INTERACTING REINFORCED URN SYSTEMS
ANNA MARIA PAGANONI AND PIERCESARE SECCHI

ABSTRACT. We introduce a class of discrete time stochastic pro-
cesses generated by interacting systems of reinforced urns. We
show that such processes are asymptotically partially exchange-
able and we prove a strong law of large numbers. Examples and
the analysis of particular cases show that interacting reinforced
urn systems are very flexible representations for modelling count-
able collections of dependent and asymptotically exchangeable se-
quences of random variables.

1. INTRODUCTION

This paper introduces a class of discrete time stochastic processes
generated by interacting systems of reinforced urns.

The prototypical example of a reinforced urn is the Polya urn of
Eggenberg and Polya (1923); a single urn initially contains a given
number of balls of two different colors. At time n =0,1,2,..., a ball is
sampled from the urn and reintroduced in it together with a constant,
nonnegative number m of balls of the same color. The scheme has
suggested a number of interesting variations and extensions: see for
instance [2, 6, 7, 8, 14]. Of particular importance for the the present
work is the extension in [9] that keeps the idea of reinforcing at each
stage only the color currently observed, but assumes that at each time
n the number m of balls added to the urn is the realization of a random
variable M,, independent of everything observed in the past and of the
color currently sampled from the urn; the process of colors generated
by this scheme is called generalized Polya sequence.

Our typical interacting reinforced urn system consists of a countable
number of stochastic processes which, in the absence of interaction,
would each be a generalized Polya sequence. The construction of these
processes will be carried out in the next section together with the proof
of three main results regarding their laws.
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In Bayesian statistics, considerable attention has been dedicated to
the Polya urn as a scheme that implements a classical statistical model
for infinite sequences of Bernoulli random variables, conditionally in-
dependent and identically distributed given their (random) probability
of success © to which is assigned a Beta prior probability distribution.
This has stimulated the study of more complex processes generated
by reinforced urns and implementing Bayesian statistical models: see
[10, 11, 12, 16]. Some of these processes are specific examples of in-
teracting reinforced urn systems: for instance, the two-color reinforced
urn process of [10] that generates an infinite sequence of exchangeable
survival times with beta-Stacy prior, a model widely used in Bayesian
nonparametric survival analysis. Together with other examples of sys-
tems of interacting reinforced urns, two-color reinforced urn processes
on the integers will be considered in the third section of the paper
while their extension generated by allowing for random reinforcements
will be the fourth section’s topic. A section on final remarks and open
questions concludes the paper.

2. CONSTRUCTION AND MAIN RESULTS

Let S be a countable set of sites. Every site s € S labels an urn ini-
tially containing By(s) balls of color 1 and Wj(s) balls of color 0, with
the assumption that By(s) and Wy(s) are two nonnegative real num-
bers summing to a strictly positive number. At time n = 0,1,2, ...,
a ball is independently sampled from every urn in the system. Call
X, (s) the color generated by the urn with label s € S and let X,, =
(Xn(s),s € 5); next a (real) number 7(s, X,,, My 11) > 0 of balls of the
same color as X, (s) is introduced in the urn with label s together with
the ball extracted. The reinforcement r(s, X, M,,11) is assumed to be
conditionally independent of the color X,(s) given the past realiza-
tions of Xy, ..., X, 1 and of My, ..., M,,; in general, its distribution will
depend on the colors generated by the urns labelled by sites different
from s as well as on a random element (disturbance) M, 1, indepen-
dent of Xy, ..., X,, and of My, ..., M,, and with values in an appropriate
measurable space. In this way we generate a discrete time process
X = (X,,n = 0,1,...) with state space {0,1}%; X is here baptized
interacting reinforced urn system.

More formally, given a rich enough probability space (€2, F, P) and
a countable set of sites S, an interacting reinforced urn system X,
defined on € and with values in the state space {0,1}° endowed with
its product topology and Borel sigma-field, is obtained by specifying
the following three elements:
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i. A family Uy = ((Bo(s), Wo(s)),s € S) of initial urn composi-
tions, with By(s), Wo(s) € [0,00), By(s) + Wy(s) > 0 for every
s€eS;

ii. The common probability distribution p of an infinite sequence
My, M, ... of i.i.d. random elements, defined on €2 and with
values in a suitable metric, separable and complete space M
endowed with its Borel sigma-field;

iii. A reinforcement rule r, i.e. a bounded, nonnegative, measurable

function defined on S x {0,1} x M.

These three elements define the process X whose local dynamics are
henceforth described. For s € S, set

By (s)
Z =
o(s) By(s) + Wy(s)
and let
X() = (X()(S),S € S)

be a collection of independent random variables such that X,(s) has
Bernoulli(Zy(s)) distribution; assume that M; € M is independent
of X, with probability distribution p and, for s € S, suppose that
(s, Xo, M1) is independent of Xy(s). For n > 1 and s € S, set

B”(S) = Bn—l(s) + Xn_l(S)'l"(S, Xn—l; Mn):

Wn(s) = Wn—l(s) + (1 - Xn_l(S))’f‘(S, Xn—la Mn)a

By(s) .

By (s) + Wa(s)’
given the sigma-field F,, generated by Xy, ..., X,, 1 and My, ..., M,,, let

X, = (Xn(s),s€59)

Zn(s) =

be a collection of conditionally independent random variables such that
X,(s) has Bernoulli(Z,(s)) distribution; assume that M,,; € M is
independent of F,, and of X,, with probability distribution yx and, for
s € S, suppose that 7(s, X,, M,1) is conditionally independent of
X, (s) given F,.

When the set of sites S consists of a single element s, M = [0, 00)
and 7(s,z,m) = m for every (s,z,m) € S x {0,1}° x M, then the
process X reduces to a generalized Polya sequence with parameters
(Bo(s), Wy(s), it). In fact, the theorems of this section show that the
main results true for generalized Polya sequences hold for general in-
teracting reinforced urn systems as well. For n > 0, let

Zn = (Zn(s),s €8)
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be the random element with values in [0, 1]° describing the proportion
of balls of color 1 present in the urns of the system at time n just before
they are sampled for the (n + 1)-th time.

Theorem 2.1. The process {Z,} is martingale, with respect to the
filtration {F,}, with values in [0,1]%. Therefore it converges almost
surely to a random element Z,, € [0,1]°.

Proof. Fix s € S and compute

$)|Fal
{ Ba(s) By (s) + (s, Xn, Mi11)
B,(s) + Wy(s) Bu(s) + Wi(s) + r(s, Xn, Myi1)
Wha(s) B(s)
B, (8) + Wy(s) + (s, Xpn, Mpi1)
s)+ (s, Xn, Mpyi1)) ‘]__ }
Wo(s) +7(s, Xpy Myir)) | "

T
fn] = Z(3).

E[Zn+1

=g =

+

7|

{ B, (s)
B,(s) + W,(s)

Note that the first equality holds because r(s, X, M,.1) and X,(s)
are conditionally independent given F,, while the last is true because
Z, is measurable with respect to JF,, the sigma field generated by
Xoy ey Xpuoy and My, ..., M,,. The previous lines show that, for every
s €8, {Z,(s)} is a martingale with respect to the filtration F, with
values in [0, 1]. Therefore, there exists Zo, = (Z($), s € S) such that,
for s € S,

lim Z,(s) = Zw($)
n—oo

on a set of probability one. Since S is countable, this implies that {Z,,}
converges to Z,, almost surely. [ ]

The sequence of colors generated by a Polya urn is exchangeable.
A generalized Polya sequence is asymptotically exchangeable, but it
needs not be exchangeable. The next theorem proves that interacting
reinforced urn processes are asymptotically partially exchangeable.

For p € [0,1]°, let v(p) be the unique product probability defined on
the elements of the product sigma-field of {0,1}° such that, for j > 1,
t1,...,t; € {0, 1} and sq, ..., Sj € S,

l/(p)({y € {0, 1}5 : y(Sl) = tl, . y(Sj) = tj}) = E[Hp(si)ti(1_p(8i))17ti]‘

i=1
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We say that Y = (Y,,,n = 1,2,...) is a partially exchangeable process
with state space {0,1}° and de Finetti measure v(©) if there exists a
random element © € {0,1}° such that, for every k£ > 1 and Ay, ..., 4
belonging to the product sigma-field of {0, 1},

(2.1) P[Y € Ay,... Vi € 4] = E[[ [ v(©)(4)).

=1

When S is finite, we may equivalently rewrite representation (2.1) as
for every k > 1 and yi, ..., yx € {0,1}5,

k (s
P(Yi =Y, .., Y = yk: H@ 2= 1yt(3 @(8))’672":1 vil )]

seES

If a process X = (X,,n = 0,1,2,...) with state space {0,1}" is such
that, for every £ > 1 and for n going to infinity, the probability dis-
tribuiton of (Xpy1,..., Xnix) converges to that of (Y7,...,Y:), where
Y = (Y,,n = 1,2,...) is a partially exchangeable process on {0,1}°
satisfying (2.1), we say that X is asymptotically partially exchange-
able and v(©) is the de Finetti measure associated to X.

Theorem 2.2. An interacting reinforced urn system X is asymptoti-

cally partially exchangeable and the de Finetti measure associated to X
is V(Zoo)-

Proof. For n > 1, the conditional probability distribution of (X,,, M, ;1) €
{0,1}% x M given the sigma field F, is the product probability v(Z,) x
. Because of Theorem 2.1, v(Z,,) X u converges to v(Zy) X 4 on a sub-
set of 2 with probability one. Hence, the thesis follows from Lemma
8.2.b in [1].

[

Therefore, conditionally on Z.,, the colors generated by the urn la-
belled by s € S are asymptotically i.i.d. with distribution Bernoulli(Z(s))
and sequences of colors generated by different urns are asymptotically
independent. However, Example 1 shows that the random probabilities
(Z($),s € S) need not be independent.

The final result of the section proves that the law of large numbers
holds for interacting reinforced urn systems.

Theorem 2.3.
n—1
X;
lim Z =75
n—o0

on a set of probability one.
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Proof. The proof is the same as that for generalized Polya sequences
in [9]. For ease of reference, we sketch the argument. Fix s € S, set
Lo(s) = 0 and, for n > 1, define

L,(s) =nZy(s) — . Xi(s).

Then {L,(s)} is a martingale with respect to the filtration {F,}. More-
over one can show that

2 E[(L,(8) = L,_1(5))?
T [(Ln(s) (s)°]

< oQ.
n2

n=1

Then it follows from Burkholder’s inequality and Theorem 2.1 that:

L, " X(s
i 2 _ 7 () S Xi0)
n—oo n n—)oo n
on a set of probability one. Since S is countable, this proves that
n—1
X;

lim Z = Zy

n—00 n
on a set of probability one. [ ]

Remark 2.4. Theorems 2.1, 2.2 and 2.3 still hold even when reinforce-
ments are generated by a more general rule that computes them as a
function of time and of past history of the process. More precisely,
for s € S and n = 0,1,... we may substitute r(s, X, Mj,11) with a
bounded, nonnegative random variable R, (s) measurable with respect
to Fpny1 and such that, R, (s) and X,(s) are conditionally independent
given F,.

Moreover, we note that martingality of the process {Z,} is not a
necessary condition for proving Theorem 2.2 and 2.3: in fact, as long
as the dynamics of the process X are such that, for all s € S and
n > 0, the conditional distribution of X, 1(s) given F, is Bernoulli
(Z,(s)) and the sequence {Z,(s)} converges to Z,(s) almost surely,
Theorem 2.2 and 2.3 still hold. For proving the last result one could,
for instance, use a generalized version of Borel-Cantelli Lemma as in
Corollaire VII-2-6 in [13].

3. EXAMPLES

Example 1. A coupled Polya urn. Let S = {I, 11}, Uy = ((1,1),(1,1)),
My = My =---=1 and, for all (z,y) € {0,1}5, set r(I, (z,y),1) =y
and r(I1,(x,y),1) = z. Hence each urn is reinforced with a ball of the
same color as that currently extracted only at times when the other urn
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has produced a ball of color 1; otherwise the urn’s composition is left
unchanged. Notice that, with this reinforcement rule, for n = 1,2, ...,
Zn(I) > Zy_1(I) if and only if Z,(I1) > Z,_1(II).

We show that, in this case, the limits Z,(I) and Z.(II) are not
independent by proving that Cov(Zu(I), Zo(II)) > 0. Observe that,
given F,, the conditional distribution of the product Z,,1(I)Z,+1(II)
concentrates its mass on four different values:

( Zo(1)Z,(11) with probability (1 — Z,(I))(1 — Z,(II))
Zn(I) Bn(llf;gﬂmﬂ with probability Z,(I)(1 = Z,(I11))
< #V(VQUHIZH(U) with probability (1 — Z,(I))Z,(I1)
| o B s With probability Z,(1)Za(I1)

Hence, for n > 0,
E[Zn+1 (I)Zn+1 (II) |‘7:n]

Zn(1) Zn(I1)(1 — Zo(1))(1 — Zn(I1))
(Bn(I) + Wa(I) + 1)(By(IT) + Wi (IT) + 1)
which shows that {Z,,(I)Z,(1I)} is a submartingale with respect to the
filtration {F,}. For n > 0, set

Zn(1)Z,(I1)(1 = Zn(1))(1 — Z,(11)) } > 0:
(B,(I) + W, (I) + 1)(B,(II) + W,,(II) + 1) | —

= Zo(1)Zo(I1) +

a, = E

then
n 1 n
E(Znis(D) Zns (1)) = Zo() Zo(I1) + ) Jax = 3+ D ax.
k=0 k=0
Therefore, by Dominated Convergence Theorem,
1 o0
B{Zn() 2l D] = 1 + Y 0

while the fact that both {Z,,(I)} and {Z,,(I])} are martingales implies
that

ElZo(D) = Zo(1) = § = Zo(IT) = E[Zeo(I1)].
Thus
Cov(Zoo(D), Zoo(ID)) = 3"y > ag = 1}1
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To illustrate the example, we generated by simulation 1000 obser-
vations from the joint distribution of (Z, (1), Z,(1I)), with n = 5000;
an image in heat colors and a perspective plot of the joint frequency
distribution of these 1000 couples of numbers, as well as the two mar-
ginal frequency distributions of Z,(I) and of Z,(II) appear in Figure
1. These graphics illustrate the dependence between Z,,(I) and Z, (1)
when n is large. Sample correlation is equal to 0.4532 while sample
means and variances for Z,,(I) and Z,(I]) are summarized in the fol-
lowing table:

Sample mean | Sample variance
Zn(I) 0.5049 0.0817
Zn(I1) 0.4983 0.0851

The simulation supports the conjecture that Z.,(I) and Z.(II) are
identically distributed with Uniform distribution on [0, 1], something
we resisted the temptation to prove.

Example 2. A system of two generalized Polya sequences. Let S =
{I,11}, Uy = ((Bo(I),Wy(I)), (Bo(LI),Wy(I1))), {M,} a sequence of
i.i.d. nonnegative random variables, uniformly bounded by K > 0
and with probability distribution y, and, for all (z,y) € {0,1} and
m € [0, K], set r(I,(z,y),m) = m and r(II,(z,y),m) = xm. Hence,
at time n = 1,2, ..., urn [ is reinforced with a random number M,, of
balls of the same color as that currently sampled. At the same time n,
urn 7 is reinforced with M, balls of the same color as that currently
sampled from 77 only if the ball currently extracted from urn I is of
color 1; otherwise II’s composition is left unchanged.

In the particular case when p is the point mass at @« > 0 and
By(I) > 0, the process of colors generated by urn [ is a Polya se-
quence, and it is therefore exchangeable, while the process of colors
generated by urn /I needs not be exchangeable. Moreover, in this
case: Zoo(I) and Z,(II) are uncorrelated (independent?) with distri-
butions Beta(a™'By(I), a 'Wy(I)) and Beta(a™'By(I1), a Wy (I1)),
respectively.

For a general pu, the processes of colors generated by urn I and I7
are asymptotically exchangeable and Z,(I) and Z,(II) are uncor-
related (independent?), but we are unable to obtain a closed form
for their distributions. In fact, the distribution of Z.(I) is the de
Finetti measure associated to a generalized Polya sequence of parame-
ters (Bo(I), Wo(I), pt). In order to prove that the distribution of Z.,(II)
is the de Finetti measure associated to a generalized Polya sequence



Zn(ll)

Frequency

0.4 0.8

0.0

40 60

20

Distribution of (Zn(l),Zn(ll)) Distribution of Zn(ll)

o J— __—
© M —
& o |
c <
(0]
>S5 —
g o
[ Al
O -
| | | | | |
00 02 04 06 038 00 02 04 06 08 1.0
Zn(l) Zn(lh)
Distribution of Zn(l) Distribution of (Zn(l),Zn(ll))

[ I I I I 1
0.0 02 04 06 08 1.0

Zn(l)

FIGURE 1. Image in heat colors and perspective plot
of the joint frequency distribution of 1000 couples of
values generated by simulation from the distribution of
(Zn(I), Zp(I1)) with n = 5000.

with parameters (By(I1), Wo(I1), p), set

7 =inf{n >0: X,(I) =1}

and, for ¢ > 2, let

7, =inf{n > 7, : X,,({) = 1}.

Lemma 3.1.

(3.1)

P[ﬁ{ﬂ‘ < +oo}] =1

i=1

if and only if Bo(I) > 0.
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Proof. For By(I) =0, P[r; = oo] = 1 hence one implication is trivial.
For proving the other implication, assume that By(I) > 0. For n,j >
1, compute

Plrp>n+j] = P[Xi(I)=0,...,X,;(I) =0]
S P[Xn_H(I) = 0, ...,Xn_|_j(l = 0],

therefore, for every j > 1,

P[r < 0]
=1- lim P[r, > n+ j]
n—oo
>1— lim PX,11(I) =0, ..., X,1;(I) = 0]
n—0o0
=1-E[(1 - Zn(I))]-

The last equality follows from Theorem 2.2. If Wy(I) =0, P[Z(I) =
1] = 1. If Wy(I) > 0, an easy corollary of Theorem 3 in [14] implies

that Z,(I) has no atoms (see also Theorem 3.1 in [9]): in particular
P[Z.(I) = 0] = 0. Thus, in both cases,

lim E[(1 — Z(I))’] = 0.

j—o0

Hence P[r; < oo] = 1. By induction on i it is now easy to prove (3.1).
]

When (3.1) is satisfied, the sequence {M,,} is well defined: note
that this is the sequence controlling reinforcements for urn 77. In fact,
one can show that the random variables of the sequence {M,.} are
iid. with distribution pu. Hence the sequence of colors {X,, (II)} is
a generalized Polya sequence with parameters (By(II), Wy(I1), u1); the
fact that the distribution of Z,(I7) is the de Finetti measure associated
to this generalized Polya sequence follows from the observation that,
on a set of probability one,

lim Z,, (IT) = Zso(IT).

1—00

Finally, Z(I) and Zy([I) are uncorrelated because the sequence
{Z,(I)Z,(II)} is a bounded martingale with respect to the filtration
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{F.}. In fact, for n > 1,
B[ Zo (1) Zua (IT) 7]
B, (I) + My _
Bu(I) +Wyu(I) + Myq
Bn(IT) + My
Bn(II) + Wn(ll) + Mn-l—l

= E[Z.(I)

+

Bn(ll)

Bn(II) + Wn(II) + Mn—|—1
Bn(I)

Bn(I) + Wn(I) + Mn+1

+(1 - Z,(I1))

}+

+(1 = Z.(1))
= E[Z,(I)Z,(11)| 73]
=Z,(I)Z,(11).
Therefore, by Dominated Convergence Theorem,
B[ Zuo (1) Zoo(IT)] = limm B[Z, (1) Zo(I1)] = Zo(1) Zo(I1)
n—oo

Zn(11)|Fy]

while
Zo(I1)Zo(I1) = lim E[Z,(I)] E[Z,(1])] = E[Ze(I)] E[Zo (I1)]
n—0oQ
where the next to the last equality follows from Theorem 2.1.

Ezample 3. Two-color reinforced urn processes. Let S = {0,1,2,...},
Up = ((Bo(s), Wo(s)),s € S) with Wy(0) =0, My = My =--- =1 and,
for all s € S and z € {0,1}", set r(s,z,1) = [[,_, z(3).

For n =0,1,2,..., define

T, =inf{s € §: X, (s) = 0}.
As in [10], Lemma 3.23, one can prove that

Lemma 3.2.

(3.2) Pl {T. < o0} =1

if and only if

(3.3) lim

s—)ooHBO —|—WO )_0

When (3.3) is satisfied, for n = 0,1,2, ..., let
B, =(0,1,..,Tp)

be the sequence of states of S starting from 0 and labelling all the urns
until the first that generates a ball of color 0 at time n : call B, the n-th



12 ANNA MARIA PAGANONI AND PIERCESARE SECCHI

0-vector for the process X. The space of 0-vectors is countable and is
given the discrete topology and the Borel sigma-field. The sequence of
0-vectors is exchangeable: in fact the law of {B,} is the same as that
of the sequence of 0-blocks generated by a reinforced urn process with
state space S, set of colors E = {0,1}, urn composition function Uj
and law of motion ¢ : S x {0,1} — S defined by setting

q(k,1) =k +1 and ¢(k,0) = 1.

See [10] for more details about reinforced urn processes. In this pa-
per, it is proved that the random variables of the sequence {7},} are
conditionally independent and identically distributed, i.e. exchange-
able, given a random distribution function F' on S whose law is that
of a beta-Stacy process on S with parameters {(By(s), Wo(s))}. Beta-
Stacy processes are widely used in Bayesian nonparametric studies as
prior distributions, say when modelling the law of the survival times
To,T1, Ty, ... of an infinite exchangeable sequence of patients: see [15].
The aim of the next section is to extend this example, and Example 2,
by allowing randomly generated reinforcements.

4. TWO-COLOR GENERALIZED REINFORCED URN PROCESSES

Let S = {0,1,2,...}, Uy = ((By(s),Wy(s)),s € S) with Wy(0) =
0. Assume that {M,} is a sequence of independent and identically
distributed random elements with values in [0, K]® with K > 0 and
probability distribution u. For s € S, € {0,1}° and m € [0, K]°,
define the reinforcement rule

r(s,z,m) =m(s) Haz(z)
1<s

These assumptions define an interacting reinforced urn system X that
is the same as the one in Example 3 except that now we allow random
reinforcements, not necessarily equal along 0-vectors.

Set w = inf{s € S : By(s) = 0}, where as usual w = oo if By(s) > 0
for every s € S;let R={s € S: s < w}. Our aim is to study the law
of the sequence of integer valued random variables defined by

T, =inf{s € S: X, (s) =0}
forn =0,1,2,.... As in Lemma 3.2, it is still true that

o0

PIN{T, < o)) =1

n=0

if and only if condition (3.3) holds. In particular, this happens if R is
strictly contained in S, i.e. if By(s) = 0 for some s € S.
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As in Example 2, it is easy to prove the following result.

Theorem 4.1. Fors,t € S, the sequence {[[\2} Z,(i)} is a martingale,
with respect to the filtration {F,}.

Associated to the system X, we consider the sequence of random
probabilities Zo, = (Zx(s),s € S) introduced in Theorem 2.1. Theo-
rem 4.1 and Dominated Convergence Theorem imply immediately the
following

Corollary 4.2. The random elements of the sequence Z., are mutually
uncorrelated.

Let us now define a random measure F' on the subsets of S by setting

ifk e R,
otherwise.

(4.1) P%{m]ﬂ"wk})::{ }"fﬁ:oZ@(ﬂ

Theorem 4.3. If (3.8) holds, F is a random probability distribution
function on S.

Proof. We prove that F(S) = 1 with probability one. This is true by
definition, when R C S. In order to prove that it is true as well when
R =S, we show that

(4.2) gﬂ%@ﬂ
almost surely. Compute

HMH%W=M@M%W

§—00

the first equality is true because of Monotone Convergence Theorem,
the second and third equality hold because, for every s > 1, {[[}_; Z,(¢)}
is a bounded martingale converging almost surely to {][;_; Z«(7)}, the
last equality is condition (3.3). Hence, lim,_,o [[}_; Zoo(%) is a nonneg-
ative random variable with mean 0; therefore (4.2) is true. n
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Theorem 4.4. If condition (3.3) is true, the sequence {T,} is asymp-
totically exchangeable and its de Finetti measure is F. This means that,
forj>1andty,...t; €5,

(4.3) ]ggmmﬂ=m~»mﬂ=m=EiUumn

Proof. For t ¢ R,
(4.4 PIT, = 1] = 0= F({t})

for every n > 1 with probability one.
Let j > 1, t1,...,t; € R and set

Zl[s<t] and 7(s) Zl[s—t]

for s € S. Now compute
]\}I_I)I;o PTni1i =t ..., Ty =]
= ]\}I_I)I;O P Xn1(0) =1, , Xyt — 1) = 1, Xya(t) =
Xni2(0) =1,..., Xnya(ta — 1) = 1, Xnyo(tz) =

Xn4i(0) = 1,0, Xyt — 1) = 1, Xvy5(t;) = 0]
=E[[[ 25 () (1 = Zoo(5))")]

SES

= E[H Zoo oo(ti = 1)(1 = Zo(t:))]

B (e

The second equality holds because of Theorem 2.2: note that for only
a finite number of s € S the factor Z& (s)(1 — Zog(s))"® is different
from one. This and equation (4.4) prove that (4.3) is true for all j > 1
and t1,...,t; € S. [ ]

A notable particular case for the system X described in this section
is obtained when



15

for every n = 1,2,..., where M, is a random variable with values in
[0, K] and probability distribution . Hence, at each time n, reinforce-
ments are randomly and independently generated, but they are con-
stant along O-vectors of the system X. An application of this model is
when 0-vectors of X represent histories of a sequence of patients with
survival times 71,75, ...,T,, ..., respectively; i.e. a ball of color 1 ex-
tracted form urn s at time n represents survival of patient n form day
s to day s + 1, while color 0 is for death of the patient at day s. To
each patient is associated a nonnegative quantity, randomly generated
and independent from the patient’s survival time and from the survival
time of other patients: this quantity expresses reinforcements for the
urns connected with the patient’s history. In this case, as in Example
2, it is not difficult to show that, for s € S, {X,(s)} is a generalized
Polya sequence with parameters (By(s), Wy(s), u). However, as shown
in [9], the distribution of Z,(s) needs not be a Beta; therefore the
law of the random probability distribution F' needs not be that of a
beta-Stacy process, as it was the case in Example 3.

5. BETA-STACY BLANKET, FINAL REMARKS AND OPEN QUESTIONS

Interacting reinforced urn systems are very flexible representations
that accomodate known mathematical models (for applications in sta-
tistics, economics, biology) based on the idea of reinforcement and
allow their extension to situations where dependence is an important
issue: with this respect we consider Example 1 as prototypical. For a
more complex example, reminiscent of the construction made in [11]
for modelling a countable collection of dependent Polya sequences, we
sketch here the description of an interacting system for modelling a
countable collection of dependent reinforced urn processes.

Let S be an infinite k-ary tree, that is a connected graph with a
distinguished vertex called the root and indicated with the symbol «,
no cycles, a countable number of vertices such that every vertex has &
children and 1 parent, except for the root that has no parent. Every
vertex s € S labels an urn containing balls of color 1 and 0; initial urn
compositions are described by the family Uy = ((Bo(s), Wy(s)),s € S)
with the assumption that Wy(«) = 0. Let

MlEMQEM:;E"' 1

Il

and, for every s € S and x € {0,1}° define the reinforcement rule:

n

r(s,z,1) = H x(s;)

1=0
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where 7(a, s) = (so = @, $1, ..., Sp, S) represents the unique path on the
tree connecting the vertex s with the root a. These positions define
an interacting reinforced urn system X with state space {0,1}°. At
time n = 0,1,2... a ball is sampled from every urn in the system:
the composition of every urn s € S is reinforced with an extra ball
of the same color as that extracted from s if the balls simultaneously
extracted from the ancestors of s, i.e. from urns different from s and
labelled with vertices belonging to 7(c, s), are all of color 1; otherwise
the composition of urn s is left unchanged.

Let € = (sop = a, 51, Sg, ...) be an end of the tree S, that is an infinite
sequence of vertices of S with the property that s; is the parent of
sip1 for i = 0,1,2,.... The process X (¢) = (Xn(s;),7 = 0,1,2,...) has
the same law as the interacting reinforced urn system introduced in
Example 3. In particular, for n = 0,1, 2, ..., define

T,(e) = inf{i : X, (s;) = 0}.
It

: By(si
(5-1) JH&H Bo(s1) +( ngo(si) =0

the sequence {T),(¢)} is exchangeable with de Finetti measure equal to
the law of a beta-Stacy process F'(€) on the integers with parameters
((Bo(s:), Wo(si)), 1 =0,1,...).

Now consider two different ends of the tree S, € = (sg = a, s1, $2, -.)
and n = (to = a, ty, 1y, ...), and assume that condition (5.1) is satisfied
for both of them. The exchangeable sequences {7),(¢)} and {T,(n)}
are not independent, as well as their de Finetti measures, equal to the
laws of the beta-Stacy processes F'(¢) and F(n) respectively. In fact,
let N > 0 be the greatest integer such that s; = ¢; for + < N : then
F(e) and F(n) coincide on subsets of {0, ..., N}.

Let E be the space of ends of the tree S and assume that condition
(5.1) is satisfied for every end € € E. A future interesting problem will
be to study the properties of the sequence of random configurations
on the tree S formed by all vertices whose composition changes at
time n = 0,1,2, ..., or, equivalently, the process T = (T,(¢),e € E)
and its associated prior process F' = (F(€), e € E) that we could call a
beta-Stacy blanket with parameter family Uy, following [11]. Extensions
allowing random reinforcements of the urns labelled with the vertices
of the tree S are obvious and we omit to describe them, observing
in passing that they generate a class of ‘blanket’ processes whose law
will be completely characterized only when we are able to pinpoint
the law of the random probability distribution F' defined in 4.1. In
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particular it would be interesting to know under what conditions F
is a neutral to the right process on the integers ([4]) and what class
of neutral to the right processes on the integers can be generated by
interacting reinforced urn systems as those described in Section 4. In
point of fact, the characterization of the distribution of the limit Z,, of
a generalized Polya sequence remains an open question, although good
approximations for it are easily found by means of simulation.
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