n' diode, due to the strong electric fields, is something more challenging
to approximate than a shock wave.

Finally, since the experiments show that the amplitude of the spurious oscilla-
tions can be reduced by grid refinement, in such a way that a stable and sufficiently
accurate solution can be obtained, it seems convenient, also in view of possible 2-D
extensions, to combine high resolution schemes with a mesh adaption technique,
based on the variations of the electron current profile. This will be the object of a
future work.
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Figure 1: Test case 1, with slope limiter SL1 and N, = 400: electron current at
t = 1.86 ps, zoom at the drain junction.
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Figure 2: Test case 1, with slope limiter SL1 and N, = 400: electron density at
t = 1.86 ps, zoom at the drain junction.
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Figure 3: Test case 1, 2, 3, with slope limiter SL.1 and N, = 400: electric field at
steady state.

Figure 4: Test case 4, 5: electron velocity at steady state.
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Figure 5: Test case 4, 5: electron current at steady state.

Figure 6: Test case 4, 5, with slope limiter SL1: electron current at steady state.
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Figure 7: Test case 4, 5, with slope limiter SL1: function ¥, at steady state, zoom
at the drain junction.

16

1.4f — N=200 |
“““““ N, =400

1.2f x 1

5 5.05 51 5.15
X (m) -7

Figure 8: Test case 4, 5, with slope limiter SL.1: function ¥, at steady state, zoom
at the drain junction.
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Figure 9: Test case 4, 5, with slope limiter SL1: function V3 at steady state, zoom
at the drain junction.
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Figure 10: Test case 4, 5: discrete Riemann invariant v;, steady state.
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Figure 11: Test case 4, 5: discrete Riemann invariant vo, steady state.
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Figure 12: Test case 4, 5: discrete Riemann invariant vs, steady state.
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