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Abstract

This report collects the notes of two lectures given by L. Formaggia at the 7th VKI Lecture Series
on “Biological fluid dynamics” held at the Von Karman Institute, Belgium, on May 2003.

They give a summary of some aspects of the research activity carried out by the authors
at Politecnico di Milano and at EPFL, Lausanne, under the direction of Prof. A. Quarteroni,
aimed at providing mathematical models and numerical techniques for the simulation of the
human cardiovascular system.

Therefore, the authors wish to acknowledge all the people that, at various and different level,
have collaborated to the results described in the report. In alphabetical order, Jean-Frederic
Gerbeau, Ciak-Liu Goh, Daniele Lamponi, Fabio Nobile, Alfio Quarteroni, Stefania Ragni,
Simon Tweddle. They also acknowledge the collaboration with G. Dubini and F. Migliavacca
of LABS, Structural Engineering Dep., Politecnico di Milano, with respect to the assessment
of multiscale models on realistic geometries and S. Sherwin and J. Peiro of Imperial College
London, with respect to the assessment of the one-dimensional model for blood flow in arteries.

This research would not have been possible without the support of various sponsoring agen-
cies. In particular, the European Union, (through to the RTN Project “HaeMOdel”), the Con-
siglio Nazionale delle Ricerche, (through “Agenzia 2000”), the “Ministero Università e Ricerca
Scientifica e Tecnologica” , the “Politecnico di Milano” and the “Fond National Suisse”.

This report is subdivided into two chapters, in correspondence with the two lectures. The
first deals with the derivation of one dimensional models for blood flow in arteries. The second
is more specifically devoted to the description and analysis of the “geometrical multiscale”
technique.
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Chapter 1

One dimensional models for blood flow in
the human vascular system

1.1 Introduction

The numerous works which have appeared in recent years, for example [3, 16, 28, 30] and
the references therein, testify a growing interest in the mathematical and numerical modelling
of the human cardiovascular system. Within this context, a large research activity is currently
devoted to complex threee dimensional simulations able to provide sufficient details of the flow
field to extract local data such as wall shear stresses. However those computations are still
quite expensive in terms of human resources needed to extract the goemetry and prepare the
computational model and computing time.

Yet, bioengineers and medical researchers often do not need to know the flow in such de-
tail and the application of simplified models have demonstrated to be able to provide useful
information at a reasonable computational cost.

In this lecture the attention is focussed on one-dimensional models for blood flow in arteries.
In these models the arterial circulation is considered as a network of compiant vessels, each
described by a one dimensional system of two partial differential equations able to provide
average values of velocity and pressure on each vessel axial section.

The presence of the rest of the circulatory system (capillary bed, heart, venous circulation
etc.) may be accounted for by prescribing appropriate boundary conditions at the terminal
vessels, often in terms of velocity or pressure history. A more sophisticated (and effective)
approach is the coupling with lumped parameter models (which may vary in complexity from
simple algebraic relations to system of ordinary differential equations [28, 34]) that describe
the parts of the circulatory system not directly resolved by the one dimensional network. This
technique may allow to quantify the ’feedback’ effects coming from the rest of the circulatory
system, much in the spirit of the “geometric multiscale” approach [11, 28] which is the subject
of the second Lecture by the same authors.

A one dimensional model may be useful, for instance, to study the effect of local narrowing
or stiffening of an artery on the flow and wave propagation patterns. Such a situation can occur
due to a stent implantation or in the presence of a vascular prosthesis. Stents are expandable
metallic wireframes that are expanded and permanently places inside stenosed arteries in order
to recover the original lumen section.

Indeed, atherosclerosis is a very common pathology that cause a restriction of the arterial
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lumen called a stenosis, which may hinder, or even stop, the flow of blood. Stent implantation
technique is much less invasive that a surgical operation, like a by-pass, and may be conducted
under local anesthesia. It is then becoming a very common practice.

Figure 1.1: A endo-prosthesis used to exclude an aortic aneurism.

Nevertheless, besides other effects, the presence of a stent causes an abrupt variation in the
elastic properties of the vessel wall, since the stent is usually far more rigid than the soft arterial
tissue. This may cause wave reflections with a consequent alteration in the blood flow pattern
[10, 5].

Indeed, the propagation of waves (the pulse) is a phenomenon generated by the interaction
between the blood flow and the compliant vessel wall and is intrinsically related to the elastic
properties of the arteries. The alteration in the pressure pattern is even more significant in the
case of vascular prosthesis in the large arteries. For instance when an endo-prosthesis is used to
treat aortic or femoral aneurisms. The superposition of the waves reflected by the prosthesis or
the stent with those produced by the heart can generate anomalous pressure peaks.

In the simplest (and most used!) one dimensional models the vessel mechanics is overly
simplified. In practice, it is reduced to an algebraic relationship between the mean axial pressure
(more precisely the average intra-mural pressure) and the area of the lumen. However, one may
account also for other mechanical properties such viscoelasticity or longitudinal pre-stress, as
well as wall inertia. In the latter case, the relation between pressure and vessel area is governed
by a differential equation. Yet, it is still possible, at a price of some simplifications, to recover
again a system of two partial differential equations [11, 9]. By doing so, it may be easily
recognised that the wall inertia introduces an additional dispersive term, while viscoelasticity
contributes with a diffusive operator. The treatment of these additional terms is problematic
due to the difficulties in imposing proper boundary conditions. However, for physiological
situations inertia and viscoelastic effects are not very important.

The layout of this lecture note is as follows. In Sect. 1.2 we derive the basic 1D nonlinear
hyperbolic model for a single cylindrical straight arterial element. We will also recall the main
hypothesis and simplifications. In Sect. 1.3 we introduce the Taylor-Galerkin scheme that we
use for the numerical approximation, and analyse how to impose the conditions (boundary and
compatibility conditions ) that need to be provided at the proximal and distal boundaries. We
also give some example of numerical results.

In section 1.4 we present a domain decomposition strategy that might be applied to the
case of abrupt variations for mechanical characteristics as well as to model arterial branching.
Interface conditions, which satisfy an energy inequality, are proposed and the problem of bi-
furcation with specific angles is treated. The proposed interface conditions are fully non-linear
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and guarantee the stability of the coupled problem. We will present some numerical results and
in particular a simulation of a network composed by 55 arteries.

Finally, in section 1.5 we present some numerical results for more complex vessel law by
adding inertia, viscoelastic, longitudinal pre-stress terms to the basic algebraic law. We give a
numerical framework where these additional terms are treated by an operator splitting approach.

1.2 Derivation of the basic model

Here we introduce the simplest non-linear 1D model for blood flow in compliant vessels. As
an historical note we mention that this model was originally found by Euler in 1775. Indeed,
the resulting system of two partial differential equation closely resemble the well known Euler
equation of compressible gas-dynamics. Indeed, it seems that Euler first came across this type
of hyperbolic systems when trying to model blood flow. However, he did not find a way to solve
the equations, which were tackled many years later,

The model describes the flow motion in arteries and its interaction with the wall displace-
ment. The basic equations are derived for a tract of artery free of bifurcations, which is idealised
as a cylindrical compliant tube. In this work we will denote by I = (t0, t1) the time interval
of interest and for the sake of convenience we will take t0 = 0. By Ωt we indicate the spatial
domain which is supposed to be a circular cylinder filled with blood, which is changing with
time under the action of the pulsatile fluid.

We will mainly use Cartesian coordinates, yet when dealing with cylindrical geometries it
is handy to introduce a cylindrical coordinate system. Therefore, in the following we indicate
with er, eθ and ez the radial, circumferential and axial unit vectors, respectively, (r, θ, z) being
the corresponding coordinates. We assume that the vessel extends from z = 0 to z = L and the
vessel length L is constant with time.
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Figure 1.2: The domain Ωt representing the portion of an artery.
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Figure 1.3: Simplified geometry. The vessel is assumed to by a straight cylinder with circular
cross section.
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The basic model is deduced by making the following simplifying assumptions.

A.1. Axial symmetry. All quantities are independent from the angular coordinate θ. As a
consequence, every axial section z =const remains circular during the wall motion. The
tube radius R is a function of z and t.

A.2. Radial displacements. The wall displaces along the radial direction solely, thus at each
point on the tube surface we may write η = ηer, where η = R − R0 is the displacement
with respect to the reference radius R0. This hypothesis may be dispensed with, yet the
greater complexity of the structural model that has to be used in this case is barely justified
since in practice axial displacements are very small.

A.3. Fixed cylinder axis. This simply means that the vessel will expand and contract around
its axis, which is fixed in time. This hypothesis is indeed consistent with that of axial
symmetry. However, it precludes the possibility of accounting for the effects of displace-
ments of the artery axis such the ones that occur in the coronaries because of the heart
movement.

A.4. Constant pressure on each axial section. We assume that the pressure P is constant on
each section, so that it depends only on z and t.

A.5. No body forces. We neglect body forces. However, the inclusion of the gravity force
is straightforward (it just add a term of the from gh to the pressure). A slightly more
complicated (yet still feasible) addition would be the one that describes the change of
gravity forces occurring when a person is rising from an horizontal position.

A.6. Dominance of axial velocity. The velocity components orthogonal to the z axis are negli-
gible compared to the component along z. The latter is indicated by uz and its expression
in cylindrical coordinates is supposed to be of the form

uz(t, r, z) = u(t, z)s
(
rR−1(z)

)
(1.1)

where u is the mean velocity on each axial section and s : R → R is a velocity profile.
The fact that the velocity profile does not vary in time and space is in contrast with exper-
imental observations and numerical results carried out with full scale models. However,
it is a necessary assumption for the derivation of the reduced model. One may then think
s as being a profile representative of an average flow configuration.

A generic axial section will be indicated by S = S(t, z). Its measure A is given by

A(t, z) =

∫

S(t,z)

dσ = πR2(t, z) = π(R0(z) + η(t, z))2. (1.2)

The mean velocity u is then given by

u = A−1

∫

S
uzdσ,

and from (1.1) it follows easily that s must be such that
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∫ 1

0

s(y)ydy =
1

2

We will indicate with α the momentum-flux correction coefficient, (sometimes also called
Coriolis coefficient) defined as

α =

∫
S uz

2dσ

Au2 =

∫
S s

2dσ

A
, (1.3)

where the dependence of the various quantities on the spatial and time coordinates is understood.
It is immediate to verify that α ≥ 1. In general this coefficient will vary in time and space, yet
in our model it is taken constant as a consequence of (1.1).

A possible choice for the profile law is the parabolic profile s(y) = 2(1 − y2) that corre-
sponds to the well known Poiseuille solution characteristic of steady flows in circular tubes. In
this case we have α = 4

3
. However, for blood flow in arteries it has been found that the velocity

profile is, on average, rather flat. Indeed, a profile law often used for blood flow in arteries (see
for instance [31]) is a power law of the type s(y) = γ−1(γ + 2)(1 − yγ) with typically γ = 9
(the value γ = 2 gives again the parabolic profile). Correspondingly, we have α = γ+2

γ+1
= 1.1.

Furthermore, we will see that the choice α = 1, which indicates a completely flat velocity
profile, simplifies the analysis.

The mean flux Q, defined as

Q =

∫

S
uzdσ = Au,

is one of the main variables of our problem, together with A and the pressure P .
There are (at least) three ways of deriving our model. The first one moves from the incom-

pressible Navier-Stokes equations and performs an asymptotic analysis by assuming that the
ratio R0

L
is small, thus discarding the higher order terms with respect to R0

L
[2]. The second

approach derives the model directly from the basic conservation laws written in integral form.
The third approach consists of integrating the Navier-Stokes equations on a generic section S.
We will follow the latter and we will indicate with Γw

t the wall boundary of Ωt, which now reads

Γw
t = {(r, θ, z) : r = R(z, t), θ ∈ [0, 2π) z ∈ (0, L)}

while n is the outwardly oriented normal to ∂Ωt. Under the previous assumptions, the momen-
tum along z and continuity equations, in the hypothesis of constant viscosity, are

∂uz

∂t
+ div(uzu) +

1

ρ

∂P

∂z
− ν∆uz = 0, (1.4a)

div u = 0, (1.4b)

and on the tube wall we have the following kinematic condition

u = η̇, on Γw
t ,

where η̇ = ∂ �
∂t

= ∂η
∂t

er is the vessel wall velocity.
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The convective term in the momentum equation has been taken in divergence form because
it simplifies the further derivation.

To ease notation, in this section we will omit to explicitly indicate the time dependence,
with the understanding that all variables are considered at time t. Let us consider the portion P
of Ωt, sketched in Fig. 1.4, comprised between z = z∗ − dz

2
and z = z∗ + dz

2
, with z∗ ∈ (0, L)

and dz > 0 small enough so that z∗ + dz
2
< L and z∗ − dz

2
> 0. The part of ∂P laying on the

tube wall is indicated by Γw
P . The reduced model is derived by integrating (1.4b) and (1.4a) on

P and passing to the limit as dz → 0, assuming that all quantities are smooth enough
We will first report a useful result whose proof may be found, for instance, in [24].

Let f : Ωt × I → R be an axisymmetric function, i.e.
∂f

∂θ
= 0. Let us indicate by fw the

value of f on the wall boundary and by f its mean value on each axial section, defined by

f = A−1

∫

S
fdσ.

We have the following relation ∂
∂t

(Af) = A∂f
∂t

+ 2πRη̇fw.
In particular taking f = 1 we recover that

∂A

∂t
= 2πRη̇. (1.5)

We are now ready to derive our reduced model. We start first from the continuity equation.
Using the divergence theorem, we obtain

0 =

∫

P
div u = −

∫

S−

uz +

∫

S+

uz +

∫

Γw
P

u · n = −
∫

S−

uz +

∫

S+

uz +

∫

Γw
P

η̇ · n. (1.6)

We have exploited the fact that n = −ez on S− while n = ez on S+. Now, since η̇ = η̇er, we
deduce

∫

Γw
P

η̇ · n = [2η̇πR(z)dz + o(dz)] = (by (1.5)) =
∂

∂t
A(z)dz + o(dz).

z* z*z*

P

z
ze

er
+ dz/2− dz/2

n

dz

PSfrag replacements
S(t, z)

Figure 1.4: A longitudinal section (θ =const.) of the tube and the portion between z = z∗ − dz
2

and z = z∗ + dz
2

used for the derivation of the 1D reduced model.
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By substituting into (1.6), using the definition of Q, and passing to the limit as dz → 0, we
finally obtain

∂A

∂t
+
∂Q

∂z
= 0,

which is the reduced form of the continuity equation.

We will now consider all terms in the momentum equation in turn. Again, we will integrate
them over P and consider the limit as dz tends to zero.

∫

P

∂uz

∂t
=

d

dt

∫

P
uz −

∫

∂P
uzg · n =

d

dt

∫

P
uz.

In order to eliminate the boundary integral we have exploited the fact that uz = 0 on Γw
P and

g = 0 on S− and S+. We may then write
∫

P

∂uz

∂t
=

∂

∂t
[A(z)u(z)dz + o(dz)] =

∂Q

∂t
(z)dz + o(dz).

Moreover, we have
∫

P
div(uzu) =

∫

∂P
uzu · n = −

∫

S−

uz
2 +

∫

S+

uz
2 +

∫

Γw
P

uzg · n =

α[A(z +
dz

2
)u2(z +

dz

2
) − A(z − dz

2
)u2(z − dz

2
)] =

∂αAu2

∂z
(z)dz + o(dz).

Again, we have exploited the condition uz = 0 on Γw
P .

Since the pressure is assumed to be constant on each section, we obtain
∫

P

∂P

∂z
= −

∫

S−

P +

∫

S+

P +

∫

Γw
P

Pnz =

A(z +
dz

2
)P (z +

dz

2
) − A(z − dz

2
)P (z − dz

2
) +

∫

Γw
P

Pnz (1.7)

Since
∫

∂P nz = 0, we may write that

∫

Γw
P

Pnz = P (z)

∫

Γw
P

nz + o(dz) = −P (z)

∫

∂P\Γw
P

nz + o(dz) =

− P (z)(A(z +
dz

2
) − A(z − dz

2
)) + o(dz)

By substituting the last result into (1.7) we have
∫

P

∂P

∂z
= A(z +

dz

2
)P (z +

dz

2
) − A(z − dz

2
)P (z − dz

2
) −

P (z)[A(z +
dz

2
) − A(z − dz

2
)] + o(dz)

=
∂(AP )

∂z
(z)dz − P (z)

∂A

∂z
(z)dz + o(dz) = A

∂P

∂z
(z)dz + o(dz).
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We finally consider the viscous term,
∫

P
∆uz =

∫

∂P
∇uz · n = −

∫

S−

∂uz

∂z
+

∫

S+

∂uz

∂z
+

∫

Γw
P

∇uz · n.

We neglect
∂uz

∂z
by assuming that its variation along z is small compared to the other terms.

Moreover, we split n into two vector components, the radial component nr = nrer and nz =
n − nr. Owing to the cylindrical geometry, n has no component along the circumpherential
coordinate and, consequently, nz is indeed oriented along z. We may thus write

∫

P
∆uz =

∫

Γw
P

(∇uz · nz + ∇uz · ernr) dσ.

Again, we neglect the term ∇uz · nz, which is proportional to
∂uz

∂z
. We recall relation (1.1) to

write
∫

P
∆uz =

∫

Γw
P

nr∇uz · erdσ =

∫

Γw
P

uR−1s′(1)n · erdσ = 2π

∫ z+ dz
2

z− dz
2

us′(1)dz,

where we have used the relation nrdσ = 2πRdz and indicated by s′ the first derivative of s.
Then,

∫
P ∆uz ≈ 2πu(z)s′(1)dz.

By substituting all results into (1.4a), dividing all terms by dz and passing to the limit as
dz → 0, we may finally write the momentum equation of our one dimensional model as follows

∂Q

∂t
+
∂(αAu2)

∂z
+
A

ρ

∂P

∂z
+Kru = 0,

where

Kr = −2πνs′(1)

is a friction parameter, which depends on the type of profile chosen, i.e. on the choice of the
function s in (1.1). For a profile law given by s(y) = γ−1(γ + 2)(1 − yγ) we have Kr =
2πν(γ + 2). In particular, for a parabolic profile we have Kr = 8πν (which is the value
generally used in practice). For γ = 9 we obtain instead Kr = 22πν.

To conclude, the final system of equations reads, foe z ∈ (0, L) and t ∈ I

∂A

∂t
+
∂Q

∂z
= 0, (1.8a)

∂Q

∂t
+ α

∂

∂z

(
Q2

A

)
+
A

ρ

∂P

∂z
+Kr

(
Q

A

)
= 0, (1.8b)

where the unknowns are A, Q and P and α is here taken constant.

Remark 1.1. For the case α = 1, it is possible to rewrite the system it terms of the variables
(A, u), by simple algebraic manipulation the momentum equation becomes

∂u

∂t
+

∂

∂z

(
P

ρ
+

1

2
u2

)
+Kru = 0,

the continuity equation being unaltered. This change of variables is allowable only whenever
the solution is smooth. In general, the (A,Q) system is more fundamental since it stems directly
from the basic conservation principles.

1.8



1.2.1 Accounting for the vessel wall displacement

In order to close system (1.8) we have to provide a relation for the pressure. A complete me-
chanical model for the structure of the vessel wall would provide a differential equation which
links the displacement and its spatial and temporal derivatives to the force applied by the fluid.
We will consider equation of this kind in a later section. Here we will adopt instead an hypoth-
esis quit commonly used in practice. Namely, that the inertial terms are neglegible and that the
elastic stresses in the circumferential direction are dominant. Under this assumption, the wall
mechanics reduces to an algebraic relation linking pressure to the wall deformation and conse-
quently to the vessel section A. More precisely, the relation should involve the whole normal
component of the wall stress, yet since we have neglected the viscous contribution, the only
normal stress acting on the wall is that due to the pressure.

In a most general setting, we may assume that the pressure satisfies a relation like

P (t, z) − Pext = ψ(A(t, z);A0(z),β(z)), (1.9)

where we have outlined that the pressure will in general depend also on A0 = πR2
0 and on a set

of coefficients β = (β0, β1, · · · , βp), related to physical and mechanical properties, that are, in
general, given functions of z. Here Pext indicates the external pressure exherted by the organs
outside the vessel (often taken equal to 0). We require that ψ be (at least) a C1 function of all
its arguments and be defined for all A > 0 and A0 > 0, while the range of variation of β will
depend by the particular mechanical model chosen for the vessel wall.

Furthermore, we require that for all allowable values of A, A0 and β

∂ψ

∂A
> 0, and ψ(A0;A0,β) = 0. (1.10)

By exploiting the well known linear elastic law for a cylindrical vessel and using the fact
that

η = (
√
A−

√
A0)/

√
π (1.11)

we can obtain the following expression for ψ

ψ(A;A0, β0) = β0

√
A−√

A0

A0

. (1.12)

We have identified β with the single parameter β0 =
√

πh0E
1−ξ2 . The latter depends on z only in

those cases where the Young modulus E or the vessels thickness h0 are not constant.
It is immediate to verify that all the requirements in (1.10) are indeed satisfied.
Another commonly used expression for the pressure-area relationship is given by [14, 31]

ψ(A;A0,β) = β0

[(
A

A0

)β1

− 1

]
.

In this case, β = (β0, β1), where β0 > 0 is an elastic coefficient while β1 > 0 is normally
obtained by fitting the stress-strain response curves obtained by experiments.

Another alternative formulation [17] is

ψ(A;A0,β) = β0 tan

[
π

(
A− A0

2A0

)]
,
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where again the coefficients vector β reduces to a single coefficient β0.
In the following, whenever not strictly necessary we will omit to indicate the dependence of

the various quantities on A0 and β, which is however always understood.

1.2.2 The final model

By exploiting relation (1.9) we may eliminate the pressure P from the momentum equation. To
that purpose we will indicate by c1 = c1(A;A0,β) the following quantity

c1 =

√
A

ρ

∂ψ

∂A
, (1.13)

which has the dimension of a velocity and, as we will see later on, is related to the speed of
propagation of simple waves along the tube.

By simple manipulations (1.8) may be written in quasi-linear form as follows

∂

∂t
U + H(U)

∂U

∂z
+ S(U) = 0, (1.14)

where,

U =

[
A
Q

]
,

H(U) =




0 1
A

ρ

∂ψ

∂A
− αu2 2αu


 =




0 1

c21 − α

(
Q

A

)2

2α
Q

A


 , (1.15)

and

S(U) =




0

KR

(
Q

A

)
+
A

ρ

∂ψ

∂A0

dA0

dz
+
A

ρ

∂ψ

∂β

dβ

dz


 .

Clearly, if A0 and β are constant the expression for S becomes simpler. A conservation form
for (1.14) may be found as well and reads

∂U

∂t
+

∂

∂z
[F(U)] + B(U) = 0, (1.16)

where

F(U) =

[
Q

αQ2

A
+ C1

]

is the vector of fluxes,

B(U) = S(U) −




0
∂C1

∂A0

dA0

dz
+
∂C1

∂β

dβ

dz
,



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and C1 is a primitive of c21 with respect to A, given by

C1(A;A0,β) =

∫ A

A0

c21(τ ;A0,β) dτ.

Again, if A0 and β are constant, the source term B simplifies and becomes B = S. System
(1.16) allows to identify the vector U as the the conservation variables of our problem.

Remark 1.2. In the case we use relation (1.12) we have

c1 =

√
β0

2ρA0
A

1

4 , C1 =
β0

3ρA0
A

3

2 . (1.17)

If A ≥ 0, the matrix H possesses two real eigenvalues. Furthermore, if A > 0 the two
eigenvalues are distinct and (1.14) is a strictly hyperbolic system of partial differential equa-
tions.

Proof. By performing standard algebraic computations we obtain the following expression for
the eigenvalues of H,

λ1,2 = αu± cα, (1.18)

where

cα =
√
c21 + u2α (α− 1).

Since α ≥ 1, cα is a real number. If cα > 0 the two eigenvalues are distinct. A sufficient
condition to have cα > 0 is c1 > 0 and, thanks to the definition of c1 and (1.10), this is always
true if A > 0. If α = 1, this condition is also necessary.

The existence of a complete set of (right and left) eigenvectors is an immediate consequence
of H having distinct eigenvalues.

Remark 1.3. As remarked in the Introduction, system (1.8) shares many analogies with the
1D compressible Euler equations after identifying the section area A with the density. The
equivalence is not complete as the term ∂P

∂z
in the Euler equations is here replaced by A ∂P

∂z
.

Characteristics analysis

Let (l1, l2) and (r1, r2) be two couples of left and right eigenvectors of the matrix H in (1.15),
respectively. The matrices L, R and Λ are defined as

L =

[
lT1
lT2

]
, R =

[
r1 r2

]
, Λ = diag(λ1, λ2) =

[
λ1 0
0 λ2

]
. (1.19)

Since right and left eigenvectors are mutually orthogonal, without loss of generality we choose
them so that LR = I. Matrix H may then be decomposed as

H = RΛL, (1.20)
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and system (1.14) written in the equivalent form

L
∂U

∂t
+ ΛL

∂U

∂z
+ LS(U) = 0, z ∈ (0, L), t ∈ I. (1.21)

If there exist two quantities W1 and W2 which satisfy

∂W1

∂U
= l1,

∂W2

∂U
= l2, (1.22)

we will call them characteristic variables of our hyperbolic system. We point out that in the case
where the coefficients A0 and β are not constant, W1 and W2 are not autonomous functions of
U.

By setting W = [W1,W2]
T system (1.21) may be elaborated into

∂W

∂t
+ Λ

∂W

∂z
+ G = 0, (1.23)

where

G = LS − ∂W

∂A0

dA0

dz
− ∂W

∂β

dβ

dz
. (1.24)

Componentwise

∂Wi

∂t
+ λi

∂Wi

∂z
+Gi = 0, i = 1, 2 (1.25)

Note that in general Gi will depend on W1 and W2 through the dependence of S on U.

These expressions are quite general, in the case where S = 0 and the coefficients A0 and β
are constant G = 0 and (1.23) takes the simpler form

∂W

∂t
+ Λ

∂W

∂z
= 0, (1.26)

which component-wise reads

∂Wi

∂t
+ λi

∂Wi

∂z
= 0, i = 1, 2 (1.27)

which is the a non-linear (since λi will in general depend on W1 and W2) first order wave
equation. If we consider the characteristic line yi(t) which satisfies the differential equation

d

dt
yi(t) = λi(t, yi(t)), i = 1, 2

then (1.27) may be rewritten as

d

dt
Wi(t, yi(t)) = 0 i = 1, 2 (1.28)

which shows that Wi is constant along the i-th characteristic line.
In the more general case we will have

d

dt
Wi(t, yi(t)) +Gi(W1,W2) = 0, i = 1, 2 (1.29)

where we have made evident the dependence of Gi on the characteristic variables. Clearly the
latter system if slightly more complex, yet it might be approximated numerically by a ODE sys-
tem solver. Again an approximation of (1.29) might be used to provide boundary compatibility
conditions for our numerical scheme. We will postpone the discussinon to Sect. 1.3.
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Remark 1.4. If we linearise the system (i.e. we take the λi constant), (1.28) has a general
solution of the form

Wi(t, z) = ϕi(z − λit), i = 1, 2

where the ϕi’s are functions that have to be consistent with the initial and boundary conditions
of the original problem. This relation enlighten the wave-like nature of blood flow in arteries;
the general solution is a super-imposition of waves traveling at speed λ1 and λ2,

[
A(t, z)
Q(t, z)

]
= L−1

[
ϕi(z − λ1t)
ϕ2(z − λ2t),

]

being in this case L constant. In the non-linear case the interaction is more complex, yet the
basic features of the solution are the same.

The linearised system is the basis of many relationships for pulse wave propagation often
found in the bio-engineering and medical literature.

Remark 1.5. The relations found so far are valid in regions where the solution is continuous.
Blood flow does not present discontinuities (at least in most situations) so we will not go further
into this matter. Indeed it may be shown [6] that, for the typical values of the mechanical and
geometric parameters in physiological conditions and the typical vessel lengths in the arterial
tree, the solution of our hyperbolic system remains smooth, in accordance to what happens in
the actual physical problem (which is however dissipative, a feature which has been neglected
in our one-dimensional model).

Yet, anyone interested in the analysis or the numerical aspect of discontinuous solutions of
hyperbolic system may consult, for instance [19] or [13].

The expression for the left eigenvectors l1 and l2 is given by

l1 = ζ

[
cα − αu

1

]
, l2 = ζ

[
−cα − αu

1

]
,

where ζ = ζ(A, u) is any arbitrary smooth function of its arguments with ζ > 0. Here we have
expressed l1 and l2 as functions of (A, u) instead of (A,Q) as is more convenient for the next
developments. Thus, relations (1.22) become

∂W1

∂A
= ζ [cα − u (α− 1)] ,

∂W1

∂u
= ζA (1.30a)

∂W2

∂A
= ζ [−cα − u (α− 1)] ,

∂W2

∂u
= ζA. (1.30b)

For a hyperbolic system of two equations it is always possible to find the characteristic
variables (or, equivalently, the Riemann invariants) locally, that is in a sufficiently small neigh-
bourhood of any point U [13, 18], yet the existence of global characteristic variables is not in
general guaranteed. However, in the special case α = 1, (1.30) takes the much simpler form

∂W1

∂A
= ζc1,

∂W1

∂u
= ζA,

∂W2

∂A
= −ζc1,

∂W2

∂u
= ζA.
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Let us show that a set of global characteristic variables for our problem does exist in this case.
We remind that a classic Calculus result affirms that the condition for the integrability of the
differential form, and thus for the existence of the characteristic variable W1 is that

∂2W1

∂A∂u
=
∂2W1

∂u∂A
,

for all allowable values of A and u. Since now c1 does not depend on u, the above condition
yields

c1
∂ζ

∂u
= ζ + A

∂ζ

∂A
.

In order to satisfy this relation, it is sufficient to take ζ = ζ(A) such that ζ = −A ∂ζ
∂A

. A possible
instance is ζ = A−1. The resulting differential form is

∂W1 =
c1
A
∂A + ∂u,

and by proceeding in the same way for W2 we have ∂W2 = − c1
A
∂A + ∂u.

To integrate it in the (A, u) plane we need to fix the zero state. i.e. the value of A and Q for
which the characteristic variables are zero. Here we take (A, u) = (A0, 0), obtaining

W1 = u+

∫ A

A0

c1(τ)

τ
dτ, W2 = u−

∫ A

A0

c1(τ)

τ
dτ. (1.31)

Remark 1.6. If we adopt relation (1.12) and use the expression for c1 given in (1.17), after
simple computations we have

W1 = u+ 4(c1 − c1,0), W2 = u− 4(c1 − c1,0), (1.32)

where c1,0 is the value of c1 corresponding to the reference vessel area A0. We may also write,
after a few simple algebraic manipulations

W1 = u+
2(P − Pext)

ρ(c1 + c1,0)
, W1 = u− 2(P − Pext)

ρ(c1 + c1,0)
(1.33)

Finally, we might invert the relationship between W and U to obtain

A =

(
2ρA0

β

)2(
W1 −W2

8
+ c1,0

)4

, Q = A
W1 +W2

2
. (1.34)

These expressions may become handy when dealing with boundary or interface conditions, as
we will see later on.

Remark 1.7. The choice of (A,Q) = (A0, 0) as zero reference state for the calculation of the
characteristic variables in (1.31) is somehow arbitrary. It is particularly convenient since it
appears natural to associate a zero characteristic variables to the state “at rest”. Yet another
common choice is to integrate the differential form from (A,Q) = (0, 0). However this is not
always possible since the integral in (1.31) may not exist when the integration interval in the A
axis includes the zero.

However, this choice is allowed when adopting the pressure-area relation (1.12). The cor-
responding expression are obtained by setting c1,0 = 0 in (1.32), (1.33) and (1.34).
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Under physiological conditions, typical values of the flow velocity and mechanical charac-
teristics of the vessel wall are such that cα >> αu. Consequently λ1 > 0 and λ2 < 0, i.e. the
flow is sub-critical everywhere. In the light of this consideration, from now on we will always
assume sub-critical regime (and smooth solutions).

Remark 1.8. We also point out that the derivation of the conservative form may be carried out
only if β and A0 are smooth functions of z. In case of abrupt changes of the Young modulus, for
instance because of the presence of a prosthesis we either resort to a regularisation of E or to
a domain decomposition strategy. We will present the former technique here while the domain
decomposition method will be presented in Sect. 1.4.

Boundary conditions

System (1.8) must be supplemented by proper boundary conditions. The number of conditions
to apply at each end equals the number of characteristics entering the domain through that
boundary. Since we are only considering sub-critical flows we have to impose exactly one
boundary condition at both z = 0 and z = L.

An important class of boundary conditions are the so-called non-reflecting or ’absorbing’.
They allow the simple wave associated to the outgoing characteristic variable to exit the com-
putational domain with no reflections. Following [33, 15] non-reflecting boundary conditions
for one dimensional systems of non-linear hyperbolic equation in conservation form like (1.16)
may be written as

l1 ·

(
∂U

∂t
+ B(U)

)
= 0 at z = 0, l2 ·

(
∂U

∂t
+ B(U)

)
= 0 at z = L,

for all t ∈ I , which in fact, by defining Ri = liB, may be written in the form

∂W1

∂t
+R1(W1,W2) = 0 at z = 0,

∂W2

∂t
+R2(W1,W2) = 0 at z = L,

where we have put into evidence the possible dependence of R1 and R2 on W1 and W2 through
the dependence of B on U.

Whenever taking B = 0 on the boundary is acceptable, these conditions are equivalent to
impose a constant value to the incoming characteristic variable(typically calculated either from
the initial value of the problem at hand or from a reference solution). When S 6= 0, the R
term takes into account the “natural evolution” of the incoming characteristic variable at the
boundary due to the presence of the source term. A boundary condition of this type is quite
convenient at the outlet (distal) section, particularly whenever we have no better data to impose
on that location.

At the inlet (proximal) section instead one usually desires to impose values of pressure or
mass flux derived from measurements or other means. Let us suppose, without loss of gen-
erality, that z = 0 is an inlet section. Whenever an explicit formulation of the characteristic
variables is available, the boundary condition may be expressed directly in terms of the entering
characteristic variable W1, i.e., for all t ∈ I

W1(t) = g1(t) at z = 0, (1.35)
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g1 being a given function. However, seldom one has directly the boundary datum in terms of
the characteristic variable, since is normally given in terms of physical variables.

If one has at disposal the time history q(t) of a just one physical variable φ = φ(A,Q) (for
instance the pressure) the boundary condition

φ(A(t), Q(t)) = q(t), ∀t ∈ I, at z = 0,

is admissible under certain restrictions [26], which in our case reduce to exclude the case where
φ may be expressed as function of only W2. In particular, it may be found that for the problem
at hand the imposition of average pressure, total pressure or mass flux are all admissible.

Sometimes we know the time variation of both pressure and mass flux at the boundary (for
instance taken from measurements). We cannot impose both!, since this is in contrast with the
mathematical characteristic of our differential problem. If we want to account for both boundary
data a possible technique is to derive the corresponding value of g1 using directly the definition
of the characteristic variable W1. If Pm = Pm(t) and Qm = Qm(t) are the measured average
pressure and mass flux at z = 0 for t ∈ I and W1(A,Q) indicates the characteristic variable W1

as function of A and Q, like in (1.31), we may pose

g1(t) = W1

(
ψ−1(Pm(t) − Pext), Qm(t)

)
, t ∈ I,

in (1.35). This means that Pm and Qm are not imposed exactly at z = 0 (this would not be
possible since our system accounts for only one boundary condition at each end of the compu-
tational domain), yet we require that at all times t the value of A and Q at z = 0 lies on the
curve in the (A,Q) plane defined by

W1(A,Q) −W1

(
ψ−1(Pm(t) − Pext), Qm(t)

)
= 0.

Remark 1.9. If the integration of (1.22) is not feasible (as, for instance, in the case α 6= 1), one
may resort to the pseudo-characteristic variables [26], Z = [Z1, Z2]

T , defined by linearising
(1.22) around an appropriately chosen reference state. One obtains

Z = Z + L(U)
(
U − U

)
(1.36)

where U is the chosen reference state and Z the corresponding value for Z. One may then use
the pseudo-characteristic variables instead of W and repeat the previous considerations.

In the context of a time advancing scheme for the numerical solution of (1.16) the reference
state is usually taken as the solution computed at the previous time step.

1.2.3 More complex wall laws that account for inertia and viscoelasticity

The algebraic relation (1.9) assumes that the wall is instantaneously in equilibrium with the
pressure forces acting on it. Indeed, this approach correspond to the so called independent ring
model for the mechanics of the vessel wall (see for instance [28] or [24]).

More sophisticated models may be introduced by employing a differential law for the vessel
structure. We will provide here only the general framework, leaving to the next section more
details about the numerical implementation. In the case where a ’shell approximation’ is used
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for the vessel wall we can consider the following differential law to link the pressure (which is
the acting force) to the wall radial displacement η,

P − Pext = γ0
∂2η

∂t2
+ γ1

∂η

∂t
+ γ2

∂2(A− A0)

∂z2
+ ψ(A;A0,β), (1.37)

where γ0 = ρwh0, γ1 = γ
R2

0

and the last term is the elastic response, modelled is the same way
as done before. Here, ρw is the density of the tissue which forms the vessel walls, h0 is the
wall reference thickness, here taken constant, γ is a viscoelasticity coefficient which accounts
for the damping effects due to the vessel material and the action of the surrounding tissue (by
employing a simple Voigt/Kelvin model [12]). Finally, γ2 is the longitudinal pre-load stress (it
is well known that arteries in-vivo are normally under a longitudinal tension.

The idea is to manipulate the equation so to recover (after a few reasonable assumptions) a
two-equation system.

In the following, we indicate by Ȧ and Ä the first and second time derivative of A. We will
substitute the following identities

∂η

∂t
=

1

2
√
πA

Ȧ,
∂2η

∂t2
= π− 1

2

(
1

2
√
A
Ä− 1

4
√
A3
Ȧ2

)

that are derived from (1.2), into (1.37) while

∂2η

∂z2
= π− 1

2

(
1

2
√
A
A′′ − 1

4
√
A3

(A′)2

)
,

having indicated with a ′ the spatial derivative.
We obtain a relation that links the pressure also to the time and space derivatives of A, which

we write in all generality as

P − Pext = ψ̃(A, Ȧ, Ä, A′, A′′;A0) + ψ(A;A0,β),

where ψ̃ is a non-linear function which derives from the treatment of the terms containing
the derivatives of η. Since it may be assumed that the contribution to the pressure is in fact
dominated by the term ψ, we will simplify this relationship by linearising ψ̃ around the state
A = A0, Ȧ = Ä = 0 and A′ = A′

0, A′′ = A′′
0 . By doing that, after some simple algebraic

manipulations, one finds

P − Pext =
γ0

2
√
πA0

Ä +
γ1

2
√
πA0

Ȧ+
γ1

2
√
πA0

(A− A0)
′′ + ψ(A;A0,β), (1.38)

Replacing this expression for the pressure in the momentum equation requires to compute the
term

A

ρ

∂P

∂z
=

γ0A

2ρ
√
πA0

∂3A

∂z∂t2
+

γ1A

2ρ
√
πA0

∂2A

∂z∂t
+

γ2A

2ρ
√
πA0

∂3(A− A0)

∂z3
+
A

ρ

∂ψ

∂z
.

The last term in this equality may be treated as previously, while the first two terms may be
further elaborated by exploiting the continuity equation. Indeed, we have

∂2A

∂z∂t
= −∂

2Q

∂z2
,

∂3A

∂z∂t2
= − ∂3Q

∂t∂z2
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Therefore, the momentum equation with the additional terms deriving from inertia, vis-
coelasticity, and longitudinal pre-stress becomes

∂Q

∂t
+
∂F2

∂z
− γ0A

2ρ
√
πA0

∂3Q

∂t∂z2
− γ1A

2ρ
√
πA0

∂2Q

∂z2
− γ2A

2ρ
√
πA0

∂3A

∂z3
+ B̃2 = 0, (1.39)

where with F2 we have indicated the second component of F in (1.16) while B̃2 = B2 +
γ2A

2ρ
√

πA0

∂3A0

∂z3 accounts for the possibility thatA0 is not constant. The continuity equation remains
unaltered.

Remark 1.10. This analysis puts into evidence that the wall inertia and longitudinal pre-stress
introduce a dispersive (third order derivatives) term into the momentum equation, while the
viscoelasticity has a diffusive (second order derivatives) effect.

Remark 1.11. The problem with the model just presented is that it is difficult to get reasonable
values for the various constant. That is the reason why the simpler model is usually preferred,
despite its limitations.

Furthermore the characteristic of the differential problem changes with the appearance of
second and even third order derivatives, which makes the numerical treatment and the identifi-
cation of proper boundary conditions more troublesome.

Often, not all the effects are to be taken into account at the same time. For instance one may
just add the inertia term.

1.3 Numerical discretisation of the basic model

We will here consider the equations in conservation form (1.16) and the simple algebraic rela-
tionship (1.12).

We then have

F(U) =




Q

α
Q2

A
+

∫ A

0

c21dA


 =




Q

α
Q2

A
+

β

3ρA0

A
3

2


 (1.40)

B(U) =




0

KR
Q
A

+ A
A0ρ

(
2
3
A

1

2 − A
1

2

0

)
∂β
∂z

−
β
ρ

A
A2

0

(
2
3
A

1

2 − 1
2
A

1

2

0

)
∂A0

∂z


 , (1.41)

where we have taken into account of possible variations of A0 (tapering) and of β = Eh0

√
π

because of possible changes of the Young modulus E.
The flux Jacobian H may be readily computed as

H(U) =
∂F

∂U
=




0 1

−αQ
2

A2
+

β

2ρA0
A

1

2 2α
Q

A


 . (1.42)

The characteristic variables are given in (1.32) while (1.34) gives the inverse relationship.
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1.3.1 The Taylor-Galerkin scheme

We discretize our system by a second order Taylor-Galerkin scheme [7], which might be seen
as the finite element counterpart of the well known Lax-Wendroff scheme. It has been chosen
for its excellent dispersion error characteristic and its simplicity of implementation.

The derivation here is made sightly more involved than for the classical systems of conser-
vation laws due to the presence of the source term.

From (1.16) we may write

∂U

∂t
= −B − ∂F

∂z
(1.43)

∂2U

∂t2
= −BU

∂U

∂t
− ∂

∂z

(
H
∂U

∂t

)
= BU

(
B +

∂F

∂z

)
+
∂(HB)

∂z
+

∂

∂z

(
H
∂F

∂z

)
, (1.44)

where we have denoted BU =
∂B

∂U
. We now consider the time intervals (tn, tn+1), for n =

0, 1, . . . , with tn = n∆t, ∆t being the time step, and we discretize in time using a Taylor series
truncated at the second order, to obtain the following semi-discrete system for the approxima-
tion Un of U(tn)

Un+1 = Un − ∆t
∂

∂z

[
Fn − ∆t

2
HnBn

]
+

∆t2

2

[
Bn

U

∂F

∂z

n

+
∂

∂z

(
Hn∂F

n

∂z

)]

− ∆t

(
Bn +

∆t

2
Bn

U
Bn

)
, n = 0, 1, . . . , (1.45)

where U0 is provided by the initial conditions and Fn stands for F(Un) (a similar notation
holds for Hn, Bn and Bn

U
).

The space discretisation is carried out using the Galerkin finite element method [26]. The
interval [0, L] is subdivided into N elements [zi, zi+1], with i = 0, . . . , N and zi+1 = zi + hi,
with

∑N−1
i=0 hi = L, where hi > 0 is the local element size. Let Vh be the space of piecewise

linear finite element functions (see Fig. 1.5) and Vh = [Vh]
2, while V0

h = [V 0
h ]2 = {vh ∈

Vh |vh = 0 at z = 0 and z = L}. It follows from standard finite element theory that Vh =
span(ψi, i = 0, . . . , N + 1) while V 0

h = span(ψi, i = 1, . . . , N), being ψi the linear finite
element nodal function associated to the node at z = zi. As usually done in finite element
theory, the formulation will be written in a compact form by employing vector valued test
functions ψh ∈ Vh. The discrete continuity and momentum equations are recovered by taking
test functions of the form ψh = [ψh, 0]T and ψh = [0, ψh]

T , respectively.
At each time step we seek the solution Uh ∈ Vh that we may write Un

h(z, t) =
∑N+1

i=0 Un
i ψi(z, t),

with Un
i = [An

i , Q
n
i ] the approximation of A and Q at mesh node zi.

1

ψi

zi

PSfrag replacements
S(t, z)

Figure 1.5: Linear finite element mesh and finite element nodal function ψi.
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Further, we indicate by

(u,v) =

∫ L

0

u · vdz

the L2(0, L) scalar product.

Using the abridged notations FLW (U) = F(U)− ∆t

2
H(U)B(U) and BLW (U) = B(U)+

∆t

2
BU(U)B(U), the finite element formulation of (1.45) is :

given U0
h obtained by interpolation from the initial data, for n ≥ 0, find Un+1

h ∈ Vh which
satisfies the following equations for the interior nodes

(Un+1
h ,ψh) = (Un

h,ψh) + ∆t

(
FLW (Un

h),
dψh

dz

)
− ∆t2

2

(
BU(Un

h)
∂F(Un

h)

∂z
,ψh

)

− ∆t2

2

(
H(Un

h)
∂F

∂z
(Un

h),
dψh

dz

)
− ∆t (BLW (Un

h),ψh) , ∀ψh ∈ V0
h (1.46)

together with the relation for boundary nodes obtained from the boundary and compatibility
conditions, as discussed in the next section. By taking ψh = [ψi, 0]T and ψh = [0, ψi]

T , for
i = 1, . . .N we obtain N discrete equations for continuity and momentum, respectively, for a
total of 2(N +2) unknowns (Ai and Qi for i = 0, . . . , N +1). The boundary and compatibility
conditions have then to provide four additional relations.

System (1.46) has been obtained by multiplying (1.45) by ψh, integrating over the domain
and applying integration by parts on the spatial derivative terms. No boundary terms appear as
a result of this operation since ψh is zero at the boundary.

It is well known that, thanks to chioce of linear finite elements, the term on the left-hand
side will give rise to a tridiagonal system governed by the so called mass matrix. By performing
the lumping of the mass matrix [26] we may reduce the system to a diagonal one, very simple
to solve. Yet this will downgrade the dispersion characteristics of the scheme.

Remark 1.12. The integrals in (1.46) involve the non-linear functions F and H. In order to
compute them we might resort to numerical integration. A possibility is to take a piecewise
linear approximation for the fluxes, i.e. F(U) '∑N+1

i=0 F(Un
i )ψi, while employing a piecewise

constant approximation for H.
It is however important to ensure that the chosen approximation is strongly consistent with

respect to constant solution, i.e. that the discrete scheme be still able to represent constant
solution exactly. In particular, if the initial conditions are Q = 0 andA = A0 and the boundary
conditions such that no waves are entering the domain, then the trivial constant solution Q =
0, A = A0 of the differential problem has to be also a solution of the discrete system, i.e. we
must have An

i = A0(zi) and Qn
i = 0 at all time steps.

A third-order scheme (in time) may be derived by following the indications in [1]. However,
in our case this would imply the coupling of the equations for Ah and Qh, that are instead
completely decoupled in (1.46), thus incresing the computational costs. For this reason, we
have considered only the second-order scheme. However, many of the considerations that we
develop in this note apply also to the third-order version.
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The second order Taylor-Galerkin scheme (1.46) entails a time step limitation. A linear
stability analysis [23] indicates that the following condition should be satisfied

∆t ≤
√

3

3
min

0≤i≤N

[
hi

maxi+1
k=i(cα,k + |uk|)

]
, (1.47)

where cα,i and ui here indicate the values of cα and u at mesh node zi, respectively. This
condition corresponds to a CFL number of

√
3

3
, typical of a second order Taylor-Galerkin scheme

in one dimension [23]. Another modification proposed in [1] allows to extend the CFL number
limit to 1 while maintaining a second order scheme. For the sake of simplicity we do not provide
here more details, which may be found in the cited literature.

1.3.2 Boundary and compatibility conditions

Formulation (1.46) provides the values only at internal nodes, since we have chosen the test
functions vh to be zero at the boundary. The values of the unknowns at the boundary nodes
must be provided by the application of the boundary and compatibility conditions.

The boundary conditions are not sufficient to close the problem at numerical level since they
provide just two conditions, yet we need to find four additional relations. We want to stress that
this problem is linked to the numerical scheme, not to the differential equations, which indeed
only require one condition at each end (at least for the flow regime we are considering here).

Without loss of generality, let us consider the boundary z = 0 (analogous consideration may
be made at z = L). Following the considerations made in Sect. 1.2.2, the boundary conditions
will provide at each time step a relation of the type

φ(An+1
0 , Qn+1

0 ) = q0(t
n+1),

being q0 the given boundary data. For instance, imposing the pressure would mean choosing
φ(A,Q) = P = ψ(A;A0(0), β(0)), while imposing the mass flux would just mean φ(A,Q) =
Q. Finally, a non reflecting condition is obtained by φ(A,Q) = W1(A,Q) and in this case q0
is normally taken constant and equal to the value of W1 at a reference state (typically (A,Q) =
(A0, 0)). Thus, in general φ is a non linear function.

This relation should be supplemented by a compatibility condition. In general , the compat-
ibility conditions are obtained by projecting the equation along the eigenvectors corresponding
to the characteristics that are exiting the domain. Therefore, we have to discretise the following
set of equations at the two vessel ends [26].

l2 ·

(
∂

∂t
U + H

∂U

∂z
+ S(U)

)
= 0, z = 0, t ∈ I, (1.48a)

l1 ·

(
∂

∂t
U + H

∂U

∂z
+ S(U)

)
= 0, z = L, t ∈ I. (1.48b)

These two equations have to be suitable discretised in space and time. A possibility is to
replace the content inside the two parentheses with the Taylor-Galerkin scheme written for the
corresponding boundary point. This is obtained by taking as test functionψh in (1.46) the linear
finite element nodal function associated to the boundary node at z = 0 and z = L, respectively.
We need also to specify the value l1 and l2 (which are indeed function of U!): one normally
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takes the value computed using the approximation of Uh at the previous time step. We have also
to be aware o the fact that additional boundary integral terms will now appear in the formulation
(1.46) because now the test function is not zero at the boundary. However, this may not be true
in special cases.

Yet, although this technique has the advantage of ensuring that the discretisation error intro-
duced by the compatibility conditions is of the same order of that of the numerical scheme it has
the drawback of coupling the equation at the boundary nodes. An alternative which maintains
a decoupled scheme is found by noting that (1.48) are in fact equivalent to equations (1.25)
collocated respectively at node z = 0 and z = L.

Therefore at each time step we should solve

d

dt
W2(t, y2(t)) +G1 = 0,

d

dt
W1(t, y1(t)) +G2 = 0, (1.49)

with y2(t
n+1) = 0 and y1(t

n+1) = L, respectively. Whenever G1 = G2 = 0 the solution
is obtained by tracing back the characteristic lines exiting the domain and imposing that the
corresponding characteristic variable is constant. A first order (in time) approximation would
then give

W n+1
2 (0) = W n

2 (−λn
2 (0)∆t), W n+1

1 (L) = W n
1 (L− λn

1 (L)∆t).

Thanks to the CFL condition we are sure that the foot of the characteristic line falls within the
first (last) element.

A second order approximation might be obtained by following the technique described in
[4]. When G(U) 6= 0 the values of W n+1

2 (0) and W n+1
1 (L) will have to be computed by

numerically solving the associated ordinary differential equations (1.29).
Then, at z = 0 we have

φ(An+1
0 , Qn+1

0 ) = q(tn+1), W2(A
n+1
0 , Qn+1

0 ) = W n+1
2 (0), (1.50)

whereW n+1
2 (0) has been obtained with the characteristic extrapolation technique just described.

This is a non-linear system for the two unknowns An+1
0 and Qn+1

0 at the boundary, which may
be solved by a Newton method. Usually, by taking the values at the previous iteration as starting
point, just few iterations are required to reach a tolerance within machine precision. The same
approach may be repeated at the other boundary node.

Finally, a generic time step from tn to tn+1 requires

• Solving the system for the boundary values An+1
h and Qn+1

h at the boundary nodes (two
uncoupled systems of non-linear equations for 4 unknowns in total);

• Using (1.46) to advance the interior nodes.

Remark 1.13. The boundary system (1.50) might be simplified further by performing a suitable
linearisation. Yet, since the cost of the Newton iterations at the boundary points is negligible
compared to that of the calculation of the interior values, there is little practical advantage in
doing so. Furthermore, one may add further approximation errors difficult to control.
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Figure 1.6: The layout of our numerical experiment.

1.3.3 Some numerical tests

Here we describe some numerical experiments we have performed in order to assess the nu-
merical scheme just presented. We will consider the situation of a stented artery and study the
changes in pressure pattern induced by the abrupt changes in the elastic characteristics due to
the presence of the stent, which is a metallic wire frame which is expanded and permanently
placed inside a stenosed artery in order to restore the lumen section. Fig. 1.6 shows the layout
of the numerical experiment.

Three types of pressure input have been imposed at z = 0, namely an impulse input, that
is a single sine wave with a small time period, a single sine wave with a more realistic time
period and a periodic sine wave (see Fig. 1.7). The impulse have been used to better highlight
the reflections.
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0
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Figure 1.7: The three types of pressure input profiles used in the numerical experiments: an
impulse (left) a more realistic sine wave (middle) and a periodic sine wave (right).

The part that simulates the presence of the prosthesis or stent of length l is comprised be-
tween coordinates a1 and a2. The corresponding Young’s modulus has been taken as a multiple
of the basis Young’s modulus E0 associated to the physiological tissue.

Three locations along the vessel have been identified and indicated by the letters D (distal),
M (medium) and P proximal. They will be taken as monitoring point for the pressure variation.
Different prosthesis length l have been considered; in all cases points P and D are located
outside the region occupied by the prosthesis. Table 1.1 indicates the basic data which have
been used in all numerical experiments. A time step ∆t = 2 × 10−6s and the initial values
A = A0 and Q = 0 have been used throughout. We have also neglected the friction term, so
that the source term B in equation (1.16) is zero and we have adopted (1.12) for the pressure-
area relationship and put Pext = 0.

The boundary data for this numerical tests are as follows. At the distal boundary z = L we
impose non reflecting boundary conditions by leaving W2 constant and equal to its reference
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Parameter
Input Pressure Amplitude 20x103dyne/cm2

FLUID Viscosity, ν 0.035poise
Density, ρ 1g/cm3

Young’s Modulus, E0 3x106dyne/cm2

STRUCTURE Wall Thickness, h 0.05cm
Reference Radius, R0 0.5cm

Table 1.1: Data used in the numerical experiments.

value. This simulates a tube of “infinite” length. At the proximal boundary, we would like to
impose the chosen pressure input p(0, t) = qp(t). Yet, as already noted a direct imposition of the
pressure will produce a reflecting boundary condition. To eliminate the reflections at the proxi-
mal boundary we would have to impose the incoming characteristic variable W1. Therefore, we
wish to transform the pressure condition in a condition on W1. By recalling the expression of
the characteristic variables given in 1.32) we note that we may write W1 as function of P and
W2, as follows:

W1(P,W2) = W2 +
4√
ρ

(√
P − β0

√
A0 − c1,0

)
.

Then we keep W2 fixed at its initial value, W2 = W2,0 and impose at z = 0

W1(t) = W2,0 +
4√
ρ

(√
qp(t) − β0

√
A0 − c1,0

)
. (1.51)

Although this relation imposes the pressure only implicitly and not in exact terms, it has
been proved very effective and enjoys good non-reflecting properties. Furthermore, it has been
found that in practice the pressure level obtained by this treatment differ by little (at most a
few percent) by the values provided by qp. This confirms that the propagation phenomena are
strongly dominated by the pressure.

The formulation illustrated so far does not allow for a discontinuous variation of the Young
modulus E. Therefore, we smoothed out the transition between E0 and E1, as depicted in
Fig. 1.8. A transition zone of thickness 2δ has been set around the point z = a1 and z = a2. In
that region the Young modulus varies between E0 and E1 with a fifth order polynomial law.

− −

1

a δ a a a2 δ+
z 

E

E

0

0
0

1 a1 a1 δ+ δ2 2 L

l
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Figure 1.8: Variation of Young’s modulus.
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Case of an impulsive pressure wave

In Fig. 1.9 we show the results obtained for the case of a pressure impulse. We compare the
results obtained with uniform Young’s modulus E0 and the corresponding solution when E1 =
100E0, l = a2 − a1 = 5cm and δ = 0.5cm. We have taken L = 15cm and a non uniform
mesh of 105 finite elements, refined around the points a1 and a2. When the Young modulus is
uniform, the impulse travels along the tube undisturbed. In the case of varying E the situation
changes dramatically. Indeed, as soon as the wave enters the region at higher Young’s modulus
it gets partially reflected (the reflection is registered by the positive pressure value at point P
and t ≈ 0.015s) and it accelerates. Another reflection occurs at the exit of the ‘prosthesis’,
when E returns to its reference value E0. The point M indeed registers an oscillatory pressure
which corresponds to the waves that are reflected back and forth between the two ends of the
prosthesis. The wave at point D is much weaker, because part of the energy has been reflected
back and part of it has been ‘captured’ inside the prosthesis itself.
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Figure 1.9: Pressure history at points P , M andD of figure 1.6, for an impulsive input pressure,
in the case of constant (upper) and variable (lower) E.

Case of a sine wave

Now, we present the case of the pressure input given by the sine wave with a larger period
shown in Fig. 1.7. We present again the results for both cases of a constant and a variable E.
All other problem data have been left unchanged from the previous simulation. Now, the inter-
action among the reflected waves is more complex and eventually results in a less oscillatory
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solution (see Fig. 1.10). The major effect of the presence of the stent is a pressure build-up at
the proximal point P , where the maximum pressure is approximately 2500dynes/cm2 higher
than in the constant case. By a closer inspection one may note that the interaction between
the incoming and reflected waves shows up in discontinuities in the slope, particularly for the
pressure history at point P . In addition, the wave is clearly accelerated inside the region where
E is larger.
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Figure 1.10: Pressure history at points P , M and D of figure 1.6, for a sine wave input pressure,
in the case of constant (upper) and variable (lower) E.

In table 1.2 we show the effect of a change in the length of the prosthesis by comparing
the maximum pressure value recorded for a prosthesis of 4, 14 and 24 cm, respectively. The
values shown are the maximal values in the whole vessel, over one period. Here, we have
taken L = 60cm, δ = 1cm, a mesh of 240 elements and we have positioned in the three cases
the prosthesis in the middle of the model. The maximum value is always reached at a point
upstream the prosthesis. In the table we give the normalised distance between the upstream
prosthesis section and of the point where the pressure attains its maximum.

Finally, we have investigated the variation of the pressure pattern due to an increase of
k = E/E0. Fig. 1.11 shows the result corresponding to L = 20cm and δ = 1cm and various
values for k. The numerical result confirms the fact that a stiffer prosthesis causes a higher
excess pressure in the proximal region.
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Prosthesis Maximal Maximum
length pressure location
(cm) (dyne/cm2) zmax/l

4 23.5 × 103 0.16
14 27.8 × 103 0.11
24 30.0 × 103 0.09

Table 1.2: Maximum pressure value for prosthesis of different length.
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Figure 1.11: Pressure history at pointP of figure 1.6, for a sine wave input pressure and different
Young’s moduli E = kE0.
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Case of a periodic sine wave

We consider here the case where the sine wave of the previous test case is repeated periodically
with a period T = 0.25sec as illustrated in Fig. 1.7. We have taken L = 120cm and a prosthesis
of 10cm between the points a1 = 70cm and a2 = 80cm. All other problem data have been left
unchanged. We have simulated six periods. Fig. 1.12 shows the pressure at the proximal posi-
tion z = 40cm, i.e. a point which is 30cm far from the prosthesis. In that position, the incoming
pressure wave adds to the reflected one and the result is a build-up of the maximum pressure
of approximately 2650dyne/cm2. This simulation shows that the effects of the presence of a
prosthesis are remarkable even far away form the prosthesis in the proximal region.
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Figure 1.12: Pressure history at point z = 40cm, for a periodic sine wave input, in the case of a
prosthesis positioned between a1 = 70cm and a2 = 80cm.

1.4 Towards a network of one dimensional models

In this section we will introduce a domain decomposition method for branching. The vascular
system is in fact a network of vessels that branches repeatedly and a model of just an artery
is of little use. A simple and effective idea is to describe the network by ’gluing’ together
one dimensional models. Yet, we need to find proper interface conditions (i.e. mathematically
sound and easy to treat numerically).

The technique may be adopted also in the case of abrupt changes of vessel characteristics,
as an alternative to the regularisation presented in the previous section. Indeed, we will treat
first the simple case of the coupling of two cylindrical segments of teh same artery, possibly
featuring different mechanical properties..

1.4.1 Domain decomposition approach for prosthesis simulation

We consider the case of a single discontinuity at z = Γ ∈ (0, L) of the Young modulus E
and thus of coefficient β0 in the pressure-area relationship (1.12), which is the one we adopt
in this section. By following the arguments in [5] we may infer that in this situation A (and
consequently P ) is (in general) discontinuous at z = Γ. As a consequence, the product A ∂P

∂z

in the momentum equation cannot be properly defined. This is the reason while the model is
inadequate in this situation. However, the technique of regularization of E used in the previous
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section requires to employ of a fine mesh around Γ to properly represent the transition, with a
consequent loss of efficiency of the numerical scheme. Also as a consequence of the CFL con-
dition, which obliges us to use smaller time steps as the spacing gets finer [13]. Furthermore, if
the solution is very steep, the Taylor-Galerkin scheme should be stabilised to avoid spurious os-
cillations, like all second-order schemes for non-linear hyperbolic problems, with the inevitable
addition of extra numerical dissipation (and a more complex coding!).

Following the domain decomposition approach [27] we instead partition the vessel Ω into
two subdomains Ω1 = (0,Γ) and Ω2 = (Γ, L) as shown in Fig. 1.13 and solve the original
problem in the two subdomains separately. Yet, we need to find the proper interface conditions
at Γ. For a standard system in conservation form, this would entail the continuity of the fluxes,
which corresponds to the Rankine-Huguenot condition for a discontinuity that does not propa-
gate [13]. Unfortunately, it is arguable whether the Rankine-Hugeunot conditions are applicable
in our case since can the equations in form (1.16) have been obtained under the assumption that
the solution be smooth.

Clearly, this problem concerns only the momentum equation as the continuity equation
is originally in conservation form and, by standard arguments we derive that mass flux is
continuous across the interface (a fact that agrees also with the physical intuition), that is
[Q] = Q+ − Q− = 0, having indicated with a + and a − quantities respectively on the left
and on the right of the interface Γ.

The interface condition for the momentum equation has to be driven instead by other consid-
erations. A choice often adopted in the literature [21] is to impose the continuity of pressure.
This condition just extrapolates what is done in simpler, linearised models, where the effect
of the convective term in the momentum equation has been neglected. Yet, in our non-linear
model, this condition allows for a possible increase of the energy of the system through the
discontinuity, a condition hardly justifiable by physical means.

In [9, 8] it has been shown that for the model at hand and in the case α = 1 a condition
which ensures that the domain decomposed problem has the same stability properties of the
’uncoupled’ one is the continuity of the total average pressure, Pt = P + 1

2
ρu2 = P + ρ

2

(
Q
A

)2
,

across the interface (together with the continuity of mass flux already established).

Then, referring again to Fig. (1.13), the coupled problem reads, in each domain Ωi, i = 1, 2

1Ω 2Ω

Interface Conditions

Ω

A  , Q  , p
1 1 1

A  , Q  , p
2 2 2

A, Q, p
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Figure 1.13: Domain decomposition of an artery featuring a discontinuous Young modulus
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and for all t ∈ I ,




∂Ai

∂t
+
∂Qi

∂z
= 0

∂Qi

∂t
+

∂

∂z

(
Q2

i

Ai

)
+ Ai

∂Pi

∂z
+KR

Qi

Ai
= 0

(1.52)

together with the interface conditions
{
Q1 = Q2

Pt,1 = Pt,2

at z = Γ, (1.53)

and appropriate initial and boundary conditions at z = 0 and z = L.
To solve the problems in Ω1 and Ω2 separately, we have devised a decoupling technique

which, at each time step from tn to tn+1, provides the Taylor-Galerkin algorithm with the val-
ues of the unknowns at the interface Γ. Since the interface conditions (1.53) are not enough
to close our problem we have to supplement them with some compatibility conditions of the
type discussed in Sect. 1.3.2, for instance in the form of the extrapolation of the characteristic
variables exiting Ω1 and Ω2 at Γ.

We here indicate with W−
1 and W+

2 the values at z = Γ and t = tn+1 of the (outgoing)
characteristic variables W1 and W2, relative to domain Ω1 and Ω2, respectively, obtained by
extrapolation from the data at t = tn. While W−

i (A,Q) and W+
i (A,Q), for i = 1, 2 indicate

the relations (1.31) computed at the two sides of the interface. We finally obtain the following
non-linear system for the interface variables A+, A−, Q+ and Q− at time step n+ 1





Q− −Q+ = 0

ψ(A−;A−
0 , β

−
0 ) + ρ

2

(
Q−

A−

)2

− ψ(A+;A+
0 , β

+
0 ) + ρ

2

(
Q+

A+

)2

= 0

W−
1 (A−, Q−) −W−

1 = 0

W+
2 (A+, Q+) −W+

2 = 0

(1.54)

which is solved again by a Newton scheme. For the sake of generality, we have assumed that
also the reference section area A0 might be discontinuous at z = Γ. It has been verified that
the determinant of the Jacobian of system (1.54) is different from zero for all allowable values
of the parameters, thus guaranteeing that the Newton iteration is well-posed. It has also been
found that, by using as starting values the unknowns at time tn, the method converges in few
iterations with a tolerance of 10−8 on the relative increment.

For values of pressure and velocities typical of blood flow the value of pressure is much
greater than the kinetic energy ρ

2
ū2 This explains why the use of continuity of pressure (in-

stead of total pressure) at the interface may in fact be employed without normally encountering
stability problems. However, the conditions provided by (1.53) are, in our opinion, more sound.

Another alternative, which guarantees again a stability property, follows from the physical
argument that the change of total pressure along the flow at Γ should be a non positive function
of the mass flux. To account for this, one could impose instead of the second relation in (1.54)
a relation of the type

P+
t − P−

t = − sign(Q)f(Q), at z = Γ,
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being f a positive monotone “energy dissipation function” satisfying f(0) = 0. However, the
difficulties of finding an appropriate f for the problem at hand has brought us to consider only
the continuity of total pressure, which clearly corresponds to f ≡ 0.

1.4.2 Branching

The flow in a bifurcation is intrinsically three dimensional; yet it may still be represented by
means of a 1D model, following a domain decomposition approach, if one is not interested
in the flow details inside the branch. Figure 1.14 shows a model for a bifurcation. We have
simplified the real geometric structure by imposing that the bifurcation is located exactly on
one point and neglecting the effect of the bifurcation angles. This approach has been followed
also by other authors, like [22]. An alternative technique is reported in [32], where a separate
tract containing the branch is introduced.

In order to solve the three problems in Ω1 (main branch), Ω2 and Ω3 we need to find again
appropriate interface conditions. The hyperbolic nature of the problem tells us that we need
three conditions.

We follow the same route as before and we first state the conservation of mass across the
bifurcation, i.e.

Q1 = Q2 +Q3, at z = Γ, t ∈ I. (1.55)

We note that the orientation of the axis in the three branches is such that a positive value of Q1

indicates that blood is flowing from the main branch Ω1 into the other two. Again an energy
analysis similar to that of the previous section allows us to conclude that a proper interface
condition would entail the condition Pt,1Q1 − Pt,2Q2 − Pt,3Q3 ≥ 0. It is expected that the
complex flow in the bifurcation will cause an energy dissipation and consequently a decrease in
the total pressure in the direction of the flow field across the bifurcation, and this loss should be
related to the fluid velocity (or flow rate) and to the bifurcation angles.

A possibility to account for this is to impose, at z = Γ, that

Pt,1 − sign(ū1)f1(ū1) = Pt,2 + sign(ū2)f2(ū2, α2), (1.56)

Pt,1 − sign(ū1)f1(ū1) = Pt,3 + sign(ū3)f3(ū3, α3),

where α2 and α3 are the angles of the branches Ω2 and Ω3 with respect to the main one (see
fig. 1.15); f1, f2 and f3 are positive functions and equal to zero when the first argument is zero.
These can be chosen to be:

f1(u) = γ1u
2, fi(u, α) = γiu

2
√

2(1 − cosα), i = 2, 3, (1.57)

where the γi are non-negative coefficients. Again, because of the complexity of obtaining the
correct value for the γi it is usually preferred to just impose the continuity of total pressure, i.e

Pt,1 = Pt,2 = Pt,3, at z = Γ. (1.58)

which satisfies the stability condition (when coupled with the continuity of mass fluxes) and
correspond to choosing all the γi equal to zero.

In the numerical scheme, (1.55) and (1.56) will be complemented by three compatibility
relations, which can be expressed again by the extrapolation of the outgoing characteristic vari-
ables. We have thus a non linear system for the six unknowns An+1

i , Qn+1
i , i = 1, 2, 3, at the

interface location Γ, which is again solved by a Newton iteration.
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Figure 1.14: One dimensional model of bifurcation by domain decomposition technique
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Figure 1.15: A sketch of a branching.
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1.4.3 A numerical test: bifurcated channel with endograft

Here we show an application of the one dimensional model to a real-life problem. Abdominal
aortic aneurysms (AAA) represent a significant and important vascular disease. They are char-
acterised by an abnormal dilatation of a portion of the aorta. This swollen region would enlarge
with time and, without a surgical treatment, it will eventually break with fatal consequences.
Even if open surgical repair is still the standard treatment for AAA, endografts and endovascular
stent grafts begin to play a major role as they allow a less invasive treatment (fig. 1.16).

The presence of an endograft may be treated by our one-dimensional model as a bifurcated
channel with varying mechanical properties, as shown in Fig. 1.17. The domain is decomposed
into 6 regions, Ωi, i = 1, . . . , 6 and the interface conditions of type (1.53) or (1.55)-(1.58) are
used where appropriate.

A preliminary numerical test has been carried out by selecting all Ωi to be of equal length
L=5 cm. We considered everywhere ρ =1 gr/cm3, ν = 0.035 cm2/s, α = 1, h0 =0.05 cm;
while the Young’s moduli have been taken to be equal to Eendograft = 60 106 dyne/cm2 for the
endografted part (Ωi, i = 2, 3, 5) andEvessel = 10 106 dyne/cm2 for the remaining subdomains.
The vessel reference radii have been taken to be R0,1 = R0,2 = 0.6 cm, R0,3 = R0,4 = 0.4 cm
and R0,5 = R0,6 = 0.5 cm.

At inlet we have imposed a half sine pressure wave of period 0.1 s and amplitude 20000
dyne/cm2.
The spatial grid was uniform with a total of 546 nodes. The computations were carried out with
a time step ∆t 0.00001 s.

Figures 1.18, 1.19, 1.20 report the time evolution for the area A and the two characteristic
variables W1 and W2 at three given points, respectively at the middle of Ω1, and of Ω2 and of
Ω6. By inspecting figure 1.18 we remark that in W1 we find the input wave imposed at inlet,
while in W2 we find the composition of two effects, the wave reflected from the beginning of
the endograft and the wave reflected from the branching point. These modify the sinusoidal
shape of the area A. On Figure 1.19 we find in W2 only the wave reflected from the branching
point. Finally, in figure 1.20 we do not find reflected waves (being the outlet boundary condition
an absorbing one); moreover, in W1 we can observe the part of the wave passing through the
branches.

1.4.4 Simulation of a complex arterial network

Here we report on a simulation for a network formed by the main 55 arteries of the human
cardiovascular system, more details may be found in [29]. The results shown here are indeed
the same reported in this reference and have been obtained using a different numerical scheme,
namely Discontinuous-Galerkin finite elements. However, the simulations have been repeated
using the Taylor-Galerkin approach, with negligible difference in the obtained results.

Figure 1.21 shows the connectivity of the arteries used in our model of the arterial network,
while the numerical values of the parameters of the arterial tree are included in table 1.3.

The flow in the 55 arteries is assumed initially to be at rest. The density of blood was taken
to be ρ = 1.021 × 103Kg/m3. A periodic half sine wave is imposed as an input wave form at
the ascending aorta (artery 1), which has the form

A(t) = 1 − 0.597 δ(t)H [δ(t)] ; δ(t) = sin(wt+ 0.628) − 0.588
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Figure 1.16: Endograft placement in the surgical treatment of abdominal aortic aneurysms.
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Figure 1.17: Modelling (left) and domain decomposition (right) of a bifurcation with an endo-
graft.
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Figure 1.18: Bifurcation with endograft: time evolution for the area and the characteristic vari-
ables in the middle of domain Ω1.
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Figure 1.19: Bifurcation with endograft: time evolution for the area and the characteristic vari-
ables in the middle of domain Ω2.
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# Artery Length (cm) Area (cm2) β
(
kg s−2 cm−2

)
Rt

1 Ascending Aorta 4.0 5.983 97 -
2 Aortic Arch I 2.0 5.147 87 -
3 Brachiocephalic 3.4 1.219 233 -
4 R. Subclavian I 3.4 0.562 423 -
5 R. Carotid 17.7 0.432 516 -
6 R. Vertebral 14.8 0.123 2590 0.906
7 R. Subclavian II 42.2 0.510 466 -
8 R. Radial 23.5 0.106 2866 0.82
9 R. Ulnar I 6.7 0.145 2246 -

10 R. Interosseous 7.9 0.031 12894 0.956
11 R. Ulnar II 17.1 0.133 2446 0.893
12 R. Internal Carotid 17.6 0.121 2644 0.784
13 R. External Carotid 17.7 0.121 2467 0.79
14 Aortic Arch II 3.9 3.142 130 -
15 L. Carotid 20.8 0.430 519 -
16 L. Internal Carotid 17.6 0.121 2644 0.784
17 L. External Carotid 17.7 0.121 2467 0.791
18 Thoracic Aorta I 5.2 3.142 124 -
19 L. Subclavian I 3.4 0.562 416 -
20 Vertebral 14.8 0.123 2590 0.906
21 L. Subclavian II 42.2 0.510 466 -
22 L. Radial 23.5 0.106 2866 0.821
23 L. Ulnar I 6.7 0.145 2246 -
24 L. Interosseous 7.9 0.031 12894 0.956
25 L. Ulnar II 17.1 0.133 2446 0.893
26 Intercostals 8.0 0.196 885 0.627
27 Thoracic Aorta II 10.4 3.017 117 -
28 Abdominal I 5.3 1.911 167 -
29 Celiac I 2.0 0.478 475 -
30 Celiac II 1.0 0.126 1805 -
31 Hepatic 6.6 0.152 1142 0.925
32 Gastric 7.1 0.102 1567 0.921
33 Splenic 6.3 0.238 806 0.93
34 Superior Mesenteric 5.9 0.430 569 0.934
35 Abdominal II 1.0 1.247 227 -
36 L. Renal 3.2 0.332 566 0.861
37 Abdominal III 1.0 1.021 278 -
38 R. Renal 3.2 0.159 1181 0.861
39 Abdominal IV 10.6 0.697 381 -
40 Inferior Mesenteric 5.0 0.080 1895 0.918
41 Abdominal V 1.0 0.578 399 -
42 R. Common Iliac 5.9 0.328 649 -
43 L. Common Iliac 5.8 0.328 649 -
44 L. External iliac 14.4 0.252 1493 -
45 L. Internal Iliac 5.0 0.181 3134 0.925
46 L. Femoral 44.3 0.139 2559 -
47 L. Deep Femoral 12.6 0.126 2652 0.885
48 L. Posterior Tibial 32.1 0.110 5808 0.724
49 L. Anterior Tibial 34.3 0.060 9243 0.716
50 R. External Iliac 14.5 0.252 1493 -
51 R. Internal Iliac 5.1 0.181 3134 0.925
52 R. Femoral 44.4 0.139 2559 -
53 R. Deep Femoral 12.7 0.126 2652 0.888
54 L. Posterior Tibial 32.2 0.110 5808 0.724
55 R. Anterior Tibial 34.4 0.060 9243 0.716

Table 1.3: Data used in the computational model of the 55 arteries.
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Figure 1.20: Bifurcation with endograft: time evolution for the area and the characteristic vari-
ables in the middle of domain Ω6.

where w = 2π/T , T = 1 and H(δ) denotes the Heaviside step function. As explained in Sec.
1.3.3, to prevent spurious reflection the boundary condition has been imposed not directly but
through the computation of an equivalent characteristic variable W1. The graph of W1 against
time in figure 1.22 represents the form of the input wave. The upstream condition is either a
non-reflecting condition or a terminal resistance condition. If at a terminal location W1 and W2

are the outgoing and the incoming characteristic variables, respectively, this condition states
that W2 = −RtW1, where the reflection coefficients Rt are listed in Table 1.3. The condition
Rt = 0 would correspond to a non-reflecting condition, while Rt = 1 gives a perfect blockage
since in that case u = 0 at the terminal section.

Figures 1.22, 1.23 and 1.24 show eight time history graphs over a single cycle for three
different arteries in the network: ascending aorta (artery 1), femoral artery (artery 46) and
anterior tibial (artery 49). The history point was at the start of each artery. The results are
shown for a free outflow (i.e. no terminal resistance) and with terminal resistance applied.

The inclusion of resistance to the terminal arteries increases the number of waves in the
system due to forward travelling waves being reflected at the terminal vessels and introduces
backward travelling waves, W2, which are re-reflected at the bifurcations, hence a complex
pattern of waves occurs in the network. Since the reflection coefficients are close to 1 in the
terminal vessels W2 is similar in magnitude to W1 and will have a large effect on the wave
forms, particularly in the end vessels, figure 1.24b. Introducing resistance has greatly changed
the shapes of all the waves throughout the arterial network. The shape of the waves varies
significantly from vessel to vessel whereas the shapes of the waves in the network with no
terminal resistance were all very similar.

The inclusion of terminal resistance leads to more realistic results. Even though quantitative
comparisons are difficult due to the lack of accurate values of the elastic properties of the arter-
ies, the computed pressure (or area) waveforms show an increase in their peak value as we move
down the system whilst the mean pressure slowly decreases. This behaviour is qualitatively sim-
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Figure 1.21: Connectivity of the 55 main arteries in the human arterial system.

ilar to that observed in the human arterial system, see for instance the in-vivo measuraments by
Mills et al. (1970) reproduced in [20]. Terminal resistance also creates regions of flow reversal
due to the reflected velocity wave and increases in area as a result of the re-enforcing effect of
the reflected pressure wave. It has also produced a waveform which includes a diacrotic notch
in the ascending aorta (artery 1). This is highlighted in the time evolution of the area depicted
in figure 1.22b. This is also in agreement with in-vivo data [20].

1.5 More advanced models

In this last secton we present some preliminary results obtained using some advanced wall
models following the technique autlined in Sec. 1.2.3. Here we adopt throughout relation
(1.12) for the elastic contribution.
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(a) (b)

Figure 1.22: Time histories at the ascending aorta (artery 1) considering: (a) no terminal resis-
tance and (b) terminal resistance. Plots of velocity, area and the characteristic variables W2 and
W1.

Therefore, the adopted model may be written as

m
∂2A

∂t2
− γ

∂A

∂t
− a

∂2

∂z2
(
√
A−

√
A0) + β0

√
A−√

A0

A0

= P, (1.59)

where we have taken Pext = 0, A0 and β0 constant, while

m =
ρwh0

2
√
π
√
A0

, γ =
γ̃

2
√
π
√
A0

, a =
ã√
π
.

This model should be integrated with the fluid equations as already shown in order to retain
the basic two-equations structure of the model. Since we assume that the dominant term is
still the one related to the elestic properties of the vessel wall, we will adopt an operator split-
ting procedure for the numerical approximation, where the first operator is just the hyperbolic
operator already analysed, which will be discretised again by the Taylor-Galerkin scheme.
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Figure 1.23: Time histories at the femoral artery (artery 46) considering: (a) no terminal resis-
tance and (b) terminal resistance. Plots of velocity, area and the characteristic variables W2 and
W1.

We are mainly interested in identifying the effects of the extra terms on the vessel mechanics.
The next sections will systematically analyse the effect of each of the added in turn.

1.5.1 Wall inertia term

The inertia term accounts for the wall mass and its acceleration: using physical arguments we
can argue that it will be important only in case of large vessel mass and/or high frequency wave
(big acceleration). In these cases we expect oscillations to occur at a frequency dependent on
the wave length.

The contribution of this term in the momentum equation can be written, using the continuity
equation, as

A

ρ

∂

∂z

(
m
∂2A

∂t2

)
= −Am

ρ

∂3Q

∂t∂z2
. (1.60)
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System (1.16), augmented by the inertia term would then read




∂A

∂t
+
∂Q

∂z
= 0

∂Q

∂t
+

∂

∂z
F2(A,Q) − Am

ρ

∂3Q

∂t∂z2
= B2(A,Q),

(1.61)

where F2(A,Q) and B2(A,Q) denote the second component of the flux F and of the source
term B, respectively.

The differential system (1.61) may be written in an equivalent way by splitting the flow rate
Q = Q̂ + Q̃, where Q̂ and Q̃ are implicitly defined through the set of equations

∂A

∂t
+
∂Q

∂z
= 0

∂Q̂

∂t
+

∂

∂z
F2(A,Q) = S(A,Q)

∂Q̃

∂t
− Am

ρ

∂3Q

∂t∂z2
= 0.

(1.62)

This allows us to devise the following operator splitting strategy. On each time interval
[tn, tn+1], n ≥ 0, system (1.62)1,2 by the Taylor-Galerkin scheme described in Sec. 1.3.1 and
we correct the mass flux by employing Eq. (1.62)3. More precisely, the adopted finite element
formulation for the latter equation reads: given An+1

h and Q̂n+1
h , find Q̃h ∈ V 0

h such that
(

1

An+1
h

Q̃n+1
h , ψh

)
+
m

ρ

(
∂Q̃n+1

h

∂z
,
∂ψh

∂z

)
=
m

ρ

(
∂Q̂n+1

h

∂z
,
∂ψh

∂z

)
, ∀ψh ∈ V 0

h .

This corresponds to having imposed a homogeneous boundary condition for the correction term
Q̃.
An alternative approach can be found in [1].

In the following numerical experiments we have set ρ = 1 gr/cm3, ν =0.035 m2/s, R0

has been taken constant and equal to 0.5 cm, h0 =0.05 cm and E = 3 106 dyne/cm2. The
simulations have been carried out using a time step ∆t =1 10−5 s.
Figure 1.25 shows the results for a realistic test problem where the vessel wall density is set to
ρw = 1gr/cm3 and we take a wave of length 32 cm (picture on the top-left of Figure 1.25). It
may be noted that the inertia term yields a relative variation in the vessel area of the order of
10−3. We may also note the high frequency oscillations induced by the inertia term. Clearly, in
real conditions these oscillations are damped out by the viscoelastic term. As high frequency
are solicited, the variation in the flow rate behaviour is more important. We also report some
numerical experiments carried out in the same geometrical configuration using a pressure wave
pulse of length 4. cm (pictures on the top-left of Figures 1.26 and 1.27) and a wall density of 1
and 100 gr/cm3, respectively. These tests have been carried out to enhance the inertia effects
and are reported in Figures 1.26 and 1.27. Note, in particular, that the value 100 gr/cm3 is
unrealistic in physiological conditions. These tests show that the inertia term play a major role
when the mass or the vessel acceleration are important.
A qualitative comparison with the result obtained by a two dimensional fluid-structure interac-
tion code has been carried out only for the test case of Figure 1.26; a good agreement has been
found.
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1.5.2 Viscoelastic term

In the generalised string model there are two possible viscous effects. Here, we have consid-
ered only the term in the form γ̃ ∂η

∂t
, since the term (c̃ ∂3η

∂t∂z2 ) will produce a fourth order spatial
derivative in the momentum equation that makes its numerical treatment more difficult.

After introducing the term in the momentum equation and using the continuity equation, the
modified system reads





∂A

∂t
+
∂Q

∂z
= 0

∂Q

∂t
+
∂F2(A,Q)

∂z
− Aγ

ρ

∂2Q

∂z2
= B2(A,Q).

(1.63)

This system has been solve by an operator splitting procedure similar to that introduced before
and an implicit Euler discretisation for the correction term Q̃.

Tests have been carried out to investigate the effects of the viscoelastic term. We set ρ =
1 gr/cm3, ν =0.035 m2/s, R0 = 0.5 cm, h0 =0.05 cm and E = 3 106 dyne/cm2. The
simulations have been carried out with a time step ∆t =1 10−4 s and a space discretization
∆x = 0.1 cm.
In Figure 1.28 we report the results of a short half sine pressure wave (period 0.015 s, amplitude
20000 dyne/cm2) and a longer one (period 0.3 s, amplitude 20000 dyne/cm2) imposed at inlet.
We should note that the solutions with (γ = 3 gr/cm3s) and without the viscoelastic term have
a relative difference in the area of less than 1 %.

1.5.3 Longitudinal elasticity term

Experimental findings show that vessel walls are longitudinally pre-stressed [12]. This orig-
inates the second z derivative term in the generalised string model [24]. Accounting for this
term by using the techniques previously illustrated would produce a modified system of the type





∂A

∂t
+
∂Q

∂z
= 0

∂Q

∂t
+
∂F2(A,Q)

∂z
− Aa

ρ

∂3

∂z3

(√
A−

√
A0

)
= B2(A,Q).

(1.64)

Solving this system by an operator splitting technique like that presented in Sec. 1.5.1 would
require the solution of a differential equation for the correction term Q̃ given by

∂Q̃

∂t
− Aa

ρ

∂3

∂z3

(√
A−

√
A0

)
= 0. (1.65)

The correction Q̃n+1
h ∈ V 0

h has been computed by a collocation procedure and using a finite
difference approximation for the third derivative term of An+1

h (which is computed in the first
step of the operator splitting procedure).

The effect of the longitudinal pre-stress is more important when strong area gradients are
present. To analyse thus, we considered a stented artery of total length L = 15 cm with a stent
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of length 5 cm placed in the middle. The vessel has a radius R0 = 0.5 cm and h0 = 0.05 cm.
The Young’s modulus is E = 3 106 dyne/cm2 for the healthy portion of the artery and Es = 30
106 dyne/cm2 for the stented part. At z = 5 cm and z = 10 cm the Young’s modulus has been
regularised by a fifth-order function (as done in [10]); the length of the variation zone was 0.1
cm. The coefficient ã was set to 104 gr/s2. Finally, we have taken ρ = 1 gr/cm3, ν = 0.035
cm2/s and α = 1.

At inlet we imposed a half sine pressure wave of period T = 0.4 s and amplitude of 20000
dyne/cm2.

Figure 1.29 shows that, without the longitudinal elasticity term (solution represented by a
continuous line), there is an abrupt variation in the area. Clearly this solution is not physiolog-
ical as we cannot have, in the limit, a discontinuous area. Taking in account the effect of the
longitudinal elasticity term, that ”discontinuity” is smoothed with a jump between the values of
the area on the left and the right of the same magnitude.
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Figure 1.24: Anterior tibial artery (terminal artery 49). Time history comparison of waves forms
with: (a) no terminal resistance and (b) terminal resistance. Plots of velocity, area and the
characteristic variables W2 and W1.
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Figure 1.25: Inertia effects on the solution; on the top-left the initial configuration is reported:
a half sine wave of length 35 cm. The solutions without inertia term (top-right), with inertia
term (bottom-left) and the difference between the two (bottom-right) for a fixed time (0.05 s)
are reported too.
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Figure 1.26: Inertia effects on the solution; on the top-left the initial configuration is reported: a
half sine wave of length 4 cm. The solutions without inertia term (dotted line) and with inertia
term, wall density set to 1 gr/cm3, (continuous line) for different time steps are also reported.
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Figure 1.27: Inertia effects on the solution; on the top-left the initial configuration is reported: a
half sine wave of length 4 cm. The solutions without inertia term (dotted line) and with inertia
term, wall density set to 100 gr/cm3, (continuous line) for different time steps are also reported.
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Figure 1.28: Viscoelasticity effects on the solution at two given time steps: solution of the prob-
lem without viscoelasticity term (top) and difference between the solutions with and without
viscoelastic term (bottom).
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Figure 1.29: Longitudinal elasticity effects on the solution at two different time steps (the dotted
line represents the solution with the longitudinal pre-stress term).
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Chapter 2

Geometrical multiscale models of the
cardiovascular system: from lumped
parameters to 3D simulations

2.1 Why do we need multiscale models?

One of the major difficulties encountered when wishing to model in an accurate way the hu-
man cardiovascular system is that it is in fact formed by a closed network with a high level of
inter-dependency. The flow dynamics of the blood in a specific vascular district (local haemo-
dynamics) is strictly related to the global, systemic dynamics. For instance, the distribution
of blood flow inside the various vascular districts, which is a systemic feature, influences for
the blood dynamics in each district (local feature). Besides, the study of local flow feature is
important since pathologies like the formation of local intimal thickening or plaques is strongly
influenced by the local hemodynamics (see e.g. [48]). On the other hand, local alteration in
vascular lumen induces a global redistribution of the blood flow, giving rise to compensatory
mechanisms that, at some extents, can ensure a sufficient blood flow in the districts downstream
the stenosis. Neglecting such effect provides only a partial information.

For instance, in [2], it is shown that even a strong reduction in the vascular lumen in a
carotid bifurcation does not mean a relevant reduction of the blood supply to the brain. In
[44] experimental results are explained by using a numerical model for the cerebral circulation.
The authors simulate an occlusion of the Internal Carotid Artery (ICA) and compute, by means
of classical 1D models for the circulation, the outcoming flow from the circle of Willis into
the Middle Cerebral Artery (MCA). Both experimental and numerical results clearly show that,
unless other vessels of the Willis circle are occluded, the blood supply flowing towards the cere-
bral system is not significantly reduced. This is due to the presence of compensatory systemic
mechanisms that increases the blood flow in other incoming vessels.1 (see Figs. 2.1, 2.2, 2.3).

This reciprocal influence between local and systemic hemodynamics has led to the concept
of geometrical “multiscale” modelling of the circulation

1The compensation in [44] is essentially driven by mechanical effects. Other biochemical mechanisms such
the so-called autoregulation, i.e. an increase of the vessel radii induced by a biochemical signal in presence of a
stenosis is not considered here. This biochemical feedback, in fact, makes the downstream flow reduction even
more less relevant and the overall system more reliable.
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Figure 2.1: Flow reduction in the Middle Cerebral Artery (MCA) when an occlusion in an
Internal Carotid Artery (ICA) is simulated. If the Anterior Communicating Artery (ACoA) and
the Posterior Communicating Artery (PCoA) are physiologically perfused (radius 0.8 mm), the
flow reduction is small. Flow reduction becomes significant if one or both the Communicating
arteries are (partially or totally) occluded too.

Figure 2.2: Flow increment in the health(=not occluded) ICA when the other is occluded under
the same conditions simulated in Fig. 2.1. Pictures taken from [44].
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Figure 2.3: Flow increment in the Vertebral Artery (VA) when one ICA is occluded under the
same conditions simulated in Fig. 2.1.

Remark 2.1. The term “multiscale” is often used with different meanings in different fields of
mathematical and numerical modelling. (e.g. wavelets, turbulence modelling etc.).

Indeed, even in the present context we could consider other “multiscale” phenomena. For
instance with respect to time, as the characteristic period driving the cardiovascular system is
the heart beat, about 0.8 s, while related phenomena, like atherosclerotic plaques formation,
develop over months or years. The coupling of these different time scales is another challenge
of numerical cardiovascular modelling.

Therefore, in order to avoid ambiguities, we indicate by the term geometrical our present
multiscale perspective. In fact, this feature is common to all many problems involving modeling
subregions of a larger and complex system, such as hydraulic or electric networks. Examples
are the simulation of exhaust systems of Diesel engines (see [6]), and the design of electric
circuits (see [1]).

A multiscale perspective is relevant even when one is interested just on the description of
the local flow. Indeed, the formulation of a mathematical well posed problem requires the spec-
ification of boundary data (see Fig. 2.4). The vascular walls are physical boundaries and the
correct conditions are suggested by physical assumptions such as the continuity of the velocity
field. However, artificial boundaries (e.g. Γin, Γout1 and Γout2 in Fig. 2.4) have to be introduced
to delimit the vascular district at hand. In fact, they are the interface between the district under
consideration and the remainder of the circulatory system. Boundary conditions on such bound-
aries are critical and, in fact, influenced by the “multiscale” nature of the circulation. Whenever
such data are not available from specific (and accurate!) measurements, a proper boundary con-
dition would require a mathematical description of the action of the circulatory system on the
vascular district to hand. Clearly, since it is not affordable to describe the whole circulatory
system at the same level of detail, this mathematical description relies on simpler models.

While the local model will be typically based on the solution of the incompressible Navier-
Stokes possibly coupled with the dynamics of the vessel walls (see e.g. [28], [9]), the systemic
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Figure 2.4: Schematic representation of a carotid bifurcation. We need to find suitable data for
the “artificial” boundary sections Γ in, Γout1 and Γout2.

model will be based on 1D models, such the ones introduces in [10], or, (more frequently) by
lumped parameters models based on the solution of a system of ordinary differential equation
(in time) for the average mass flow and pressure in the different compartments forming the
cardiovascular system.

The lumped parameters models are often based on the analogy between hydraulic and elec-
tric networks. Indeed one of the first (if not the first) simulator of the cardiovascular system was
analogic [45] and based on an actual electric network. Other very rough (and however popu-
lar) lumped models for the circulation are the Windkessel (see [22]) and its improved version,
called Westkessel. They also admit a representation by an electric circuit (see Fig. 2.5).

U

Heart System

RC 2 U

Heart System

RC

L

R1 2

Figure 2.5: Representation of the classical Windkessel model and the modification introduced
by N. Westerhof, (Westkessel model), based on electric circuits

Besides their intrinsic relevance, these models are of great interest in our multiscale per-
spective. Indeed, they provide a systemic description of the main phenomena related to the
circulation (such as the compensatory mechanisms mentioned above) at a low computational
cost. They may thus be coupled with an accurate (but local) description of a vascular district of
interest.

The mathematical and numerical issues related to this coupling are nontrivial. The different
level of detail of the different models is reflected by different mathematical features. Navier-
Stokes equations are a system of non-linear partial differential equations which are essentially
parabolic for the velocity, while the 1D models are (mainly) based on hyperbolic partial differ-
ential equations, and the lumped parameter models do not feature a spatial dependency and are
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described by means of ordinary differential equations in the time variable (for this reason, they
are also called “0D models”). A particular care has therefore to be taken in managing the in-
terfaces between models in order to have mathematically well posed problems and to guarantee
accurate numerical results.

In these notes, we will start with a short introduction of the lumped parameter description of
the circulation and its basic mathematical features (Sect. 2). Then we will focus our attention on
the coupling between different models. We will consider first some basic issues for the numer-
ical treatment of the Navier-Stokes problem coupled with 1D and 0D models (Sect. 3). Then,
we will tackle multiscale models both from the mathematical and the numerical viewpoint. We
will address both the 3D-0D and the 3D-1D models coupling (Sect. 4). Numerical results are
presented in Sect. 5 to show the effectiveness of the multiscale approach not only for academic
test cases but also in simulations of real medical interest.

2.2 Lumped parameters models for the circulation

Many biological systems feature complex mechanisms given by the interaction of elementary
components. A possible and effective description of such systems is based on the identification
of these elementary components, often called compartments (see e.g. [4]) and their mutual
interaction. In the case of cardiovascular modeling, we could say that a compartment is a part
of the system which is reasonable to consider as a whole, according to the needed accuracy
in the description of circulation. The behavior of the blood in a compartment is described in
terms of quantities (typically the flow rate and pressure) “averaged” (in space) over the whole
compartment. The mathematical description of this system can be therefore provided by:

1. the description of each compartments;

2. the description of the interactions among the compartments.

The number of the compartments involved depends on the level of accuracy requested to the
model. For instance, if one wants to investigate heart failures with the purpose of increasing
the cardiac function without a significant (and dangerous) increment of the systolic pressure,
a two-compartments description of the cardiovascular system can be enough, featuring the left
ventricle and the systemic circulation respectively (see [22], Chap. 13). The Windkessel and
Westkessel models are instances of two-compartments model (the heart and the vascular sys-
tem), the latter featuring a more precise description of the vascular compartment. More com-
plex examples can be found in [15] - Chap 5, and [17], Chap. 14, where an accurate sensitivity
analysis of the parameters of a four-compartments description of the cardiovascular system is
carried out. Other references are [18] and [47].

Lumped parameters models that we are going to introduce in view of multiscale modeling
are, in fact, compartments models which can be described by following the two steps mentioned
above. In particular, in the present notes, we will firstly introduce lumped parameters models
(Sect. 2.2.1 and 2.2.2) for 1) a simple compliant cylindrical vessel and 2) the heart.

The mathematical description for the former will be obtained by a suitable averaging of the
Navier-Stokes equations, after a few simplifying assumptions.

Then in (Sect. 2.2.3), we will consider models for the whole circulation, based on the
assembly of models of type 1) and 2). We will extensively exploit at the descriptive level the
analogy between hydraulic and electric networks.
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2.2.1 Lumped parameters models for a cylindrical compliant vessel

The basic equations

Let us consider the simple cylindrical artery Ω illustrated in Fig. 2.6. In the sequel, x denote
the vector of the space variables and t > 0 the time.
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Figure 2.6: Single compliant vessel.

The boundary of Ω is composed by the compliant wall Γw and the sections Γ1 and Γ2, which
are the interfaces with the rest of the system. We call Γ1 the proximal or upstream section, i.e.
the section from which the blood comes from the heart; similarly, Γ2 is the distal or downstream
section, through which the blood leaves Ω towards the periphery.

We associate to each particular district of this type an oriented axis z. The position along
the vessel will be therefore identified by means of the abscissa associated to the axis, still called
z. In Ω, we have 0 ≤ z ≤ l (we adopt here the symbol l instead of L to denote the vessel length
since the latter will be used later to indicate the inductance). For every z, the axial section of
the vessel will be denoted by A(t, z). In the sequel, A(t, z) denotes the measure of A(t, z).
Assuming a circular cylindrical domain, we will have A(t, z) = πR2(t, z), where R(t, z) is the
radius of the section in z. Finally dσ will denote the infinitesimal part of A(t, z) and the volume
of Ω will be denoted by V .

The mathematical model for the description of the blood flow in Ω is given by the Navier-
Stokes equations for an incompressible fluid associated to a constitutive structure law relating
the stresses exerted by the fluid on the wall to the displacement of the vascular tissue: see e.g.
[9], [28].

In order to obtain a simplified model for this fluid-structure interaction problem, we will
introduce the same assumptions as for the deduction of 1D models discussed in [10] (Sect. 3),
that we recall here for the sake of completeness.

1 Axial symmetry, i.e. independence of all quantities involved from the circumferential coordi-
nate θ.

2 Radial displacement, i.e. each point on Γw moves only in the radial direction, so that if η is
the wall displacement, er the unit vector in the radial direction and R0 a reference radius,
η = (R − R0)er. This hypothesis is justified by experimental observations (see e.g.
[11]).

3 Fixed cylindrical axis, i.e. the axis z is assumed to be fixed in time.
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4 Constant pressure on each section, i.e. the pressure P is assumed to be dependent only on
the axial coordinate z and time t.

5 No body forces, i.e. body forces such as the gravity are neglected.

6 Dominance of axial velocity, i.e. the components of the velocity field orthogonal to the axis z
are considered negligible compared to the axial one. The axial component of the velocity
will be denoted by uz.

We now set Q(t, z) :=

∫

A(t,z)

uzdσ the volumetric mean flux through section A and, in

particular,

Q1(t) := Q (t, 0) , P1(t) = P (t, 0) , Q2(t) := Q (t, l) , P2(t) = P (t, l) . (2.1)

Starting from the previous assumptions, we integrate over each section A(t, z) the (simplified)
Navier-Stokes equations and obtain (see e.g. [9] and [10], Sect. 3) the following set of 1D
equations for z ∈ (0, L) and t ∈ (0, T ],





∂A

∂t
+
∂Q

∂z
= 0

∂Q

∂t
+ α

∂

∂z

(
Q2

A

)
+
A

ρ

∂P

∂z
+KR

Q

A
= 0

(2.2)

complemented by a suitable set of boundary and initial data. In (2.2), α (momentum-flux cor-
rection coefficient), ρ (blood density) and KR (friction parameter) are assumed to be constant.
In particular, KR is related to the (kinematic) blood viscosity ν and its actual expression de-
pends on the velocity profile. If a parabolic Poiseuille profile is assumed (which is of course a
simplifying assumption), KR = 8πν. A, P and Q are the unknowns. In order to close the sys-
tem, we need a further equation which is provided by the constitutive law for the vessel tissues.
Different possible laws are discussed in [10], Sects. 3.1 and 3.3. In the context of lumped pa-
rameters model we assume a simple linear algebraic law. In other words, we introduce a further
assumption.

7 The vessel wall displacement η is related to the pressure P by an algebraic linear law. Fol-
lowing [10], Sect. 3, we take

(P − Pext) = c(R− R0) = β0

√
A−√

A0

A0

(2.3)

where Pext and A0 = πR2
0 are a constant reference pressure and a constant reference

area, respectively, while c is a constant related to the physical properties of the vascular
tissues and β0 = A0c/

√
β0. More precisely, if h denotes the thickness of the vascular

tissue, E the Young modulus, ξ2 the Poisson ratio (which we set equal to 1/2, as for an
incompressible tissue), the linear elastic constitutive law yields:

c =
hE

R2
0(1 − ξ2)

=
4hE

3R2
0

.
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Now, observing that:

∂A

∂t
= 2πR

dη

dt
≈ 2πR0

∂η

∂t
,

we will assume:

∂A

∂t
=

3πR3
0

2Eh

∂

∂t
P

In the sequel, we will set k1 =
3πR3

0

2Eh
.

In order to provide a lumped description of the behavior of the blood in the whole district
Ω we need to perform a further averaging of (2.2), (2.3) over the axial coordinate z ∈ (0, l). To
this aim, it is useful to introduce the following notation. We define as the (volumetric) mean
flow rate over the whole district the quantity

Q̂ =
1

l

∫

V
uzdυ =

1

l

∫ l

0

∫

A(z)

uzdσdz =
1

l

∫ l

0

Qdz. (2.4)

Similarly , we define the mean pressure over the whole compartment as

p̂ =
1

l

l∫

0

Pdz. (2.5)

Let us integrate in z ∈ (0, l) the system (2.2). From the first equation, we obtain

∫ l

0

∂A

∂t
dz +

∫ l

0

∂Q

∂z
dz = 0.

Since from (2.3), ∂A/∂t = k1∂P/∂t we can exploit the notation introduced in (2.1). The
previous equation becomes

k1l
dp̂

dt
+Q2 −Q1 = 0. (2.6)

From the integration of the second equation of (2.2) we obtain

∫ l

0

[
∂Q

∂t
+ α

∂

∂z

(
Q2

A

)
+
A

ρ

∂P

∂z
+KR

Q

A

]
dz =

l
dQ̂

dt
+ α

[
Q2

2

A2

− Q2
1

A1

]
+

∫ l

0

[
A

ρ

∂P

∂z
+KR

Q

A

]
dz = 0

In order to have a linear model, we introduce some further assumptions. Namely,

8 The contribution of the convective terms may be neglected, i.e. we assume that the quantity

(
Q2

2

A2
− Q2

1

A1
) is small compared to the other terms and can be discarded, which is quite

reasonable for short pipes.

2.59



9 The variation of A with respect to z is small compared to that of P and Q, so that in the last
integral we have

∫ l

0

[
A

ρ

∂P

∂z
+KR

Q

A

]
dz ≈

∫ l

0

[
A0

ρ

∂P

∂z
+KR

Q

A0

]
dz.

By exploiting these assumptions we obtain, after some algebraic manipulations,

ρl

A0

dQ̂

dt
+
ρKRl

A2
0

Q̂+ P2 − P1 = 0. (2.7)

Equations (2.6) and (2.7) represent a lumped parameters description of the blood flow in the
compliant cylindrical vessel Ω, and involve the mean values of the flow rate and the pressure
over the domain, as well as the upstream and downstream flow rate and pressure values. This
model can be considered an elementary brick for the description of more complex systems, as
will be presented next.

In this perspective, it is useful to introduce the “electric-network” analogy of these equa-
tions.

Electric analog of the lumped parameter models

In equations (2.6),(2.7) we have some coefficients which have been obtained from the integra-
tion process. They are in fact the lumped parameters which summarize the basic geometrical
and physical features of the dynamic system formed by the blood flow and the vessel wall. Let
us try to summarize their meaning.

R In (2.7) we set R :=
ρKRl

A2
0

. If we assume a parabolic velocity we have

R =
8πρνl

π2R4
0

=
8µl

πR4
0

,

where R represents the resistance induced to the flow by the blood viscosity. Different
expressions for R can be obviously obtained for different velocity profiles or if a non
Newtonian rheology is introduced into the model (see e.g. [35], [45], [10], Sect. 3).

L In (2.7) we set L :=
ρl

A0

=
ρl

πR2
0

. L represents the inertial term in the momentum conserva-

tion law and will be called the inductance of the flow.

C In (2.6) we set C := k1l =
3πR3

0l

2Eh
. C represents the coefficient of the mass storage term in

the mass conservation law, due to the compliance of the vessel.

With this notation, equations (2.6), (2.7) becomes




C
dp̂

dt
+Q2 −Q1 = 0

L
dQ̂

dt
+RQ̂+ P2 − P1 = 0.

(2.8)
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Now, assume that some upstream and downstream data are available. For instance, suppose
that Q1 and P2 are given. Then, (2.8) represents a system of two equations for four unknowns,
Q̂, p̂, P1 and Q2. In order to close mathematically the problem we need some further assump-
tions. In particular, the dynamic of the system is represented by p̂ and Q̂, i.e. by the unknowns
that are under time derivative (the state variables), so it is reasonable to approximate the un-
knowns on the upstream and downstream sections with the state variables, that is

p̂ ≈ P1, Q̂ ≈ Q2.

With these additional assumptions, which are reasonable for a short cylindrical pipe, the lumped
parameters model becomes:





C
dP1

dt
+Q2 = Q1

L
dQ2

dt
+RQ2 − P1 = P2.

(2.9)

where the upstream and downstream prescribed data have been plugged into the right hand
side. This system can be illustrated by the electric L-network shown in Figure 2.7 (left). The
compliance has been gathered on section Γ1, where the flow rate is prescribed, and the inertial
effects have been allocated on Γ2, where the mean pressure is provided.

In the electric network analogy, the blood flow rate is assimilated to the current, while the
blood pressure corresponds to the voltage (see Tab. 2.1).

In a similar way, if the pressure P1 and the flow rate Q2 are prescribed, we still approximate
the unknown quantities on the upstream and downstream sections with the state variables, i.e.
p̂ ≈ P2, Q̂ ≈ Q1, yielding the system





C
dP2

dt
−Q1 = Q2

L
dQ1

dt
+RQ1 + P2 = P1.

(2.10)

The electric analog counterpart of (2.10), called L-inverted network, is given in Figure 2.7,
right.

The case when the mean pressures P1 and P2 are prescribed, can be modelled by a cascade
connection of L and L-inverted lumped representations. More precisely, if P1, P2 are prescribed
at upstream and downstream, respectively, we split the vessel into two parts Ω1 and Ω2 of length

R L

 1Q

C

Q 2

Q 2

 1  2P P

R L

 1Q Q 2

Q

 1  2C

 1

P P

Figure 2.7: Lumped L-network (left) and L-inverted network (right) equivalent to a short pipe
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Table 2.1: Correspondence table of the analogy between electric and hydraulic networks.
HYDRAULIC ELECTRIC

Pressure Voltage
Flow rate Current

Blood viscosity Resistance R
Blood inertia Inductance L

Wall compliance Capacitance C

l/2. On the first part Ω1 we assume that P1 and the flow rate Q̂ are known; on the second one
Ω2 we assign the flow rate Q̂ and the downstream pressure P2. In this way, the whole vessel Ω
is reinterpreted as the T -network shown in Figure 2.8. The resulting differential system can be
written:

dy

dt
= Ay + b(P1, P2)

with y = (P,Q1, Q2)
T ,

A =




0
1

C
− 1

C

− 2

L
−R
L

0

2

L
0 −R

L



, b(P1, P2) =




0

2

L
pup

− 2

L
pdw



.

In a similar way, if both the flow rates Q1 and Q2 are prescribed, the following system can be
obtained

dy

dt
= Ay + b(Q1, Q2)

where y = (P1, Q, P2)
T ,

A =




0 − 2

C
0

1

L
−R
L

− 1

L

0
2

C
0



, b(Q1, Q2) =




2

C
Q1

0

− 2

C
Q2



.

In this case, the vessel Ω is described by the electric π-network, obtained as a cascade connec-

 1Q

 1

R / 2

L / 2

C/2

Q Q 2

R / 2

L / 2

C/2

Q

P P P  2P

 1Q Q 2

C 1

R / 2 R / 2

L / 2 L / 2

 2P PP

Figure 2.8: Cascade connection of a L-inverted and a L-network (left), lumped T -network
(right).
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Figure 2.9: Cascade connection of a L-network and a L-inverted one (left), lumped π-network
(right).

tion of a L-network and a L-inverted network (Figure 2.9).
In terms of electric network analysis, all the circuits we found are examples of four terminal

network (see Fig. 2.10). A mathematical analysis of this kind of problems in the frequency
domain can be carried out by introducing a matrix of impedances or transfer functions between
each of the terminal variables of the network. Since in the present notes we are interested to
couple lumped parameters models to the complete set of the Navier-Stokes equations, which are
solved in the time domain, we will not go into details about the concept of matrix of impedances
and their use. The interested reader may referred to [22], [13].

p p

Q Q

1

1

2

2

Network

Four Terminal

Figure 2.10: Generic representation for a four terminal network.

Let us observe that the four different circuits arise from four different possible assumptions
about the kind of data prescribed on the upstream and downstream sections. With a little abuse
of notation we could call them “boundary data” 2. The four different lumped models can be con-
sidered therefore as the lumped parameters simplification of four different “boundary” values
problems.

Remark 2.2. Steady motion. Whenever the blood motion is steady, we may observe that the
lumped model of the compliant tube reduces to an algebraic relation, corresponding to a purely
resistive network. This is the assumption frequently made, for instance, in the capillaries dis-
tricts, where the pulsatility of blood induced by the periodic pumping of the heart is largely
damped by the compliance of the large arteries and the blood flow is essentially steady.

Remark 2.3. Some of the simplifications introduced can be removed (or reduced) by modifying
the network. For instance, if one wants to account for a possible blood seepage in the domain
Ω (due e.g. to some small branches that we do not want to model), it is possible to correct the
original π network as illustrated in Fig. 2.11 where the added resistance G governs the amount
of seepage (see [16]).

2Actually, in the simplification leading to lumped parameters models the dependence on the space variables
has been lost in the averages, so there is not a “boundary” of the domain.
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C

R L

C1
G

2
G

Figure 2.11: Electric network analogous for system accounting for a seepage.

We present an improved model that can be appropriate when dealing with a large vessel. In
this case, axial averaging could turn out to be too rough. We may deduce a more sophisticated
scheme, a the price of a higher complexity, by considering the vessel as a set of cylindrical
shells or “anular” elements (see 2.12) where the blood flows (sleeve effect). In this way, the
transversal average is taken not over the whole section, but over n concentric annuli, reducing
the associated approximation (see [16], [35]). The corrections can be still reinterpreted in
terms of electric circuits, as illustrated in Fig. 2.13.
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Figure 2.12: Representation of a cylindrical vessel as a set of concentric cylindrical shell
(“sleeve effect”)

2.2.2 Lumped parameters models for the heart

The heart is a special “compartment” of the vascular system that need a specific representation
in the lumped parameters framework. It is subdivided into two parts, called to the right and
the left heart, respectively, separated by the septum. The right heart supplies the pulmonary
circulation, while the left pumps the blood into the systemic tree (see Fig. 2.14).

Each side consists of two chambers, the atrium and the ventricle, seprated by the atrioven-
tricular valves (the tricuspid valve in the right side, the mitral valve in the left one). Their role is
to receive fluid at low pressure and transfer it to a higher pressure region. In other words, each
side acts as a pump (see [15]). Consider, for instance, the left ventricle. During the diastolic
phase the inflow valve is open and the aortic outflow valve is closed. The blood enters from the
left atrium at a pressure roughly equal that in the pulmonary veins (≈ 5 mm Hg). During the
systolic phase the inflow valve closes while the outflow opens. Blood is then pumped into the
arterial system with a pressure of about 100 mm Hg. Each ventricle can be described as a vessel

2.64



C
2

1
p p2

Q2

C
2

L2

L3

Rk

R

L

R

R

G G

1
Q

1

3

1

2

Rk+1

Lk

L

R =

= L

n Rn

n
1

2n-1

Figure 2.13: Electrical network for a compliant tube that accounts for both seepage and “sleeve
effect”.
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Figure 2.14: Schematic representation of the heart.

2.65



CC
diastole

C systole

t

M

tsystole diastole

Figure 2.15: Qualitative diagrams for the time dependent compiance C(t) in the ventricles (left)
and the activating function M(t) (right)

where the most significant feature is the compliance and the compliance changes with time (see
[37], [15], [17], [5]). A corresponding law for the ventricle dynamics is therefore:

V (t) = Vd + C(t) (P (t) − Pext) (2.11)

where P (t) − ¶ext is the intramural pressure, V (t) the volume, C(t) the compliance, Vd the
so-called dead volume, which is assumed to be constant and taken equal to zero, as well as
Pext, for the sake of simplicity. C(t) assumes values between two extrema, Cs and Cd (Fig.

V

P

V=V  + C         P

V=V  + C        P

Isovolumetric ContractionIsovolumetric
Relaxation

Systolic Ejection

d

dDiastolic
Filling

systole

diastole

Figure 2.16: Diagram of the relation between pressure P and volume V in the a ventricle.

2.15- left), giving rise to pressure-volume diagrams such the one illustrated in Fig. 2.16. This
relation is however not suited for our computations, since in fact it describes the behaviour of
the ventricle in its operative conditions, i.e. when “coupled” with the circulatory system. We
want a model for the ventricle alone: its actual behaviour should be the result of the coupling
and not imposed a priori!.

The starting point of the alternative model is the relation that links pressure and radius of an
elastic spherical ball filled with fluid. Here and in the following we take Pext = 0. We have

πR2P = 2πEh0R
R− R0

R0
,

where R0 is the reference sphere radius, which is the one reached when P = 0, h0 a reference
thickness of the ball surface and E the Young modulus. The contraction of the cardiac muscle
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may be taken into account by an increase of E (stiffening) and by a shortening of the muscle
length (that is a reduction of R0). It is more convenient to express this relation as a function

of the volume V , instead of the radius. By recalling that V =
4

3
πR3, a linearisation procedure

leads to

P =
E(t)h0

2πR3
0(t)

(V − V0(t)) ,

where we have indicated the coefficients that change in time because of the action of the muscle.
This simplified model does indeed describe the major characteristic of the ventricle. If we

indicate C(t) =
2πR3

0(t)

E(t)h0

we may re-write the relation in the mode compact form

V (t) = C(t)P (t) + V0(t),

where the difference with (2.11) is that now V0 as the meaning of the reference volume, which
changes in time because of the variation of the length of the muscle fibers.

By deriving with respect to time we obtain

dV

dt
= Q =

dC

dt
P + C

dP

dt
+MQ(t) (2.12)

where Q represents the (incoming) flow rate and MQ = dV0

dt
is the action exerted by the con-

traction of the cardiac muscle.
A lumped representation (electric analog) of each ventricle3 is given in Fig. 2.17, where R

accounts for an additional viscous resistance inside the ventricle and MQ is represented by a
generator of current.

Q

Q
Valve 2RValve 1

dC
  dt

C
M  (t)

Figure 2.17: Network for the lumped parameters modeling of a ventricle.

In Fig. 2.17 we show the electrical equivalent of the proposed model, where presence of
heart valves has been taken into account by diodes which allow th current flow in one direction
only 4. The behaviour of a diod can be represented mathematically by its characteristic function

Q(P ) = Q0(e
βP − 1)

3A mechanical representation of the heart working based on the classical Hill’s model for the muscle can be
found in [18] and [47].

4The same representation can be used also for the valves in the venous system, whenever needed.
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where β is usually large. Sometimes this law is approximated by a two-state description (see
Fig. 2.18),

Q = 0 if P < 0,
P = 0 if Q > 0.

Q

P

Figure 2.18: Characteristic function Q− P of a diod: the correct curve (solid) and the approxi-
mated one (dotted).

We point out that the presence of the valves introduces a nonlinear relation in the lumped
parameters model.

Sometimes the pressure-volume relation (2.13) is rewritten in the form

Q =
dC

dt
P ∗ + C

dP ∗

dt
, with P ∗ = P −MP , (2.13)

which corresponds to the circuit in Fig. 2.19. Here the action of the muscle is simulated by

a voltage generator, instead of a current one. Furthermore, the variable resistance term
dC

dt
is

sometimes neglected.

P

QValve 1 Valve 2R

dC
  dt

C

M  (t)

Figure 2.19: Alternative representation for the lumped parameters modeling of a ventricle.
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2.2.3 Lumped parameters models for the circulatory system

The compartments described in the two previous Sections are the elementary bricks for build-
ing models for the whole system. As previously pointed out, the number of compartments
depends on the accuracy requested to the model and, definitely, on the number of vessels that it
is worthwhile to represent separately as single units.

The connection among the compartments is driven by flux and momentum conservation at
the interfaces. As a direct consequence of the electric analogy the quantities that are matched
are Q and the pressure P . There is a difference in this respect to the coupling of 1D models (
[10]), where we imposed the continuity of total pressure. This choice is indeed consistent with
the hypothesis of negligible convective terms.

In the electric analog, these relations correspond to the application of the classical Kirchhoff
laws for the nodes (conservation of current) and the nets (conservation of the voltage). An
sketch of the possible connection of different compartments is given in Fig. 2.20.

S1 S2

S21

S22

R L

C

R L

C

R L

R L

R L

C

R L

R L

11 1211 12

1 21 C
22

2 2

211 211

221 221 222 222

212 212

22

21C

Figure 2.20: Lumped parameters model for a branched vessel as a cascade of T and π networks.

A detailed electric analog for the circulation is provided in [45] and in [24], where hun-
dreds of elementary compartments are accounted for. A simpler example, taken from [25], is
shown in Figure 2.21. Here, a particular attention is given to the coronary circulation, while the
pulmonary circulation and the capillary bed have been represented with only a few elements.

From the mathematical viewpoint, a general representation of lumped parameters models is
a Differential-Algebraic-Equations (DAE) system in the form





dy

dt
= B(y, z, t) t ∈ (0, T ]

G(y, z) = 0
(2.14)

together with the initial condition vector y|t=t0 = y0. Here, y is the vector the state variables
(associated to capacitors and inductors), z are other variables of the network andG the algebraic
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equations that derive from the Kirchhoff laws. If we suppose that the Jacobian matrix:

J :=
∂G

∂z

is non singular5, by the Implicit Function theorem we can express z as function of y and resort
to the reduced Cauchy problem

dy

dt
= Φ(y, t) = A(y, t)y + r(t) t ∈ (0, T ]

y = y0, at t = t0.
(2.15)

The time dependence of matrix A is due to the heart action and is related to the variable ventri-
cles compliances, while the dependence of A on y is due to the presence of diodes (non linear
term). The forcing term r depends on t through the function M(t).

R Ω

L Ω

U U

C C C C C C

R S R R R L R L R S RS R R L

LR

R
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C
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8 L 1 2 1 3 2 R 5 6 3
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7 4

4 1 2
4
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C C
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CORONARY  BED

SYSTEMIC  TREE

PULMONARY  TREE

RIGHT
VENTRICLE

Figure 2.21: A possible network model for circulation.

Remark 2.4. Mathematical analysis of lumped parameters models: We remind that, from clas-
sical results of Calculus, it is possible to prove that:

1. if Φ(y, t) is continuosly differentiable there exists a time interval [0, T ∗] in which the
solution of the problem exists and is unique;

2. if, moreover, the derivatives ∂Φi/∂yj are bounded in all the time interval [0, T ], then the
solution of the Cauchy problem exists and is unique in [0, T ].

In the sequel, we will suppose that the previous hypotheses are verified.

5In this case, the DAE system is said to be of index 1.
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2.3 Basic numerical issues for multiscale modeling

Our goal is now to investigate specific problems arising from the mathematical and numerical
coupling of different models for blood flow, ranging from the Navier-Stokes equations up to
lumped parameters models. In particular, we will have to manage the interfaces between models
featuring a different level of detail. It is to be expected that the more accurate (pointwise)
model would need on the interfaces more data than the mean models could give, being by far
less accurate. The data referred to the lumped submodel are indeed a spatial average of the
pointwise quantities which are, on the other side, considered by the accurate local submodel
and that would be needed on the interfaces in order to make it well posed the Navier-Stokes
boundary problem. We have, therefore, the problem of giving a well posed formulation of
the local subproblem, filling up the defective data set provided by the reduced (1D or 0D as
well) submodels. The main concern of multiscale modeling is to carry out this completion
minimizing, as far as possible, the perturbations on the numerical solution. For example, if the
flow rate (mean value) is known on the upstream section of a vascular district, there are many
velocity profiles (pointwise values) on that section that can be associated to such mean data and,
therefore, can be correctly prescribed to the Navier-Stokes problem. However, the choice of a
specific profile will strongly influence (or perturb) the numerical solution in a non-controlled
way. The present Section illustrates some techniques for avoiding the prescription of a velocity
profile and, in general, for reducing perturbations on the numerical solution.

Before addressing the problem in its general form, let us illustrate it on a simple example,
with the aim of introducing in a more concrete way the defective data problems.

2.3.1 A first (simple) example

Let us consider the simple electric circuit in Figure 2.22 (left), where yi denotes the pressure
drop applied to Ci (for i = 1, . . . , 4) and the flow rate crossing Ri and Li (for i = 5, . . . , 8).
Let Ω be the cylindrical pipe identified with the branch consisting of R8 and L8. Denote by
Pup, Pdw and Qup, Qdw the mean pressures and the flow rates at the upstream and downstream,
respectively. Setting y = (y1, . . . , y7)

T , the circuit in Figure 2.22 (right) is described by the
following system

{
dy

dt
= Ay + r(t) + b(Qup(t), Qdw(t)), t > 0

y(0) = y0

(2.16)

where

Aij =





1/Ci if i = 1, 2, 3, j = i + 4,
−1/Ci if i = 2, 3, 4, j = i + 3,

−Ri/Li if i = 5, 6, 7, j = i,
1/Li if i = 5, 6, 7, j = i− 3,

−1/Li if i = 6, 7, j = i− 4,
0 otherwise,
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and

ri =





U/L5 if i = 5,
−U/L6 if i = 6,

0 otherwise.

bi =





Qup/C1 if i = 1,
Qdw/C4 if i = 4,

0 otherwise.

(2.17)

Here, r(t) accounts for the action of the pressure source M(t) and b(Qup, Qdw) involves the
interface flow rates. As a first simple example of a multiscale model, we replace the branch
containing R8 and L8 by the more accurate 3D model based on the Navier-Stokes system, in
a fixed (no compliance) cylindrical domain. As mentioned above, the main concern in this
heterogeneous coupling refers to the matching between two subproblems with a substantially
different level of accuracy. In the example at hand, in particular, we have that the state variables
of the lumped model y1(t) and y4(t) of the lumped model play the role of the mean pressure on
the upstream and downstream sections of the district modelled by the Navier-Stokes equations.
In other words, we have the interface conditions:

{
y1(t) =

∫
Γup

p(x, t)dγ,

y4(t) =
∫
Γdw

p(x, t)dγ.
(2.18)

In a similar way, for what concerns the flow rates, we have other interface conditions by setting
{
Qup(t) =

∫
Γup

u · ndγ,
Qdw(t) =

∫
Γdw

u · ndγ. (2.19)

The heterogeneous model obtained coupling the Navier-Stokes equations and the ODE system
(2.16) with the interface conditions (2.18) or (2.19) (or even their possible combinations) is
not well posed. Indeed, in a classical setting, a necessary condition for the well posedness
of the Navier-Stokes problem is that at each point on the boundary a number of conditions
equal to the spatial dimension of the problem. Typically, one can prescribe the components
of the velocity (Dirichlet boundary condition) or those of the Cauchy normal stress (Neumann
boundary condition), or an appropriate combination of velocity and normal stress. In this case,
on the contrary, we have only averaged quantities on the upstream and downstream boundary
portions. Therefore, if we want to use reduced models (0D or 1D) to feed boundary data to a
more detailed local model, we need a way to “translate” these mean quantities in mathematically
sound boundary conditions for the Navier-Stokes equations.

A viable approach to handle the case of defective boundary conditions, is provided by the so
called do-nothing boundary conditions proposed in [14], where it is provided a general frame-
work for managing defective boundary data problems. This approach is really effective and
easy in particular for the case of defective pressure boundary data, the so-called mean pressure
drop problem. The general settings in the case of a mean flow rate (or net flux) problems seems
however more difficult to implement due to the presence of special functional spaces which are
not easy to discretize in the framework, for instance, of a Galerkin-Finite Elements discretiza-
tion. For this reason, another, somehow more flexible, alternative approach based on the use of
Lagrange multipliers, has been proposed in [8].
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Figure 2.22: Example of lumped model (left) and the system obtained by elimination of the
pipe represented by R8 and L8 (right).

We will introduce the do-nothing approach both in the case of the mean pressure and net
flux problems in Sect. 2.3.2. The Lagrange multiplier approach for the flux problem and its
numerical implementation are presented in Sect. 2.3.2

2.3.2 Defective boundary data problems

For the sake of clarity, let us provide a general statement of defective boundary data problems.
Let Ω be a bounded domain of R

d, d = 2 or 3, whose boundary ∂Ω is decomposed into the
union of Γ and several disjoint sections Γ0, Γ1, . . . ,Γn, n ≥ 1 (see Figure 2.23).
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Figure 2.23: The partition of the boundary of the domain Ω.

We are interested in solving the Navier-Stokes equations in Ω:





∂

∂t
u + u · ∇u + ∇p− ν4u = f , t > 0

div(u) = 0, t > 0
u = u0, t = 0,

(2.20)
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supplemented by homogeneous boundary conditions on Γwall (assuming for the sake of sim-
plicity that the walls are rigid):

u|Γ = 0, (2.21)

while two different kinds of boundary conditions are of some interest in the multiscale coupling
and will be considered on the sections Γi, i = 0, . . . , n.

The first condition refers to the mean pressure problem, already introduced in the Example
above, which requires that

1

meas(Γi)

∫

Γi

p ds = Pi, i = 0, . . . , n, (2.22)

where each Pi is a prescribed function of the time t, constant on Γi.
The second condition we address is the flow rate problem

∫

Γi

u · n ds = Qi, for i = 0, . . . , n, (2.23)

where the (volumetric) flow rates Qi’s are assigned functions of time. Observe that, due to the
fluid incompressibility and the rigidity of the wall, a compatibility relation must exist among
the fluxes Qi, namely:

Q0 +Q1 + . . .+Qn = 0. (2.24)

As we have previously pointed out, the initial-boundary value problem (2.20)-(2.21) with
either (2.22) or (2.23) is not well-posed from a physical point of view. In the do-nothing ap-
proach, a particular weak or variational formulation of the boundary problem is devised which
allows to fulfill conditions (2.22) (resp. (2.23)) at some extent, giving rise to a well-posed prob-
lem. In fact, this formulation forces in an implicit way some natural (Neumann-like) boundary
conditions which selects one particular solution among all the possible physical solutions of the
original differential problem. The completition of the defective boundary data set is essentially
an implicit by-product of the choice of the suitable variational formulation6, which is based on
a natural set of boundary conditions, by far less perturbative than essential (Dirichlet) ones. We
will here give a brief presentation of this approach. Let us introduce the functional spaces

V =
{
v ∈

[
H1(Ω)

]d
,v|Γ = 0

}
and M = L2(Ω).

where L2(Ω) is the space of functions q such that7
∫
Ω
q2dω < ∞, and H1(Ω) is the Sobolev

space of functions belonging to L2(Ω) together with their first derivatives. Morevoer, denote by
V ′ the dual space of V , i.e. the space of linear and continuous functionals acting on elements
of V . We suppose that f ∈ V ′ and we introduce the functional φi ∈ V ′, i = 0, . . . , n which
measures the flux of a vector function through the surface Γi. Precisely

< φi,v >=

∫

Γi

v · n ds, ∀v ∈ V,

where n is the outward unit normal vector on ∂Ω. For this reason φi is called the flux functional
on Γi.

6“when you know nothing, do nothing”, J. Heywood.
7Integration is always intended in the Lebesgue sense.
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The mean pressure drop problem

The “do-nothing” formulation for the mean pressure problem reads : find u ∈ V and p ∈ M
such that, for all v ∈ V and q ∈M ,




(
∂

∂t
u + u · ∇u,v

)
+ ν(∇u,∇v) − (p, div(v)) = < f ,v > −∑n

i=0 Pi < φi,v >,

(q, div(u)) = 0,

(2.25)

for all t > 0, with u = u0 for t = 0.
It follows easily, by using the Green formula, that the solution of (2.25) satisfies

(
p− ν

∂un

∂n

) ∣∣
Γi

= Pi,
∂uτ

∂n

∣∣
Γi

= 0, for i = 0, . . . , n, (2.26)

where we have set un = u · n and uτ = u − unn.
Thus

1

meas(Γi)

∫

Γi

p ds = Pi +
ν

meas(Γi)

∫

Γi

∂un

∂n
ds. (2.27)

We conclude that the desired condition (2.22) is recovered exactly only in those cases where the
last integral in (2.27) vanishes. This occurs, for instance, when Γi is a plane section perpendicu-
lar to a cylindrical pipe. Otherwise, Pi will be, in fact, the mean value of the normal component
of the normal stresses on Γi. In other words, the defective boundary data set is implicitly com-
pleted in this variational formulation by assuming that the viscous stress components vanish
(i.e. can be neglected) on the boundary at hand.

For well posedness results of this problem see [14] and also [41] (in the specific context of
blood flow problems).

The mean flow rate problem

For the prescribed flow rate problem, the “do-nothing” approach can be formulated as follows.
Let us introduce the space

V ? = {v ∈ V,< φi,v >= 0, i = 0, . . . , n} ,

and the vector functions bi ∈ V, i = 1, . . . , n (called flux-carriers) that satisfy:

div(bi) = 0,

∫

Γ0

bi · n ds = −1,

∫

Γj

bi · n ds = δij, for i, j = 1, . . . , n.

The weak formulation of problem (2.20), (2.21), (2.23) proposed in [14] reads:
find u = W +

∑n
i=1Qibi, with W ∈ V ? and p ∈ M \ R such that for all v ∈ V ? and

q ∈ M

{
(
∂

∂t
u + u · ∇u,v) + ν(∇u,∇v) − (p, div(v)) = 0,

(q, div(u)) = 0,
(2.28)
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for all t > 0, with u = u0 for t = 0.
In this case, it is less clear which kind of “do-nothing” boundary conditions are implicitly

forced by selecting this variational formulation. It is possible to prove (see [14] and [42]) that
the corresponding solution satisfies:

(
p− ν

∂u

∂n

)
n|Γi

= Cin, (2.29)

where the Ci’s are a priori unknown functions of time (independent of space variables). In other
words, besides the mean flow rates, variational formulation (2.28) prescribes that the tangential
component of the stress tensor vanishes and the normal one is a (unknown) constant on each
boundary where the flux is assigned. For a well posedness analysis of this problem, see [14].

The formulation of the mean pressure problem may be easily discretized as it can be re-
garded as a classical Navier-Stokes problem with Neumann boundary conditions. On the other
hand, the definition of the functional space V ? makes the numerical implementation of the
prescribed flow rate problem less straightforward, since it is not so easy to find suitable fi-
nite dimensional subspaces. This motivates investigations of an alternative formulation of the
problem (see [8]).

A Lagrange multiplier approach for flow rate boundary conditions Consider the initial-
boundary values problem given by (2.20) and (2.21) and the net flux conditions:

< φi,u >=

∫

Γi

u · n ds = Qi, for i = 1, . . . , n. (2.30)

We assume that the compatibility condition (2.24) is fulfilled.
Rather than (defective) boundary conditions, (2.30) can be regarded as a set of constraints

for the solution of the problem at hand. Starting from this viewpoint, a possible way for forc-
ing such constraints resorts to the Lagrange multiplier approach. According to this strategy, the
equations to be solved are penalized by the presence of the constraint, weighted by suitable (un-
known) coefficients, the Lagrange multipliers8. The original problem is therefore reformulated
in an augmented fashion, due to the presence of the multipliers (see e.g. [12]).

In the present case, this approach leads to the following variational problem: look for u ∈ V ,
p ∈M and λ1, . . . , λn ∈ R such that, for all v ∈ V and q ∈M ,




(
∂

∂t
u + u · ∇u,v) + ν(∇u,∇v) +

n∑

i=1

λi < φi,v >− (p, div(v)) =< f ,v >,

(q, div(u)) = 0,
< φi,u >= Qi, i = 0, .., n,

(2.31)

for all t > 0, with u = u0 for t = 0.
It is possible to prove the following Proposition (for the proof, see [8]):

Proposition 2.1. Any smooth solution of (2.33) satisfies the additional boundary conditions
(
p− ν

∂un

∂n

)
|Γi

= λi, and
∂uτ

∂n
|Γi

= 0, 0 = 1, · · ·n. (2.32)

Furthermore, (u, p) satisfies (2.20), (2.21), (2.30).

8We remind that in the same perspective, the pressure of the incompressible Navier-Stokes equations can be
regarded as the Lagrange multiplier of the incompressibility constraint - see e.g. [29].
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Remark 2.5. By virtue of the compatibility condition
∑

iQi = 0, it is possible to prove that
one of the Lagrange multiplier can be arbitrarily chosen (see [8]). A possible reformulation of
the problem is therefore: look for u ∈ V , p ∈ M and λ1, . . . , λn ∈ R such that, for all v ∈ V
and q ∈M , for all t > 0, with u = u0 for t = 0.




(
∂

∂t
u + u · ∇u,v) + ν(∇u,∇v) +

n∑

i=1

λi < φi,v >− (p, div(v)) =< f ,v >,

(q, div(u)) = 0,
< φi,u >= Qi, i = 0, ..,n

(2.33)

where i now starts from 1, and λ0 has been set = 0, so that we actually impose on Γ0:
(
−pn +

∂u

∂n

) ∣∣∣
Γ0

= 0. (2.34)

In the sequel, in the rigid wall case, we will refer to this formulation of the problem.

In the perspective of defective boundary data problems, we could say that among all pos-
sible solutions of (2.20), (2.21), (2.30), (2.34), problem (2.33) selects the one that satisfies the
additional boundary condition (2.32). From a theoretical viewpoint, the Lagrange multiplier ap-
proach is very close to the do-nothing formulation. Comparing (2.29) and (2.32), we may note,
in fact, that the Lagrange multipliers corresponding to the constraints on the flux are in fact
equal to the “a priori unknown” constants of the do-nothing formulation (2.29). On the other
hand, this approach uses a standard functional space V which can be more straightforwardly
discretized than the space V ∗.

In the remainder of the present Section, we will refer in particular to the Lagrange multiplier
approach for the steady Stokes problem, which embodies however all the relevant difficulties of
the Lagrange multiplier approach:
find (u, p, λ1, . . . , λn) ∈ V ×M × R

n, such that, ∀(v, q) ∈ V ×M





ν(∇u,∇v) +
∑n

i=1 λi < φi,v >− (p, div(v)) = < f ,v >,
(q, div(u)) = 0,
< φi,u > = Qi, i = 1, .., n.

(2.35)

A well posedness analysis for (2.35) can be found in [8]. The extension of the analysis to the
complete time-dependent, nonlinear problem (2.33) can then be carried out by usual techniques
for nonlinear problem (see [43]).

The numerical solution of the Lagrange multipliers problem In order to discretize
formulation (2.35), we introduce a Galerkin approximation based on the finite dimensional
spaces Vh ⊂ V and Mh ⊂M , which we assume to satisfy the well-known LBB condition9

∀qh ∈Mh ∃vh ∈ Vh, vh 6= 0 : (qh, div(v)h) ≥ βh|qh|L2 |vh|H1. (2.36)

Let (uh, ph, λ1h, . . . , λnh) be the solution of the discrete problem. We denote by (ui)i=1..dN

(resp. (pi)i=1..M ) the components of uh (resp. ph) with respect to a basis {vi} of Vh (resp. {qi}
9For the numerical discretization of the stationary Stokes problem, see e.g. [29], Chap. 9.
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of Mh). Finally, we introduce the vectors U = (u1, .., udN) ∈ R
dN , P = (p1, .., pM) ∈ R

M and
Λ = (λ1h, . . . , λnh) ∈ R

n.
Then the discrete counterpart of (2.35) gives rise to the following algebraic system of equa-

tions




AU +DTP + ΦT Λ = F,
DU = 0,
ΦU = Q,

(2.37)

where A ∈ R
dN×dN is the stiffness matrix, D ∈ R

M×dN is the matrix associated to the di-
vergence operator and Φ is the n × dN matrix whose lines are given by the vectors φi =
(
∫
Γi

v1 · n ds, . . . ,
∫
Γi

vdN · n ds), i = 1, . . . , n.
It is possible to prove that this system is non singular ( [8]). However, this system is not

a classical Stokes problem, so its numerical solution should require the set up of an “ad hoc”
solver. On the other hand, there is no numerical convenience in setting up a solver computing
simultaneously U , P and Λ, since the matrix associated to system (2.37) is very ill conditioned
in real applications10. Therefore, as for the standard Stokes problem (see [29]), it is worthwhile
to resort to splitting methods which reduce the problem to a series of smaller and easier to solve
steps. Among the different methods for achieving this goal, in particular we illustrate a strategy
that has the advantage of separating the fluid (velocity and pressure) from the multipliers com-
putation. In this way, if a (Navier-)Stokes solver is available11, it can be actually adopted for
solving the augmented problem.

A solution algorithm We rewrite (2.37) in the form
[
S Φ̃T

Φ̃ 0

]
,

[
X
Λ

]
=

[
G
Q

]
(2.38)

where Φ̃ = [Φ, 0] ∈ R
n×(dN+M), X = [U, P ]T , G = [F, 0]T . The matrix

S =

[
A DT

D 0

]

has a standard Stokes form, corresponding to the discretization of a Neumann problem on the
boundaries where the net fluxes are prescribed. If the two discrete spaces Vh and Mh satisfy
the LBB condition (2.36), S is non singular (see, e.g. [29], [3]). We can then eliminate the
unknown X from (2.38), obtaining a system for the Lagrange multiplier:

Φ̃S−1Φ̃T Λ = Φ̃S−1G−Q. (2.39)

This system can be solved by an appropriate iterative method. For instance, if we denote R :=
Φ̃S−1Φ̃T and b := Φ̃S−1G − Q, we could resort to the classical Richardson scheme (see e.g.
[36]), that reads:
given an initial guess Λ(0), for k = 0, 1, 2, . . . , solve:

Λ(k+1) − Λ(k) = b −RΛ(k)

10this is true, in general, for the fluid problem alone, so the same is expected for the augmented one.
11for instance, a commercial package
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until convergence.
The computation of the residual r(k) := b − RΛ(k) is carried out by the following steps:





y(k) = Φ̃T Λ(k)

z(k) = S−1y(k) ⇒ Sz(k) = y(k)

r(k) = b − Φ̃z(k).

The second step of the residual computation corresponds to a usual Stokes problem and can
be carried out by means of a standard solver. This means that each iteration of the Richardson
algorithm will require the computation of the fluid. Two further solution of problem in S are
required for the computation of b (before the application of the Richardson scheme) and for the
computation of X (after the Richardson scheme)

SX = G− Φ̃T Λ.

This seems quite expensive. However, the matrix R is usually quite small, being (n + 1) ×
(n + 1) where n + 1 is the number of sections where the net fluxes are prescribed, or n × n
in the case of a rigid pipe (when one of the Lagrange mulitplier can be arbitrarily chosen),
so the number of iterations required will be accordingly small. Moreover, the computational
efficiency can be dramatically improved, in terms of number of iterations, if other iterative
schemes are adopted. For instance, if A is symmetric, as in the case of the Stokes problem,
then R = Φ̃S−1Φ̃T is symmetric and positive definite (see [8]). Consequently, the Conjugate
Gradient (CG) algorithm may be used, which is proved to converge to the solution in a number
of iterations equal to the dimension of the matrix R (n + 1 or n). For instance, in the case of a
rigid cylindrical pipe we have just one Lagrange multiplier, and (2.39) reduces to just one scalar
equation. In this case, one iteration of the CG algorithm suffices (in exact arithmetic) to obtain
the solution. The algorithm reads as follows:

given λ(0) ∈ R,

(i) SX1 = G− Φ̃Tλ(0)

(ii) r0 = Φ̃X1 −Q

(iii) SX2 = Φ̃T r0

(iv) λ = λ(0) +
r2
0

r0Φ̃X2

r0 = λ(0) +
r2
0

Φ̃X2

(v) SX = G− Φ̃Tλ

Since in this case it is to be expected that the CG method converges in one iteration, λ and
X are the solutions of (2.38). This algorithm requires the solution of 3 Stokes problems at steps
(i), (iii) and (v).

Remark 2.6. If we discretize in time the unsteady Navier-Stokes system (2.33) by, for instance,
a semi-implicit Euler scheme, and in space by the finite element method, we will produce an
algebraic system analogous to (2.37), where the matrix A is now given by

A =
1

∆t
M +B +K
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∆t being the time-step, M and B the mass and advection matrices and K the stiffness matrix.
The method based on the solution of a system in R can be still adopted. However, in this case,
the CG method is not applicable, since S is no longer symmetric. On the other hand, suitable
extension of the CG method to the non symmetric case, such as the GMRes algorithm (see
[36]) can be prusued, still ensuring a low number of iterations, that means a low number of
fluid problems to be solved (see [43]).

Numerical results

In order to assess the proposed methodologies, we consider a case where the analytical solution
of the Stokes (and the Navier-Stokes) equations is known. More precisely, we consider the
Womersley solution, which describes the transient flow in a cylindrical pipe associated to a
time-periodic pressure gradient (see e.g. [22]). As such, it is a transient counterpart of the well
known Poiseuille solution.

Precisely, if the pressure gradient is given by

∇p =
dp

dz
(t)ez = −ρ sin(ωt)ez,

z being the pipe axial coordinate and ρ the fluid density, the velocity u reduces only to its axial
component, i.e. u = uzez, and the analytical expression for uz is

• 2D case (flow between two infinite planes - see [42]):

uz(r, t) =

∞∑

0

γ2k+1 sin

(
(2k + 1)π

2r0
r

)

where

γl =
4a

πl(l4σ2 + ω2)

(
l2σ sin(ωt) + ωe−l2σt − ω cos(ωt)

)
.

Here σ = µπ2

4ρr2
0

, r is the transverse coordinate, 2r0 the distance between the two planes
and µ the dynamic fluid viscosity.

• 3D case (flow in a cylindrical pipe - see [46]):

uz(r, t) = Re




− a

ω


1 −

J0

(
i3/2
√

ρω
µ r
)

J0

(
i3/2
√

ρω
µ r0

)


 eiωt





where r is the radial coordinate, r0 the cylinder radius and J0 the Bessel function of first
kind and of order zero.

We tested the two problems for the cases in which the analytical solution is the Womersley
profile.
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Figure 2.24: Velocity profiles of the numerical solution on a square obtained imposing a peri-
oidic pressure drop.
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Womersley flow: mean pressure drop problem In a 2D cylindrical pipe of unit length we
prescribe the mean pressures:

Pupstream = 0, Pdownstream = −ρ sin(ωt)ez.

We solved the problem (see [42]) with ρ = 2 and ω = 2π, following the do-nothing formulation
(2.25). In this way, we are forcing the conditions 2.27, which are fulfilled by the Womersley
solution. In Fig. 2.24, the axial velocity profiles in different instants are illustrated.

In Tab. 2.2 we report the errors with respect to the Womersley 2D solution. The time
discretization scheme is a Backward Euler first order method and the error reduction when the
time step ∆t decreases actually confirm a first order accuracy for the velocity with respect to
the “exact” Womersley solution.

Womersley flow: net flux problem In both the 2D and 3D test cases, we have imposed
homogeneous Neumann boundary conditions at the inflow, while at the outflow we prescribe
the flow rate associated to the Womersley solution. In Figure 2.25 we show the axial velocity
profile for the 2D case at two different times, together with the velocity profile at the inflow.
The solution obtained still agrees very well with the analytical Womersley solution. A single
condition on the flow rate at the outflow, imposed through a Lagrange multiplier, is sufficient to
recover the Womersley flow. It is worthwhile outlining that the Womersley profile is an outcome
of the computation, it has not been forced anyway.

The same experiment has been carried out in 3D and the result is shown in Figure 2.26. Here,
the computed velocity field at three different times is illustrated, together with the corresponding
axial velocity profile on the inflow section. Again, we outline the excellent agreement with the
analytical solution.

2.4 Multiscale models

Having developed techniques for managing local 3D problems with mean boundary data in a
numerically sound way, we are now in position of describing complete geometrical multiscale
models, both from a mathematical and numerical viewpoints. We will start considering a 3D-
0D model, discussing its well posedness and numerical methods for the coupling. (Sect. 2.4.1).
Then, we will introduce 3D-1D models investigated different possible matching conditions and
their implementation (Sect. 2.4.2). Numerical results are presented in Sect. 2.5.

Table 2.2: Error for different time steps, Womersley mean pressure drop 2D problem. Finite
element space discretization (h = 1/64), backward Euler time discretization.

TIME STEP VELOCITY ERROR PRESSURE ERROR

1/200 3.6 × 10−2 1.4 × 10−1

1/500 1.0 × 10−2 1.4 × 10−2

1/1000 5.0 × 10−3 2.3 × 10−3

1/2000 2.6 × 10−3 4.0 × 10−4
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Figure 2.25: 2D numerical solution obtained imposing the flux of the Womersley solution at the
outflow section.
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3D Womersley flow
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Figure 2.26: 3D numerical solution obtained imposing the flux of the Womersley solution at the
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2.4.1 Coupling 3D and 0D models

We wish to represent the whole circulatory system by an electric circuit except on a specific
region Ω, where blood flow is modelled by the Navier-Stokes equations, as illustrated in Sect.
2.3.1.

Here, the compliance of the local vascular district is neglected for the sake of simplicity,
hence Ω is constant in time. Let us assume that the network faces the district Ω by capacitors Ci

(i = 1, . . . , n) as shown in Figure 2.27. In particular, we put in evidence the representation in
terms of a network of the vascular regions in the immediate neighborhood of the 3D model. In
[31] these parts of the lumped network have been called the bridging regions. In this picture, we
have three bridging regions corresponding to the three inflow/outflow of Ω. The mean pressure
and the flow rate through each artificial section Γi of Ω (i = 1, 2, 3) are denoted by Pi and Qi.
We will set Q = (Qi)i=1,2,3, where Qi(t) =

∫
Γi

u · ndγ.
The Navier-Stokes equations and the lumped network are actually coupled by means of

interface conditions involving, in general, the flow rates and the mean pressure values in the
bridging regions. More precisely, we denote by y ∈ R

m the state vector of the circuit at hand,

2
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Figure 2.27: Scheme of coupling between the whole system and a local district. The lumped
representation of the three bridging regions at the interfaces with the Navier-Stokes model is
highlighted in the dashed circles. This representation is related to the interface conditions (2.42).

and, for the sake of notation, we will suppose that the first n = 3 state variables yi (i = 1, 2, n =
3, n < m) correspond to the interface pressures pi(t). Due to the specific lumped representation
of the bridging regions, the mean pressures on the Navier-Stokes interfaces are given12 by pi(t),
with i = 1, . . . , n.

We will assume that the network is modelled by the differential system (2.15). In particular
we set

r(t) = rH(t) + b(Q(t)),

where, rH accounts for the heart action, b involves the variables at the external terminals in

12In [31] it is considered a slighlty more general case, involving also a viscous resistance term at each interface.
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such a way that

{
bi = CiQi for i = 1, . . . , n
bk = 0 otherwise

(2.40)

and Ci are suitable constants depending on the capacitors at the interfaces.
The coupled problem reads therefore:

Problem 2.1. Given u0 ∈ V (with div(u0) = 0 and y0 ∈ R
m, find u ∈ L2(0, T ;V) and

y ∈ L∞(0, T ) such that for every 0 < t ≤ T0, ∀v ∈ V and q ∈M :





dy

dt
= A(y, t)y + rH(y, t) + b(F(t))

(
∂

∂t
u + u · ∇u,v

)
+ ν(∇u,∇v) − (p, div(v))+

∑n
i=0 Pi < φi,v > =< f ,v >,

(q, div(u)) = 0,

(2.41)

with y(0) = y0, u|t=0 = u0, where, as stated above, the first n = 3 entries of the state vector
y correspond to the interface pressures, in such a way that the mean pressures at the interface
boundaries Γi are given by:

PNS,i(t) = Pi(t) = yi(t) i = 1, . . . , n (2.42)

and, by definition, the entries of the vector F are given by:

Qi(t) =

∫

Γi

u · ndγ i = 1, . . . , n. (2.43)

In particular, prescription of (2.42) and (2.43) amounts to prescribe the continuity of (mean)
pressures and fluxes at the interfaces. We are essentially coupling a lumped representation of
the circulation (apart the local district) with the do-nothing formulation of the mean pressure
drop problem (2.25). In the present case, the boundary mean pressure are not given, but are
state variables of the lumped model to be computed. However, from the previous Section we
know that if we suppose that the state variables of the 0D system are known, correspondingly
the Navier-Stokes subproblem is well-posed. Similarly, if we suppose that the velocity is known
in the local domain Ω, so that, in particular, the flow rates Qi are known, also the 0D model can
be solved. The heterogeneous multiscale problem is therefore given by coupling subproblems
which are separately well posed. It is reasonable to expect that the global multiscale model is
well posed. This well posedness has been proved in [31] starting from classical fixed point
techniques:

Proposition 2.2. If the initial data y0 and ∇u0 are smooth and small enough, then , there exists
a time interval 0, T̃ in which there exists at least a solution of problem (2.41).

Numerical coupling For the numerical treatment of the coupled model described in the pre-
vious Section, we propose an iterative approach based on the splitting of the whole Problem 2.1
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into its basic components, the ODE system from one hand and the Navier-Stokes equations (in
the do-nothing formulation suited for the mean pressure drop problem) form the other one.

Let us introduce a partition 0 = t0 < t1 < · · · < tN = T of the time interval (0, T )
into N subintervals (tn, tn+1) with length ∆t = tn+1 − tn for n = 0, . . . , N − 1 and a finite
decomposition of the local domain Ω. We discretize the Navier-Stokes system by the finite
element method for space variables and by a semi-implicit fractional step scheme for time
advancement (see [29]). Let us denote with NV and NP the number of velocity and pressure
nodes. In particular, we denote by xj the nodal values of velocity (j = 1, . . . , NV) and pressure
(j = NV + 1, . . . , NV + NP ), then set x = [xj]j=1,...,NV+NP

. The ordinary differential system
associated to the systemic network is solved by a finite difference scheme. Denoting again with
y the state vector of the lumped system, the fully discrete (algebraic) unsplit problem obtained
after space and time discretizations reads:




N1 FNET,1

FNS,1 M1






yn+1

xn+1


 =




N2 FNET,2

FNS,2 M2






yn

xn


 +




g

0


 (2.44)

where yn+1 = y(tn+1), xn+1 = x(tn+1), yn = y(tn), xn = x(tn). Moreover:

1. N1 = N1(y
n+1, tn+1), N2 = N2(y

n, tn) ∈ R
m×m arise from the discretization of the

terms
dy

dt
and A(y, t)y, respectively, in the lumped model,

2. g = g(tn, tn+1) ∈ R
m corresponds to the approximation of vector rH(t) in equation

(2.41),

3. FNET,1,FNET,2 ∈ R
m×(NV+NP ) are due to the discretization of b(Qup,i(t), Qdw,j(t)), ac-

counting for the interface conditions for the systemic submodel,

4. M1 = M1(x
n+1, tn+1), and M2 = M2(x

n, tn) ∈ R
(NV+NP )×(NV+NP ) follow from the

approximation of the Navier-Stokes submodel,

5. FNS,1,FNS,2 ∈ R
(NV+NP )×m are related to the treatment of the pressure interface condi-

tions according to the do-nothing approach.

Since we are coupling a heterogeneous problem, it is to be expected that matrix of system
(2.44) is ill conditioned. Therefore, there is no numerical convenience in adopting a monolithic
approach for the solution. We adopt an iterative approach by splitting the solution of the global
problem into the separate solving of the systemic and the local subproblems. More precisely,
denote by k the index of iterations, and by yn+1

(k) and x
(n+1)
(k) the approximate solutions at tn+1

at the kth iteration. Then, let y(0) = yn, x(0) = xn be the starting values, and set Ñ(k) =

N1(y
n+1
(k) , t

n+1), M̃(k) = M1(x
n+1
(k) , t

n+1), b̃1,(k) = N2(y
n, tn) yn+

FNET,2x
n+ g(yn,yn+1

(k) ), b̃2 = FNS,2y
n +M2(x

n, tn)xn. Then, system (2.44) can be solved by
the following block Gauss-Seidel scheme (we drop the index n + 1 for sake of simplicity)





Ñ(k)y(k+1) = b̃1,(k) −FNET,1x(k)

M̃(k)x(k+1) = b̃2 −FNS,1y(k+1)

k = 0, 1, 2, . . . (2.45)
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Observe that in the iterative approach, we are actually solving alternatively the lumped param-
eters model, having assigned Q(k)

up,i and Q(k)
dw,i and the Navier-Stokes mean pressure problem,

where the interface pressures P (k+1)
up,i and P (k+1)

dw,i are prescribed by the previous network compu-
tation. The (possible) converged solution will be obviously the solution of (2.44). As it is well
known, the convergence property of this iterative procedure depends on the spectral radius of
the iteration matrix M̃−1

(k)FNS,1Ñ−1
(k)FNET,1.

In particular, if we solve the lumped parameters model by the forward Euler method

yn+1 = (I + ∆t A(yn, tn))yn + ∆t r(yn, tn) + ∆tb(xn)

then, Ñ is independent of k and it is given by the identity matrix I , N2(y
n, tn) = I +

∆t A(yn, tn) and FNET,1 = 0. In that case, the left hand side matrix in (2.44) is lower triangular
and just one iteration in (2.45) is enough for the convergence, i.e. yn+1 = y(1), xn+1 = x(1).
Thus yn+1 and xn+1 satisfy:





yn+1 = b̃1

M̃xn+1 = b̃2 −FNS,1y
n.

This scheme is illustrated in Figure 2.28.
The choice of an explicit method for the solution of the lumped submodel is justified by the

experimental evidence that the consequent stability bound is less restrictive than the one arising
from the semi-implicit treatment of the Navier-Stokes problem. In the numerical results of Sect.
2.5, for the time steps required by the Navier-Stokes solver, the forward Euler method turned
out to be actually stable and computationally efficient. However, for more complex problems
related to biomedical applications this method could result unstable unless for time step sizes
unacettably too small. In these cases, the use of an implicit method in an iterative framework
should be considered.

Remark 2.7. Different splittings: The role of the interface conditions in the splitting procedure
is naturally driven by the specific topology of the network at the interfaces. In our case, the
interface flow rates are not state variables of the lumped system, and, therefore, they are well
suited to play the role of a forcing term for the ordinary differential system. However, depending
on the choice of the bridging regions, the matching between the network and the Navier Stokes
system could be pursued, for instance, by interchanging the role of flux and pressure at the
interfaces. When splitting the coupled problem, we should suppose that the flow rates are
provided to the Navier-Stokes system by the network, which in turn receives pressure data.
For instance, in the network configuration of Fig. 2.29, the interface pressure is not a state
variable of the lumped system, so it is a good candidate for being a forcing term of the ordinary
differential system, provided by the Navier-Stokes solution. On the other hand, the interface
flow rates, which in the electric analogy correspond to the current at the interfaces and are
state variables for the system, become boundary data for the Navier-Stokes problem. In this
case, we formulate a net flux problem for the Navier-Stokes model, to be faced according to the
Lagrange multiplier approach. The coupled problem can be recasted in the form (2.44) and the
iterative procedure (2.45) can be applied as well.
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Remark 2.8. Multiscale and Domain Decomposition Methods (DDM): In the last years, nu-
merical methods for solving complex real problems in scientific computing by means of domain
decomposition techniques have received great attention: as a recent reference, we quote [30].
On the hardware side, this is motivated by the fact that parallel architectures are now available
that make it really effective the numerical solution of complex problems exploting parallel com-
puting. Numerical techniques for the solution of problems by subdomain to be associated to a
single processor or a cluster of processors are therefore of increasing interest. On the model-
ing side, the numerical approach to problems of increasing complexity quite naturally compell
the identification of simpler “subproblems” that can be solved separately from the others, in
order to setting up more effective numerical algorithms. Among the others possible examples,
we quote fluid-structure interaction problems in hemodynamics, both at the mechanical and
biochemical level (see [23], [49], [33], [32]).

In our framework, it is reasonable to assimilate the flux data to (mean) Dirichlet data,
since they refer to the velocity field, while (mean) pressure data can be assimilate to Neumann
condition, since they refer to the pressure, i.e. to the normal stress tensor which is a natural
condition for the classical variational formulation of the Navier-Stokes equations. In this re-
spect, the iterative algorithms presented above (and the ones that will be introduced for the
3D-1D coupling) can be considered an extension of the Dirichlet-Neumann substructuring it-
erative method, widely adopted in the context of DDM. This link can provide suggestions for
setting up some improvements in the algorithms, exploting the theoretical framework of DD.

2.4.2 Coupling 1D and 3D models

In this Section we illustrate how to carry out a multiscale coupling between 3D models still
based on the Navier-Stokes equations and the 1D models introduced in [10]: for more details,
see [7]. Since we are still dealing with a reduced model, involving mean quantities and the
pointwise Navier-Stokes model, we will have still to handle “defective” data problems, accord-
ing to the strategies illustrated in Sect. 2.3. In particular, here we will consider a compliant 3D
domain, so that specific interface conditions will be needed by the differential problem associ-
ated to the vessel wall description. Moreover, the mathematical hyperbolic nature of 1D models
will require a careful treatment of the interface conditions, based on a characteristics analysis
(see [10], Sect. 3.2.1).

Let us focus this problem on an example. Consider two domains Ω3D and Ω1D as in Fig.
2.30. In the first, we solve the 3D fluid-structure model while in the second we consider a
simplified 1D model.

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

Ω Ω
3D

1D

Γa
Γ

Γ2

1

zz = a

Figure 2.30: Coupling a 3D model with a 1D model

2.90



More precisley, in Ω1D we assume equations (2.2), while in Ω3D we consider the equations:




∂

∂t
u + u · ∇u − 1

ρ
div(T(u, p)) = 0

div(u) = 0

in Ω, (2.46)

where T(u, p) = −pI + µ∇u is the stress tensor.
For the sake of simplicity, a simplified structure model used in the case of 2D fluid simula-

tions (see Fig. 2.31), which is derived for a cylindrical configuration (generalised string model)
is considered13; see [28].). Let

Γ0
w = {(r, θ, z) : r = R0, 0 ≤ z ≤ L, 0 ≤ θ < 2π}

be a cylindrical reference surface of radius R0; we neglect the longitudinal and angular dis-
placement while the radial displacement ηr = ηr(t, θ, z) is given by

ρwh
∂2ηr

∂t2
− kGh

∂2ηr

∂z2
+

Eh

1 − ξ2

ηr

R2
0

− γ
∂3ηr

∂z2∂t
= f(t, θ, z) (2.47)

Here, h is the wall thickness, R0 is the arterial reference radius at rest; k is the so called Tim-
oshenko shear correction factor; G the shear modulus; E the Young modulus, ξ the Poisson
ratio; ρw the wall volumetric mass, γ is a viscoelastic parameter and, finally f is an external
forcing term.

Model (2.47) is basically derived from the equations of linear elasticity for a cylindrical tube
with small thickness, under the hypotheses of plane stresses and membrane deformations (i.e

negligible elastic bending terms). The term kGh
∂2ηr

∂z2
accounts for shear deformations ( [34])

while the term γ
∂3ηr

∂z2∂t
introduces a viscoelastic behaviour.

r
Γw

Γw
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Figure 2.31: Coupled 2D/1D problem. On the left, the 2D model (Ω1), where Γw represents the
arterial wall and η the wall displacement with respect to the reference configuration Γ0

w. On the
right, the 1D model (Ω2) defined on the interval a ≤ z ≤ b.

Then, matching conditions at Γw may be provided as follows:
{

u = η̇

−T · n − pextn = Φ
on Γw, (2.48)

13More accurate models for 3D fluid simulations will be considered in Sect. 2.5
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where pext is a given external pressure, Φ = fer is the forcing term acting on the wall and n is
the outward unit vector to Γw.
The first of (2.48) guarantees the perfect adherence of the fluid to the structure while the second
one states the continuity of the stresses at the interface (according to the action and reaction
principle).

Both fluid and structure equations must be supplied with initial conditions (resp. on Ω3D

and Γ0
w ) and boundary conditions (resp. on γ1 and ∂Γ1).

Moreover, we assume that on the right side of Γa the 1D model supplies the quantities
A(a+), Q(a+), P (a+) and u(a+) = Q/A. In particular, we consider that the pressure
P (a+) is a function of the area ψ(A), accounting for a (simplified) structure model (see [10],
Sect. 3). We define, then, the same quantities also on the left side of Γa as

A(a−) = |Γa|; u(a−) =
1

|Γa|

∫

Γa

u · n dσ

p(a−) =
1

|Γa|

∫

Γa

p dσ; Q(a−) = |Γa| u(a−).

Moreover, we assume that at Γa the wall displacement is a function of the section area,

η|Γa
= g(A(a−)), (2.49)

being g a given function. For instance, we assume that Γa is a circle in which case η|Γa
=(√

A(a−)/π − R0

)
er.

Similarly to the 3D-0D coupling, where we have forced the continuity of the interface pres-
sures and fluxes, we have to specify which kind of interface conditions will be associated the
heterogeneous model.

A priori, it is reasonable to look for the continuity of the following quantities at the interface
Γa:

[A] area : A(a−) = A(a+)

[B] mean pressure : p̄(a−) = p̄(a+)

[C] flux : Q(a−) = Q(a+)

[D] entering characteristic : u(a−) + 2

√
2

ρ

(√
p(a−) − pext + p∗ −√

p∗
)

= W1(a
+)

In the 1D model viscous terms have been (partially) neglected, so that, similarly to what
done for the 0D-3D coupling, the variable P can be either interpreted as a mean pressure or as
a mean normal stress. The condition [B] may therefore be replaced with the continuity of the
averaged normal stress, i.e. σ̄ = T · n · n. Analogously, the characteristic variable on the left
hand side can be calculated using the averaged normal stress in place of the mean pressure. We
have therefore two conditions alternative to B and D, respectively. Namely,

[B1] averaged normal stress : σ̄(a−) = p̄(a+)

[D1] char. entering variable : u(a−) + 2

√
2

ρ

(√
σ̄(a−) − pext + p∗) −√

p∗
)

= W1(a
+)

The coupled 3D-1D model will be stated by coupling the fluid-structure (2.46), (2.47) and
the 1D equations (2.2) with the interface conditions that will generate well posed individual
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subproblems in Ω3D (in the sense specified in Sect. 2.3), and Ω1D. To this aim, four different
set of coupling conditions can be considered:

• Interaction Model 1: conditions A, B, D
Note that B and D imply the continuity of u. With the further continuity of A we obtain
that of Q, thus also C is satisfied.

• Interaction Model 2: conditions A, C, D
Note that A and C imply the continuity of u. If we further add D we have the continuity
of p̄. Thus also B is satisfied.

• Interaction Model 3: conditions A, B1, D1
Note that B1 and D1 imply the continuity of u and , with the continuity of A we obtain
that of Q. Thus also C is satisfied.

• Interaction Model 4: conditions A, C, D1
Note that A and C imply the continuity of u. If we further add D we have the continuity
of σ̄. Thus also B1 is satisfied.

Sub-domain iterations between 1D and 3D models

As already pointed out for the 3D-0D coupling, the coupled problem (with one of the inter-
face conditions specified above) is expected to be ill conditioned. We will consider, therefore,
iterative splitting methods based on the separate solution of the two subproblems:

The 1D problem with condition D (or D1) as boundary condition at the interface and an ab-
sorbing condition on the right end (i.e. zero entering characteristic variable). With this
choice, the hyperbolic system (2.2) is well posed (see [7]).

The 3D fluid-structure problem with condition A as boundary condition for the structure
equation and condition B (B1) or C, depending on which interaction model we consider,
as boundary condition for the Navier-Stokes equations.

With these choices the structure problem turns out to be well posed, while conditions B or
C lead respectively to a mean pressure or to a net flux problem, to be solved as illustrated
in Sect. 2.3.

We can then iterate between the two sub-domains to get the global solution at each time
step.

Here, we illustrate an example, referring to the interaction Model 3. The iterative algorithm
reads as follows: given the solution of the coupled problem (let’s say un, pn, ηn for the 3D
model and Qn, An for the 1D one) and setting un+1

0 = un, pn+1
0 = pn, and ηn+1

0 = ηn

1. solve the 1D model (2.2) with condition D1 at the interface, evaluating the characteristic
variable W1(a

+) as a function of un+1
0 , pn+1

0 , ηn+1
0 ; we then obtain a solution Qn+1

1 and
An+1

1 and at z = b absorbing boundary conditions based on characteristic analysis;

2. solve the 3D problem with boundary conditions A and B1 at the interface, evaluating
A(a−) and σ̄(a−) as functions ofAn+1

1 andQn+1
1 . We obtain a solution un+1

1 , pn+1
1 , ηn+1

1 .
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We iterate until the coupling conditions are satisfied within a fixed tolerance. In this case, the
second step requires the solution of a mean pressure drop problem.

Another possibility, devising to a net flux problem for the Navier-Stokes equations is the
following: set u(0) = un, p(0) = pn, and η(0) = ηn and for k = 0, 1, . . .

1. solve the 1D model (2.2) imposing at z = a A(k+1)(a) as a function of the pressure p(k)

and at z = b absorbing boundary conditions based on characteristic analysis. We obtain
Q(k+1) in Ω2;

2. we solve then the fluid-structure 2D problem imposing on Γ(a) for the Navier-Stokes
equations the defective condition

∫

Γ(a)

u(k+1) · ez = Q(k+1)(a)

and for the structure at z = a

η(k+1)(a) =
1

2
A(k+1)(a) − R0.

We obtain u(k+1), p(k+1), η(k+1) in Ω1.

We iterate until the coupling conditions are satisfied within a fixed tolerance and we finally set
the solution at time tn+1 equal to the converged value. For more details about these algorithms,
see [7] and [8].

Numerical results both for 2D and 3D simulations based on these methods are presented in
the next Section.

2.5 Numerical results

In this final Section we will show some applications of the methods presented. More details and
results can be found in [27], [7], [8], [31], [19].

2.5.1 An analytical test case

Assume the circuit shown in Figure 2.21 as a completely lumped parameter decsription of the
circulation, providing a reference solution at the systemic level. The network is modelled by a
nonlinear system in the form (2.15). Coronary arterial pressure and flow rate (i.e. the pressure
applied to CCA and the flux flowing through RΩ and LΩ), obtained for the global network by
means of the forward Euler discretization, are plotted in Figure 2.32. Let us denote with Ω
the simple bipole consisting of LΩ and RΩ and representing a specific cylindrical district in
the coronary arterial branch. Our aim is to model blood flow behaviour in Ω by the Navier-
Stokes equations coupled with the lumped description of the remaining network. In particular,
a pressure drop is prescribed between the artificial sections of the district at hand by the state of
the systemic lumped submodel, while the flow rates at the interfaces represent the forcing terms
for the whole circulatory system (see Fig. 2.34).

The coupled model has been solved by the explicit numerical method described in Sect.
2.4.1. The time step is set to ∆t = 10−4 s and it is dictated by the stability constraints of
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Figure 2.32: Numerical simulation of the global network, representing the whole vascular sys-
tem, by means of the forward Euler method (time step ∆t = 10−4s). On the left, the coronary
pressure. On the right, the coronary flow rate.
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Figure 2.33: Coronary arterial pressure and of flow rate through the downstream of Ω, obtained
by means of the coupled scheme.
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Figure 2.34: Representation of the particular electric network used as a systemic model to be
coupled to the Navier-Stokes equations in the cylindrical domain Ω.
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the local Navier-Stokes solver, which is based on a semi-implicit treatment of the nonlinear
convective term. Larger time steps would be allowed by a fully implicit treatment of this terms.
The coronary arterial pressure and the flow rate through the downstream section of Ω, evaluated
by means of the coupled scheme, are shown in Figure 2.33. Since we have substituted a part of a
network with the corrispondent description in term of Navier-Stokes equations, for consistency
of the heterogeneous model with a pure lumped parameters description of the circulation, the
presence of a local accurate submodel does not have to modify significantly the results at the
systemic level. This is exactly what we obtain numerically by comparing Figure 2.32 and
Figure 2.33. However, the heterogeneous model is able to compute accurately the velocity and
pressure fields in the district of interest. Notice that in this preliminar test case, when solving
the local subproblem, we are actually considering a mean pressure drop problem on a 2D pipe,
having a periodic pressure drop. In this case, the analytical velocity solution of the Navier-
Stokes problem is given by the Womersley profiles14 (see [42]). Therefore, we can verify the
correctness of the detailed results, by a comparison with the analytical solution. Table 2.3 in
different instants of the heart beat illustrates the results of the comparison, with a satisfactory
agreement.

A similar test case has been carried out also in a 3D case with a simplified network model.
Also in this case, the results are in good agreement with the expected Womersley profiles (see
Fig. 2.35) (3D computations have been carried out with FIDAP(TM)).

Figure 2.35: Simplified multiscale 3D-0D test case, leading to Womersley profiles.
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Table 2.3: Relative errors in the Womersley test case during a heart beat. The heart beat period
is fixed to 0.8 s.

t

Tbeat

||uWomersley − ucomputed||
||uWomersley ||

0.125 6.0 ×10−4

0.250 2.9 ×10−6

0.375 2.4 ×10−5

0.500 1.4 ×10−4

0.625 1.1 ×10−6

0.750 1.7 ×10−6

0.875 1.8 ×10−6

1.000 2.5 ×10−6

A

B

C Lumped parameters model

Pup

Pdw Fdw

Fup

Navier-Stokes
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Figure 2.36: Representation of the particular electric network used as a systemic model to be
coupled to the Navier-Stokes equations in a completely occluded coronary by-pass.
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Figure 2.37: Velocity and contour and streamlines plots in the totally occluded vessel for dif-
ferent times: a quarter of a beat (top), half a beat (middle) and end of a beat (bottom).
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Figure 2.38: Velocity contour plots and streamlines in the partially occluded vessel for different
times: a quarter (top) of a beat, half a beat (middle) and end of a beat (bottom).
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2.5.2 A simplified by-pass anastomosis

Pressure drop problem for Navier-Stokes equations

Let Ω be a coronary by-pass of a completely occluded vessel (Figure 2.36). A Dirichlet condi-
tion is prescribed at the lower upstream branch A of Ω; more precisely, a null velocity condition
is assigned on this section, simulating the complete occlusion. The coupling between the lo-
cal accurate submodel and the systemic one is based on the formulation given in Problem 2.1
(where the interfaces between lumped and Navier-Stokes model are denoted by B and C). Ve-
locity contour plots and streamlines for different times in a beat are shown in Figures 2.5.2,
respectively. More precisely, the illustrated sequences refer to a quarter of a beat, half a beat
and the end of a beat.

A coupled local-systemic investigation of blood flow dynamics has been carried out also in a
partially occluded coronary by-pass (see Fig. 2.39). In this case, we consider also upstream sec-
tion A as an interface between local and systemic model. Velocity contour plots and streamlines
are illustrated in Figures 2.38 as in the previous case. The downstream flow rates computed by
the coupled solver are shown in Figure 2.40 (top) for both cases of complete and partial oc-
clusion. By comparing them with the one shown in Figure 2.33, observe that the downstream
flow rates are obviously the same in both cases. The relevance of these results is not related
to the specific test case (which is indeed a 2D simplification of a real morphology) and to the
quantitative determination of the variable involved here. However, the heterogeneous numerical
coupling allows a correct determination of the fluid dynamical conditions of a district of interest
accounting for the systemic circulation. Specifically, the quantitative determination of a district
of interest is obtained without the prescription of any presumed boundary conditions. The in-
terface data for the district of interest are computed by the solver on the basis of the lumped
model. For instance, in the numerical results illustrated here, it is possible to compute the dis-
tribution of the upstream fluxes between the two branches of the anastomosis as a function of
the relevance of the stenosis and of the radius of the by-pass. In particular, the flux computed by
the Navier-Stokes system is obviously totally carried by the by-pass in the completely occluded
case, while in the partially occluded one (with a 60% reduction of the section) about 30% of the
flow rate is carried by the stenosed vessel (see Fig. 2.40).

Net flux problem for the Navier-Stokes equations

This time, the by-pass anastomosis is associated to a network with a downstream inductance
(see Fig. 2.41). The downstream flow rate is therefore a state variable of the lumped model
and is prescribed, in the iterative splitting, as a boundary datum to the Navier-Stokes solver,
following the Lagrange multiplier approach.

At the top of Figure 2.42 we show the flow rate and the pressure drop in the by-pass com-
puted by the coupled system. The marks indicate the values at the times corresponding to the
four snapshots of the fluid speed found in the lower part of the same figure.

Alltogether, these results illustrate that multiscale 2D(3D)-0D models with different net-
work topologies (involving both pressure drop or net flux problems) can provide effective tools
for the contemporary simulation of systemic and local hemodynamics.

14More precisely, since in this case the nonlinear term of the Navier Stokes problem vanishes, the analytical
solution is the weighted superimposition of the Womersley profiles corresponding to the different frequencies of
the Fourier development of the (periodic) pressure drop applied to the local subdomain by the network.
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Figure 2.39: Representation of the specific electric network used as a systemic model to be
coupled to the Navier-Stokes equations in the partially occluded coronary.

2.5.3 A 2D-1D coupling

Let us consider the domain illustrated in Fig. 2.31. In Ω1 we solve (2.46), (2.47), (2.48) with
boundary conditions on the interface Γa on the pressure or on the flow rates, according to the
iterative subdomain algorithm selected. In Ω2 we consider the one dimensional equation for
the velocity flux Q and the vessel section area A (2.2) supplied with the algebraic relation
p̄ = β(A− A0), A0 being the reference area A0 = 2R0. The system is supplemented by initial
conditions for u in Ω1, A and Q in Ω2 at t = 0.

The fluid-structure interaction problem has been discretized in space using P
1-isoP

2 finite el-
ements for the fluid and P 1 elements for the structure. For time discretization, we have adopted
an ALE formulation to account for the domain movement with an implicit Euler discretiza-
tion for the fluid equations (faced with a Chorin-Temam like splitting scheme) and a New-
mark scheme for the structure. System (2.2) has been discretized using a second-order Taylor-
Galerkin scheme (Lax-Wendroff: see [10]) with a characteristic treatment of the boundary.

We have considered a rectangular domain of height 1cm and length L = 6cm. The fluid is
initially at rest and an over pressure of 15mmHg (2 · 104 dynes/cm2) has been imposed at the
inlet for 0.005 seconds. The viscosity of the fluid is equal to 0.035 poise, its density is 1 g/cm3,
the Young modulus of the structure is equal to 0.75 · 106 dynes/cm2, its Poisson coefficient is
0.5, its density is 1.1 g/cm3 and its thickness is 0.1 cm.

We have first simulated the fluid-structure interaction model without any coupling with the
1D reduced model. In this case, natural boundary conditions for the fluid (i.e. null normal
stress) have been imposed on the outlet. Figures 2.43 show the fluid pressure and the domain
deformation.

Observe that a pressure wave is generated (together with a deformation wave at the same
velocity), which is reflected at the outflow section. Such a reflection is clearly a numerical
side-effect due to the boundary conditions imposed at the outflow.
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Figure 2.40: Top: downstream flow rates computed by the distributed solver in the case of
completely (left) and partially (right) occluded vessel. Bottom: division of the upstream flow
rates between the lower A and the upper B proximal sections in the case of complete (left) and
partial (right) occlusion.
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of a coronary by-pass with a

In Figures 2.44 we have in particular considered the coupling with the 1D reduced model at
the outflow section. Concerning the coupling with the reduced 1D model, we have considered
Model 3 described in section 2.4.2. We have made just one sub-iteration between 1D and 3D
(2D) model at each time step. Here, the reflections are greatly reduced because the pressure
wave is quite well absorbed by the 1D model.

A 3D-1D coupling

In the case of 3D fluid simulation a shell model, i.e. a 3D structure in which one dimension,
the thickness, is much lower than the other ones has been considered. In particular we have
considered the so-called geometrically exact shell model developed in [38, 39, 40]. The main
unknowns are the mid-surface position of the shell and its normal vector at each point. Defor-
mations are described without approximation on the geometry, even when large displacements
are considered. This case has been simulated using the code SPECTRUM(TM).

Computations has been made on a cylindrical domain of radius R0 = 0.5cm and length
L = 5cm, with the following physical parameters: fluid viscosity: 0.03 poise, fluid density:
1 g/cm3, Young modulus of the structure: 3 · 106 dynes/cm2, Poisson coefficient: 0.3 and
structure density: 1.2 g/cm3. Again, an over-pressure of 10mmHg (1.3332 · 104 dynes/cm2) is
imposed at the inlet for 0.005 seconds.

As for the 2D model, the moving fluid domain is handled with an ALE formulation. In
Fig. 2.46 and 2.46 the results of the simulations without and with the multiscale coupling are
compared. As for the 2D case, spurious reflections on the downstream artificial boundary are
strongly reduced in the multiscale framework.

In the case of fluid-structure interaction problems, the boundary conditions prescription
at artificial boundaries is a crucial issue for the correctness of numerical simulation. These
results show that the coupling between a 3D fluid-structure model and a 1D reduced model is
an effective way to greatly reduce numerical reflections of the pressure waves.
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Figure 2.42: On the top: flow rate and pressure drop in the by-pass. On the bottom: fluid speed
at t = 1.68 s, 1.8 s, 1.92 s, 2.04 s
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Figure 2.43: Pressure pulse entering at the inflow and homogeneous Neumann conditions at the
outflow; 2D simulation. Solutions every 5ms. Note how the pressure is reflected at the outflow
boundary, giving rise to a backward travelling wave with negative amplitude.
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2.5.4 A test case of clinical interest

Beyond the previous academic test cases, numerical results obtained in more realistic contexts,
still based on the approach of the present work, can be found in [26] and in [19]. In these refer-
ences the adoption of geometrical multiscale models has revealed very promising for analysing,
by means of numerical simulations, the dynamics of flow patterns in morphologically com-
plex vascular districts in the context of paediatric surgery. The proposed methodology was in
particular applied to a reconstructive procedure, the systemic-to-pulmonary shunt, used in car-
diovascular paediatric surgery to treat a group of complex congenital malformations. The 3-D
model includes the shunt, the innominate artery (through which blood flows in) and the pul-
monary, carotid and subclavian arteries (through which blood flows out), see Fig. 2.48. The
lumped model is composed by different blocks describing the rest of the pulmonary circulation,
the upper and lower body, the aorta, the coronary system and the heart (see Fig. 2.47 up).

The application to the systemic-to-pulmonary shunt, currently in progress, gives a clear idea
of what can be obtained using the multiscale methodology. Figure 5 shows some preliminary
results on local haemodynamics in a simplified model of the shunt. Velocity vector maps are
reported at three different time steps of the pulsatile cycle. Blood flow in the innominate artery
switches from forward to backward and forward again. In spite of such changes, the shunt flow
remains directed towards the pulmonary arteries, which agrees with clinical data [20], [21].
The common approach in a stand-alone FEM model of the shunt would require to impose inlet
velocity profiles and outlet total stress distributions, which could be time-dependent, but with
a ’frozen’ temporal history of the inlet velocity profile. With the adopted multiscale approach,
i.e. using boundary conditions that account for the circulatory system, this was avoided and
the inlet velocity profile reversal was correctly reproduced (see Fig. 2.47 and Fig. 2.48 for the
complete computation of the shunt).

The prediction of both the local and the global haemodynamics after a surgical correction,
leads to the quantification of pressure drops across the repaired region as well as to that of
flow distribution into the major cardiovascular districts. The latter is an extremal important
issue. Indeed, the insertion of a systemic-to-pulmonary shunt creates a pulmonary circulation
in parallel to the systemic one. Survival after such an operation crucially depends on the balance
between systemic and pulmonary blood flows which, in turn, are highly dependent on the fluid
dynamics through the shunt. Numerical modeling can help the surgeon in the optimal choice of
shunt placement and size.
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Figure 2.44: coupling 2D simulation with the 1D reduced model; solution every 5ms. Note
how the pressure wave exits the domain with almost no spurious reflections.
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Figure 2.45: Pressure pulse entering at the inflow and homogeneous Neumann conditions at
the outflow: 3D simulation with SPECTRUM(TM). The displacement of the structure has been
magnified by a factor 10
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Figure 2.46: Coupling 3D SPECTRUM(TM) simulation with the 1D reduced model
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Figure 2.47: Simulation of the Norwood operation: velocity fields at different instants of the
heart beat. Multiscale model and velocity profile in a simplified model of the shunt.
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Figure 2.48: Simulation of the Norwood operation: velocity fields at different instants of the
heart beat. These are the 3D results in the complete shunt. Thanks to the multiscale approach,
it has been possible to compute physiological velocity profiles and secondary flow patterns
which were not captured in previous simulations, based on the prescription of incorrect (even if
realistic) essential boundary velocity data.
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