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Summary

In this paper we present a new approach in the study of Aorto-Coronaric bypass
anastomoses configurations. The theory of optimal control based on adjoint
formulation is applied in order to optimize the shape of the zone of the incoming
branch of the bypass (the toe) into the coronary (see Figure (1)). The aim
is to provide design indications in the perspective of future development for
prosthetic bypasses. With a reduced model based on Stokes equations and a
vorticity functional in the down field zone of bypass, a Taylor like patch is found.
A feedback procedure with Navier-Stokes fluid model is proposed based on the
analysis of wall shear stress and its related indexes such as OSI.
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1 Introduction and problem setting

The surgical realization of a bypass to overcome a critically stenosed artery is
a very common practice in everyday cardiovascular clinic (Figure (1)).
Improvement in the understanding of the genesis of coronary diseases is very
important as it allows to reduce surgical and post-surgical failures. It may also
suggest new means in bypass surgical procedures with less invasive methods and
to devise new shape in bypass configuration ([33] and [32]).
Generally speaking, mathematical modelling and numerical simulation can al-
low better understanding of phenomena involved in vascular diseases ([1], [35],
[36] and [13]).
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Figure 1: Simplified bypass model. [36]

In this work, the background provided by mathematical modelling and numer-
ical simulation has led us to apply the Optimal Control theory of systems gov-
erned by partial differential equations (PDE) with the aim of optimizing the
shape of a simplified bypass model.
Optimal control of one (or several) aspect of the problem entails the mini-
mization of a cost functional which describes physical quantities involved in
the specific problem. Optimization process is carried out by a control function
which, depending upon the context, may represent initial or boundary condi-
tions, shape of the domain (by boundary variations), force terms, sources, etc.
In computational fluid dynamics two different kind of optimal control problems
can be faced.
The former is called Data Control, in which case the control is on different
variables of the problem such as initial and boundary conditions, force terms,
sources and coefficients. Control function can be put on the boundary or on a
part of it, on the whole computational domain or on a part of it. When control is
put on the flux we talk about flow control problem (R. Becker [3], M. Berggren
[4], M. Hinze, K.Kunish [17], S. Ravindran, L. Hou [18] [19], M.Gunzburger [14],
T. Slawig [39]).
The latter is called Domain Control, since the solution of the system of PDE
is controlled by boundary variations of the domain itself. This field is related
with shape optimization and optimal shape design (see the work by A.Jameson
([20], [21] and [22]) and O.Pironneau ([29], [23], [12] and [34])), in the context
of aerodynamics for external flows (wings and airfoils design) and internal flows
(nozzles, channels).
Here we aim at applying the optimal control theory for PDE systems to a specific
problem involving both flow control and shape optimization in haemodynamics
phenomena. Flow control is involved in the observation of the evolving system
and in cost functionals (such as vorticity, wall shear stress), optimal shape de-
sign is involved in boundary variations by a control function used as parameter
in shaping the bypass graft.
The adjoint approach proposed by J.L. Lions to get cost functionals gradient in
problem with distributed or boundary control and observation has been devel-
oped. This approach is computationally cheaper than other approaches using
automatic differentiation for the computation of the gradient of the cost func-
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tional. In the functional optimization process a descent gradient-based method
is used [6]. Numerical approximation is based on Galerkin-Finite Elements
Method [37]. Algorithms were developed for control and optimization as well
as for the coupling between state and adjoint problems.
This problem is suitable to be studied by optimal control theory to let a numer-
ical simulation in moving domains, modified by shape control iterative process
to reduce cost functional (in our case, either the down-field vorticity or the wall
shear stress). At the end of the study a cuffed bypass is found with a shape
which resembles the Taylor arterial patch [7].
This paper is organized as follows. After this section as introduction and prob-
lem setting, in Sec. 2 we deal with clinical aspects of bypass problem (surgery,
materials), then in Sec. 3 we introduce numerical (integral) quantities useful
to apply optimal control in design processes concerning wall shear stress trend
along wall and oscillations in time. In Sec. 4 we deal with a general presen-
tation of optimal control approach, then in Sec. 5 we study the mathematical
modelling of the problem (geometrical model, state equations). In Sec. 6 we
deal with optimization and control algorithm aspects, then in Sec. 7 we intro-
duce numerical results and a proposed feedback procedure. In the last Sec. 8
we mention some possible future development.

2 Clinical aspects: surgery, materials, state of

the art problems.

When a coronary artery is affected by a stenosis, the heart muscle can’t be prop-
erly oxygenated through blood. Aorto-coronaric anastomosis restores the oxy-
gen amount through a bypass surgery downstream an occlusion (see Figure(2)).
At present, different kind and shape for aorto-coronaric bypass anastomoses are
available and consequently different surgery procedures are used to set up a
bypass.

Figure 2: Heart, coronary arteries and bypass

A bypass can be made up either by organic material (e.g. the saphena vein
taken from patient’s legs or the mammary artery) or by prosthetic material. The
current saphenous bypass solution requires the extraction of saphena vein with
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possible complications. In this respect, prosthetic bypasses are less invasive.
They may feature very different shape for bypass anastomoses, such as, e.g.,
cuffed arteriovenous access grafts (Figure (3) and (4)). Different cuffed models
are used such as Taylor Patch [9] and Miller Cuff Bypass, [11], but also standard
end-to-side anastomoses at different graft angle ([10]) or other shaped carbon-
fiber prostheses. For a discussion and a comparative approach see [8] and [7].

Figure 3: Different anastomoses configurations: end-to-side (top) and cuffed on
the bed (bottom).

Figure 4: Miller cuffed bypass model

In the cardiovascular system altered flow conditions such as separation, flow
reversal, low and oscillatory shear stress areas and abnormal pulse pattern are
all recognized as potentially important factors in the development of arterial
diseases ([44] and [28]). A detailed understanding of local haemodynamics phe-
nomena and the effect of vascular wall modification on flow patterns can have
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useful clinical applications especially in surgical procedures or prostheses tai-
loring ([40] and [30]). Concerning bypass setting, lots of different aspects and
post-surgical complications have to be taken into consideration, among them
we mention intimal thickening hyperplasia (near suture lines), restenosis, sur-
gical injury, long term graft failure. Every year 8% of all patients risk bypass
occlusion, after ten years 80% bypasses must be replaced (Data taken from
HeartCenterOnLine). Repeating procedures typically carry a higher risk of
complications.
For all these different aspects the design of artificial arterial bypass is a very
complex problem. Carbon fiber and Collagen cuffed grafts instead of natural
saphenous vein can be used for studying new shape design without needing ”in
loco” reconstruction. In this framework, Optimal Control by flow control and
shape optimization provide a new interesting approach to the problem, with the
goal of improving arterial bypass graft on the basis of a better understanding
of fluid dynamics aspects involved in the bypass studying.

3 Design Control Quantities

In the literature some physical quantities (called indexes) have been proposed
in order to measure, at some extent, arteries occlusion risk (or re-occlusion after
bypass surgery). These indexes have been introduced in order to enlight some
specific mechanism that could be correlated to intimal thickening. A first index
stems from the observation that a crucial role is played by blood flow oscillations
during the diastolic phase of every single heart beat. Another index attemps
at measuring the rapid variations of the shear stress on the vascular wall. In
any case these and other indexes (that we are going to review briefly) could be
considered as a starting point on the way to synthesize the enormous amount
of information given by numerical simulation for the bypass design.

3.1 Oscillatory Shear Index (OSI)

The Oscillatory Shear Index (OSI) was introduced in 1983 by Zarins and Gid-
dens [46] to identify the occlusion risk zones. It is defined as follows:

OSI =
1

2

(
1 −

∫ T

0 τwdt
∫ T

0
|τw |dt

)
, (1)

where [0, T ) is the time interval of a single heart beat (T ' 1 sec) and τw is the
wall shear stress. In a Newtonian fluid model,

τw = µ
∂v̂

∂n̂
· τ̂ , (2)

where v̂ is the blood velocity field, µ the blood viscosity, n̂ and τ̂ respectively
normal and tangential unit vector on the arterial wall. OSI measures the tem-
poral oscillations of the shear stress pointwise, without taking into account the
shear stress trend in the immediate neighborhood of a specific (critical) point.
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3.2 Mean Wall Shear Stress Gradient (MWSSG)

Another indicator of occlusion risk zones is the mean wall shear stress gradient
(MWSSG) (see [42] and [43]) defined as:

MWSSG =
1

T

∫ T

0

|WSSG|dt, (3)

where WSSG is the wall shear stress gradient and is defined as follow:

WSSG =
∂τw

∂τ̂
= ∇τw · τ̂ . (4)

According to MWSSG, the zones featuring occlusion risk or abnormal flow pat-
tern are those where strong variations in the shear stress along the wall occur.
This index is dual with respect to the OSI, since it weighs spatial variations.

3.3 Other Indexes

An alternative to OSI is the Oscillatory Flow Index (OFI) [41]:

OFI =
1

2

(
1 −

∫ T

0
Qdt

∫ T

0
|Q|dt

)
, (5)

where Q is the flow rate across an artery section Γf ,

Q =

∫

Γf

ρv̂ · n̂dΓ, (6)

being ρ the blood density. It quantifies temporal oscillations in flow rate.
A problem arising when using one of the previous functionals for optimization
purposes is that they don’t have a quadratic form. We can use these quantities
for feed-back processes, but we need functionals which can provide a good av-
erage in time and in space of shear stress trend. In this spirit, we propose other
integral quantities that can be defined along the artery wall Γw (or a critical
part of it). Set for all t > 0:

Σ(t) =

∫

Γw

(∂τw(t)

∂t

)2

dΓ, (7)

and

Q(t) =

∫

Γw

(∂Q(t)

∂t

)2

dΓ. (8)

Then we define:

Jτ = mean[0,T ]Σ(t) =
1

T

∫ T

0

Σ(t)dt =
1

T

∫ T

0

∫

Γw

( ∂

∂t
τw(t)

)2

dΓdt, (9)

which is the L2 − norm of the wall shear stress rate (L2 − WSSR). Similarly,
we define the analogous L2 − norm of the flow rate Q (L2 − FR):

JQ = mean[0,T ]Q(t) =
1

T

∫ T

0

Q(t)dt =
1

T

∫ T

0

∫

Γf

( ∂

∂t
Q
)2

dΓdt. (10)

These new indexes Jτ and JQ could be used as cost functionals for the control
procedure that we are about to introduce.
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4 A Control approach: looking for cost func-

tional optimization

In this section we review briefly the optimal control theory based on the adjoint
problem. For a general presentation of this subject the interested reader can
refer to [26], [27] and [2]. For functional analysis elements see [45] and [5].
The mathematical ingredients of an optimal control problem are:

• A Control Function w which belongs to a functional space Uad, called
admissible control space.

• A state system y(w) associated to the control w, which is the solution of
a PDE problem defined on the domain Ω, for instance

Λy(w) = f + Bw, (11)

where f is a given function, while Λ and B are two linear operators. The
latter equation is called state equation and represents the physical system
to control and optimize. In our case the state equation will be given by
either the Stokes or the Navier-Stokes equations. Note w → y(w) is an
affine map.

• An observation function z(w) belonging to a suitable space Z which is
related to y(w) through an operator C, z(w) = Cy(w). Our observation
will coincide with the restriction of z(w) upon a convenient subset of the
computational domain Ω, so in our case C is indeed a restriction operator.

• A cost functional J(w) (to be minimized) which is a positive quantity
depending on the observation z(w). In our problem J(w) could be either
Jτ or JQ, or another simplified functional depending on the flow vorticity
that we will consider in connection with the Stokes equations.

Note that this formulation covers the case where the control variable is a bound-
ary condition or a source term. Optimal shape design is a special case of control
theory where the control is the boundary itself (w → Ω(w) → y(w), where
w → Ω(w) is the parameterization of the domain by a control parameter w and
the problem is to minimize a functional J(w, y(w)), which depends on w through
y(w) but also directly (for instance J is an integral of a quantity depending on
y(w) extended to a region depending on w)). (See [29]).
In our problem the control will be a subset of the domain boundary Γ(w).
The general formulation of an optimal control problem reads:

• Find a function w ∈ Uad so that:

J(w) = inf{J(v), ∀v ∈ Uad}. (12)

With the sole sake of clarity for the reader unfamiliar with control theory, a
classical example follows. We assume that U is a Hilbert space, π a bilinear
continuous form on U , coercive and symmetric, L a linear continuous functional
on U and Uad ⊂ U is the admissible control functions space. If we assume that
the cost functional is given by:

J(v) = π(v, v) − 2L(v), ∀v ∈ Uad, (13)
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under the previous hypotheses on π, there exists a unique control w ∈ Uad.
Moreover, (12) can be replaced by an equivalent variational inequality:

J ′(w) · (v − w) ≥ 0 ∀v ∈ Uad, (14)

under the hypothesis that the fuction v → J(v) is strictly convex, differentiable
and satisfies: J(v) → +∞ as ||v|| → +∞. The last hypothesis may be omitted
if Uad is bounded. For example assume that the cost functional is given by:

J(v) = ||Cy(v) − zd||
2
Z , (15)

where zd is a given optimal condition (to be reached) in the observation space
Z . Noting that:

J(v) = ||C[y(v) − y(0)] + Cy(0) − zd||
2
Z ,

and defining:
π̃(w, v) = (C[y(w) − y(0)], C[y(v) − y(0)])Z ,

L(v) = (zd − Cy(0), C[y(v)− y(0)])Z ,

we can reformulate our cost functional as follows:

J(v) = π̃(v, v) − 2L(v) + ||zd − Cy(0)||2Z .

The inequality (14) is equivalent to:

(Cy(w) − zd, C[y(v) − y(w)])Z ≥ 0, ∀v ∈ Uad. (16)

Introducing the adjoint operator C∗ of C and a Hilbert space V of test functions,
so that:

V
′ < C∗z, v >V =

Z
′ < z, Cv >Z , ∀v ∈ V , z ∈ Z ′,

expression (16) becomes [26]:

(C∗(Cy(w) − zd), y(v) − y(w))Z ≥ 0, ∀v ∈ Uad. (17)

Let Λ∗ denote the adjoint operator of Λ, that is < Λv, u >=< v, Λ∗u >. Then
for every control w ∈ U let us introduce the adjoint state p(w) ∈ V which is the
solution of the adjoint problem:

Λ∗p(w) = C∗[Cy(w) − zd]. (18)

After some transformations inequality (17) can be written as:

(B∗p(w), v − w)U ≥ 0, ∀v ∈ Uad, (19)

where B∗ is the adjoint of the operator B. A useful identity relating the gradient
of cost functional to the solution of the adjoint problem is:

1

2
J ′(v) = B∗p(v). (20)

Thus the evaluation of the gradient of the cost function can be achieved at
the expense of solving an additional PDE problem, the so-called adjoint state
equation. For this derivation see [26].
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5 Mathematical modelling of the problem.

Blood is a very complex fluid which interacts with the compliant arterial ves-
sels. Some simplificatory assumptions are in order in view of applying a con-
trol procedure. Concerning the fluid model we consider blood as a Newtonian
fluid, modelled by Navier-Stokes equations (or even by the simplified Stokes
model). This model is a valid approximation when studying blood flow in large
or medium-size arteries. The Reynolds number is rather low, so the flow can be
regarded as laminar.

5.1 The geometrical model

To model the incoming branch of a bypass, different bypass anastomoses models
have been taken into consideration. We have simplified our model by consider-
ing a longitudinal section in the mean plane reducing it to a two-dimensional
problem. As initial configuration we have used a fiberglass model provided by
the Surgical Vascular Division of Aahrus University Hospital (Denmark).
To define anastomoses geometry for numerical simulation, different aspects have
to be taken into account:

• Fluid dynamics phenomena in the bypass are strictly related with the
shape assumed, such as the arising of blood re-circulating zones. Blood
pulsatility due to heart beat influences our analysis. The most critical
zone in the bypass design is the toe and must be carefully modelled.

• Another important aspect to keep into consideration is the graft angle
between the incoming branch and the occluded artery.

• The diameter of the occluded branch (below) is D = 3.5 mm and the one
of the bypass (above) is 0.96 · D, as suggested in [36].

A curvature in the vascular wall is introduced to model coronary arteries in
order to take into consideration the presence of the heart muscle. Figure (5)
shows the mean plane before applying the shape optimization process.

5.2 The State problem: Navier-Stokes and Stokes equa-
tions

In our optimal control process we use as state equations the steady Stokes
equations which are however well suited for modeling newtonian flows at low
Reynolds number. In reality, because of flow pulsatility we should consider the
unsteady Navier-Stokes equations. Unfortunately, such a complete fluid model
would be too complex to control because of evolution terms, non linearity in
the adjoint problem and the fact that the shape of our computational domain
depends on time. Nonetheless, after performing shape optimization on our re-
duced model governed by steady Stokes equations, we will turn our attention to
the complete NS model for feed-back procedures considering design cost func-
tionals such as the ones presented in Section 3. In this Section we focus therefore
on the steady Stokes problem.
Numerical approximation is based on the Galerkin-finite element method using
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piecewise linear elements for velocity and pressure fields and SUPG stabiliza-
tion (see, e.g., [37]). The Stokes equations in a two-dimensional computational
domain Ω with velocity vector v̂ = {u, v} and pressure p read:






−ν∆v̂ + ∇p = 0 in Ω ⊂ R
2,

∇ · v̂ = 0 in Ω,

v̂ = 0 on Γw,

v̂ · t̂ = 0, v̂ · n̂ = gin on Γ|in,

T̂ · n̂ = 0 on Γ|out,

(21)

where n̂ and t̂ are, respectively, normal and tangential unit vector on the domain
boundary ∂Ω. The latter is partitioned in three components: Γin is the inflow
boundary, Γout the outflow boundary and Γw the boundary corresponding to the
arterial wall; Figure (5) represents schematically the computational geometry
and the symbols used.

Stenosis

INFLOW

OUTFLOW

Toe
Graft

Heel

Downfield

Bypass

Γ C

Γ Γ

Γ

out

in

w

Γ

Occlusion Ω
Bed

w

wd

Figure 5: Anastomosis schematic model and symbolic notation used for domain
and boundary, with observation down-field zone Ωwd.

Concerning boundary conditions, no-slip conditions are imposed on all vascular
walls of Γw, over the stenosed artery portion and on the incoming branch of
bypass. At inflow section Γin, a Hagen-Poiseille’s velocity profile gin is imposed,
while on outflow section Γout of the artery free-stress, Neumann-type condition
hold:

T̂ · n̂ = −p · n̂ + 2ν
(∇v̂ + ∇v̂T

2

)
· n̂ = 0. (22)

Velocity values at the inflow are chosen in such a way that the Reynolds number
Re = ṽ∗D

ν
has order 103. Blood kinematic viscosity ν = µ

ρ
is to 4∗10−6 m2 s−1,

blood density ρ = 1 g cm−3 and dynamic viscosity µ = 4 ∗ 10−2 g cm−1s−1; ṽ

is a mean inflow velocity related with gin, while D is the arterial diameter (3.5
mm). Arterial thickness is about 0.5 mm [36].

In our problem the control w represents the shape Γw itself or a part Γc of it
(typically the incoming branch). Precisely, we write (see Figure (5)):

Γw = Γw(rigid) ∪ Γc(toe), (23)
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where
Γw(rigid) = Γw(bed) ∪ Γw(heel) ∪ Γw(graft) ∪ Γw(stenosis), (24)

then we can build our geometrical model for Γc (double-dotted in Figure (5))
made up of M branches Γj

c(w) represented by:

Γc =

M∑

j=0

Γj
c(w), Γj

c(w) = Γj
c + wj , (25)

where wj is the control variable. More precisely we take

Γj
c(s) =

N∑

i=0

αijfij(s), (26)

where s is the horizontal abscissa that parametrizes the curve Γc, fij(s) =∑i
k=0 aksk are given shape polynomial functions of ith order and αij are suitable

weights. The control shape function wj changes along the optimization process.
At the k − th iteration we have:

w
j
k(s) =

k−1∑

m=0

(δwj
m)(s). (27)

5.3 The observation on the system

After having described the control strategy we have to choose a cost functional.
We consider a distributed observation in the down-field zone of the incoming
branch of the bypass indicated as Ωwd (see Figure (5)). For our preliminary
study our observation will be the vorticity ∇× v̂ = ∂v

∂x
− ∂u

∂y
; v̂ is the solution of

the Stokes equations (21) and we control the system by minimizing the following
functional:

J(w) =

∫

Ωwd

| ∇ × v̂ |2 dΩ. (28)

By this observation we can draw information about the vorticity distribution.
The curl of the vorticity will provide a source term of the adjoint problem, whose
solution will be used during our optimization procedure to produce an estimate
of the gradient of the cost functional, as we have already pointed in Sec. 4. We
underline that we consider not only what happens on the vascular wall but also
in the fluid domain. For this reason this is also a flow control problem and not
only a shape optimization problem, because an optimal shape design problem is
usually based only on the boundary observation. For further information about
vorticity reduction problem see [4]. In this approach we have also taken into
consideration another important aspect, concerning wall stiffness and elasticity.
Indeed, instead of (28) we employ a more complete functional which includes
a new term that minimizes the wall deformation in the zone where the bypass
merges with the artery:

J(w) =

∫

Ωwd

| ∇ × v̂ |2 dΩ +
E0

ξ

∑

j

(∫

Γj
c(w)

dΓ − l̃j

)2

. (29)

Here l̃j is the original length of vascular wall Γj
c(w), ξ is a suitable weight, while

E0 is Young’s elasticity modulus (3 ∗ 106 dyne cm−2). We are thus considering
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a multidisciplinary optimization of a prosthetic device. The last term in (29)
describes the elastic wall behavior and provides a measure for elastic energy and
wall deformation. The two quantities on the right end side of (29) have to be
weighed by the choice of ξ.

5.4 The adjoint problem

As already mentioned during the optimization process we must solve another
PDE problem, the so-called adjoint problem. When considering the cost-functional
(28), the adjoint problem reads:





−ν∆p + ∇σ = ∇×∇× v̂|Ωwd
in Ω,

∇ · p = 0 in Ω,

p = 0 on Γin ∪ Γout ∪ Γw,

(30)

where p and σ denote the adjoint velocity and pressure, respectively.
See for details [4] and [29], where a similar problem is studied with the aim
of reducing viscous dissipation. No slip condition is imposed not only on the
vascular wall Γw(w) but also on Γin and Γout. An important role is played
by the adjoint pressure σ, which is used to provide indications on the shape
modification of Γj

w. Precisely, at k − th iteration, we have

(δwj
k)(s) = −ξj(s)λjσk|Γj

ck

, (31)

where λj is a relaxation parameter for descent gradient-based method (step-size)
[38], while ξj(s) is a weight for the shape variation, used to satisfy congruence
geometrical conditions such as shape continuity and guarantee that the internal
arterial diameter cannot go below a certain threshold.
During the shape optimization process we have two degrees of freedom available
(x, y) in the mean plane of the bypass. In fact we use only y, constraining x

and letting point-wise boundary variations in vertical direction. For this reason
the weight parameter ξj(s) is a function of linear abscissa only.
In the adjoint problem (30) the observation is only an internal source in the
down-field zone, having operated a restriction on the right hand side.
When we consider the more complete cost functional (29), which accounts for
wall stiffness, the adjoint problem modifies as follows:





−ν∆p + ∇σ = ∇×∇× v̂|Ωwd
in Ω,

∇ · p = 0 in Ω,

p = 0 on Γin ∪ Γout ∪ Γw(rigid),

p · n̂ =
( ∫

Γj
c(w)

dΓ − l̃j

)
on Γj

c(w).

(32)

6 Optimization and control algorithm aspects

A general structure for control algorithm can be described as follows at each
iteration step:

• Solve the state problem (21) with velocity components uk and vk in the
domain Ωk with the moving boundary Γj

ck
(wk−1) obtained from the pre-

vious iteration of the control cycle.
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• Compute the vorticity ∇× v̂k in the domain (Ωwd)k.

• Evaluation of the cost functional (28) or (29).

• Solve the adjoint problems (30) or (32) for pk and σk with source term
(∇ × ∇v̂k). Also the adjoint problem is numerically stabilized with the
same method used for the state problem (21).

• Use the stopping test on the adjoint state pki
(w):

∫

Ωwdk

(

2∑

i=1

µ2
i p

2
ki

+ γ2σ2
k)dΩ ≤ β, (33)

for a suitable tolerance β. This quantity provides a good indication on
the cost functional gradient.

• Estimate the shape variation δw
j
k on the boundary Γj

ck
(wj

k) by a descent
gradient-type method (see [23]) and by results provided by (20):

δw
j
k |Γj

ck

= −λ̂kJ ′

k(wj
k) = −ξ(s)jλkσk|Γj

ck

(34)

with 0 < λk � 1, which causes a vertical shape displacement δw
j
k in (25).

In our case δw
j
k is modified only by the adjoint pressure σk; since no slip

boundary conditions are imposed for the adjoint velocity p on the arterial
wall Γck

.

• Update the boundary shape:

Γj
ck+1

(wj
k) = Γj

c + w
j
k + δw

j
k = Γj

c +

k∑

m=0

(δwj
m). (35)

• Modify the Boundary and re-construct or adapt the grid (see Section
(6.1)).

For more on optimal shape design techniques by boundary variations and shape
parameters see e.g. [12].

6.1 Mesh strategy

During the shape optimization process the mesh is subject to be modified by
boundary variations. There are two different strategies for mesh treatment at
every step:

• Grid reconstruction. This process is computationally expensive, however
new elements can be added.

• Mesh stretching and elements adaptation after boundary variations oper-
ated by small deformation. This approach is faster than the previous one
and cheaper. Mesh is usually stretched only in the computational domain
surrounding the boundary Γc subject to shape changes.

Our approach used both strategies: the mesh was completely re-built after few
iterations, while at each step mesh was stretched by locally boundary variations.
In this process conditions were put as control on geometrical quantities of mesh
elements such as minimum angles or maximum side-length.
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Figure 6: Optimal shape design and flow control scheme.
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7 Numerical Results

Numerical tests and simulations have been carried out using Bamg [16], a Bi-
dimensional Anisotropic Mesh Generator and FreeFem, a finite element Library
developed at INRIA [15], the French National Institute for Research in Com-
puter Science and Control, with the development of algorithms based on control
theory and shape optimization. In this section we are going to present numer-
ical results we got to obtain vorticity reduction and a feedback procedure to
prevent wall shear stress oscillations with the functional (9). Several remarks
are in order:

• Wall curvature (to model arteries near the heart muscle) increases vortic-
ity.

• Graft angle of the bypass incoming branch influences vorticity, by reducing
the angle also vorticity is reduced in the down-field observation zone.

• Bypass surgery causes an increase of vorticity in the downfield area of
about 35% than the previous configuration without bypass bridge.

• After obtaining the new optimal shape for the incoming branch in 25
iterations, vorticity reduction by optimal control is about of 45%,

Figures (7)-(11) provide an account of numerical results and show the opti-
mal shape of the bypass obtained using steady Stokes equations in an optimal
control problem with cost functionals (28) and (29). As we can see the shape
that is found resembles the Taylor patch configuration [7], a little cuffed shape.
The effect of the Taylor patch is to reduce gradually the average velocity of
the blood as it approaches the distal anastomosis, since the cross-sectional area
of the bypass is steadily becoming larger. This prevents the sudden decelera-
tion experienced in the conventional model with the fluid returning to the host
vessel. There is a gradual reduction in the momentum of the blood while ap-
proaching the junction, in fact, the blood is guided more smoothly through the
vessel thanks to the gradual changing geometry. Flow disturbances are abated,
undesirable flow separation at the toe of the bypass diminished.
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Figure 7: Bypass configuration before optimal shape design process: iso-velocity
[cms−1].

7.1 Feedback procedures

A feedback procedure has been implemented by solving the unsteady Navier-
Stokes equations in the original configuration as well as in the final configuration
obtained after applying the optimal shape design process on a reduced model,
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Figure 8: Bypass configuration at the end of shape optimization: iso-velocity.
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Figure 9: Bypass configuration near the incoming branch before shape opti-
mization (left) and with 11% vorticity reduction (right).
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Figure 10: Bypass configuration near the incoming branch with 22% (left) and
with 32% vorticity reduction (right).

based on steady Stokes equations. The full Navier-Stokes problem reads, for all
0 < t < T : 





∂v̂
∂t

− ν∆v̂ + v̂ · ∇v̂ + ∇p = 0 in Ω,

∇ · v̂ = 0 in Ω,

v̂ = 0 on Γw

v̂ · t̂ = 0, v̂ · n̂ = gin(t) on Γ|in
T̂ · n̂ = 0 on Γ|out,

(36)

We used Hagen-Poiselle inflow pulsatory condition (with period T = 1s) and
time step ∆t = 0.01s. Figures (12)-(13) show unsteady flows at different time
steps.
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Figure 11: Bypass configuration near the incoming branch with 38% (left) and
with 45% vorticity reduction (right).

During the feedback procedure we used the functional (9) to provide useful in-
formation about unsteady fluid dynamics phenomena such as wall shear stress
oscillations during pulsatory systolic and diastolic phases. This quadratic func-
tional is complete because it keeps into consideration WSS variations in time
and the functional is not pointwise but defined on Γc, the vascular wall we are
modelling by optimal shape design. Shape optimization process guarantees a
reduction of 45% of vorticity using steady Stokes flow model and a reduction of
25% in wall shear stress oscillations in time (on the vascular wall Γc we are mod-
elling). In general, the flow at the distal junction exhibits considerable spatial
and temporal variations. With the adaptation operated by shape optimization
technique we find, as already seen, a graft which resembles the Taylor patch
configuration in which the anastomotic flow is less disturbed, a less adverse
shear stress distribution prevails and furthermore flow separation is reduced [7].
Intimal thickening hyperplasia should be alleviated at the toe in the new bypass
configuration proposed.
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Figure 12: Fluid dynamics unsteady phenomena into the incoming branch of
bypass at t = 0.3s, velocity [cms−1].

In Figure (14) an integral quantity of interest is plotted, it’s the wall shear
stress variation in time Σ(t) (7) on Γc, (see (7)),its calculation has been done
to get information about functional Jτ (9) which provides integral information
in time (0, T ) for Σ(t). As we can see the oscillatory behaviour of Σ(t) on Γc is
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Figure 13: Fluid dynamics unsteady phenomena into the incoming branch of
bypass at t = 0.5s.

strongly reduced after applying shape optimization.
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Figure 14: Variations in time of the Wall Shear Stress Σ(t) [Nm−1s−1] (7) along
Γc (pulsatory inflow condition) in the two different bypass configurations, at the
beginning (continuous line) and at the end (dashed line) of optimal shape design
process (OSD).

8 Future developments

The development of tools for geometry reconstruction from medical data (medi-
cal imaging and other non-invasive means) and their integration with numerical
simulation could provide improvements in disease diagnosis procedures.
Optimal control and shape optimization applied to fully unsteady incompress-
ible Navier-Stokes equations ([24] and [25]) and possibly the coupled fluid-
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structure problem [31] and the setting of the problem in a three-dimensional
geometry will provide more realistic design indications concerning surgical pros-
thesis realizations.
A further development will be devoted to build efficient schemes for reduced-
basis methodology approximations which could be more efficient for use in a
repetitive design environment as optimal shape design methodology requires.
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