A MULTISCALE FORMULATION OF THE DISCONTINUOUS
PETROV-GALERKIN METHOD FOR ADVECTIVE-DIFFUSIVE
PROBLEMS
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Abstract. We consider the Discontinuous Petrov-Galerkin method for the advection-diffusion
model problem, and we investigate the application of the variational multiscale method to this
formulation. We show the exact modeling of the fine scale modes at the element level for the
linear case, and we discuss the approximate modeling both in the linear and in the non-linear cases.
Furthermore, we highlight the existing link between this multiscale formulation and the p version of
the finite element method. Numerical examples illustrate the behavior of the proposed scheme.
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1. Introduction and Motivation. We have recently introduced the Discon-
tinuous Petrov-Galerkin (DPG) method for the solution of elliptic problems [5] and
isotropic/anisotropic linear compressible and incompressible elasticity (Stokes prob-
lem) [3, 8]. We propose in these pages some remarks on the application of the DPG
method to the advection-diffusion model problem in one spatial dimension. This is a
necessary step towards the extension of the method to the compressible and incom-
pressible Navier-Stokes equations, our final goal.

As shown in ref. [1], most Discontinuous Galerkin (DG) methods can be classified
according to the selection of a specific expression for the “numerical fluxes” that are
used for connecting neighboring elements. This expression, together with the choice of
the functional spaces, effectively characterizes each method. The numerical fluxes are
defined by expressing the element interface fields (e.g., edge variables in two spatial
dimensions, or face variables in three spatial dimensions) as suitable averages of the
internal fields for the elements sharing that interface. Slightly deviating from this
philosophy, in the DPG method all unknown fields are approzimated by internal and
boundary variables, as it is usually done in mixed-hybrid formulations. The internal
(mixed) variables are discontinuous across element interfaces as in other DG methods.
However the boundary (hybrid) variables, while maintaining their classical role of
connectors, are in this case treated as additional problem unknowns. Therefore, we do
not have to select a recipe up-front in order to explicitly define the connectors in terms
of the internal variables for formulating the method. This comes with a price to be
paid, since it implies that the test and trial functions must now be chosen in different
spaces, i.e. the resulting method is a mixed-hybrid Petrov-Galerkin one. It can be
rigorously shown that this process yields higher order accurate interface unknowns
(see [2, 5] and [7] for the analysis in one and two spatial dimensions, respectively).
This behavior has also been experimentally observed in higher dimensional problems
(see [5, 7]).

It is well known that most numerical schemes fail to properly treat the finer
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solution scales, that consequently appear as abnormally amplified in the computed
solution. The variational multiscale method [11] is a recent attempt at incorporating
these effects in a finite element based numerical process, with the additional result
of unifying some very successful previous methods, in particular those based on the
stabilized and the residual-free bubble concepts [6]. We shall apply the variational
multiscale framework to the DPG method in the following pages. This presents some
interest since we are dealing with a mixed-hybrid method in Petrov-Galerkin form.
The application of the multiscale framework to a mixed-hybrid formulation is a point
that, to our knowledge, has been touched only very briefly in the literature. Our
treatment here of this material is far from exhaustive but it is practically oriented
and gives some interesting results. In particular, we develop general orthogonality
conditions for the visible and invisible scales. These conditions allow hierarchical
p approximations to be generated, while ensuring that each new enriching space is
orthogonal to the ones already used for the modeling, i.e. it is not even partially
already contained in them. Furthermore, we obtain a natural decoupling of the fine
scale problems at the element level.

In this work, we address the advection-diffusion model problem in one spatial
dimension with both linear and non-linear advective fluxes. More precisely, the paper
is organized in the following manner. In section 2 we discuss the DPG method for the
non-linear advection-diffusion model problem. Then we extend in section 3 the DPG
formulation by incorporating into it the ideas of the variational multiscale method.
In particular, we consider in section 3.1 the decomposition of both trial and test
function spaces into coarse and fine scales, while in section 3.2 we discuss the solution
of the coarse and fine scale subproblems arising from the application of the multiscale
DPG formulation to a linearized advection-diffusion model problem. We apply the
proposed discretization framework in section 4 to the linear advective-diffusive model
problem. The exact treatment of subgrid scales is analyzed in section 4.1, while in
section 4.2 we address the approximate treatment of subgrid scales. This allows us
to establish the equivalence between a particular multiscale DPG method and a p-
hierarchical finite element method. More remarks on this relationship are drawn in
section 4.3. In section 4.4 we first briefly discuss the implementation of the multiscale
DPG formulation as a standard nodal displacement finite element scheme, by applying
the static condensation procedure of the internal variables in favor of the sole interface
(displacement) variables. Next, we analyze, both theoretically and numerically in
section 4.5, the stabilization effects of the multiscale DPG approach in the case of
the lowest order member of the family of methods. To conclude the paper, we apply
in section 5 the proposed method to a non-linear advective-diffusive model problem,
namely the non-linear steady Burgers equation.

2. The Discontinuous Petrov-Galerkin Method. We consider the classical
advection-diffusion model problem in conservative form and in one spatial dimension

(21) —Fdiﬁ(u),z + Fadv(u),m = f in Q C R,
with boundary conditions
u=g onl,

where Q@ = (0,X), T’ = {0,X} and f, g are given data. F,q,(-) is the advective flux,
which is in general a non-linear function of the variable u, while
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is the diffusive flux, k being the diffusion coefficient which may depend on the space
variable x but not on the variable u. For any function v = v(z) we denote by v,
the spatial derivative of v with respect to . The notation adopted above resem-
bles the usual conservative form of the Navier-Stokes equations for compressible and
incompressible fluids.

In view of the approximation of problem (2.1), we let {7,}r>0 be a family of
grids of Q, K denoting a generic element. More precisely, we consider a partition
0=29 <1 <...<Tp_1 < T, =X composed of n > 1 intervals K¢ = [z;, z;11] of
size h, i =0,...,n—1, with h = max; h?, and we indicate with &, = {z;}7, the set
of nodes. Introducing the auxiliary unknown

(2.2) o= Fdiﬁ‘(u) = KUz,

problem (2.1) can be reformulated in weak form over each element K of T} as

/ (_U,z + Fadv(u),z)v dzx
K
(2.3) +((Faav(A) = Faav(u)) — (b — 0))vlox = /K fvder YveV(K),

/ (k10 —u)wdr — (A —u)w|sx =0 Yw € W(K),
K

where V(K) and W (K) are infinite dimensional spaces of sufficiently smooth functions
defined on K, such that all the integrals in (2.3) are well defined. In this formulation,
each element is characterized by internal fields u and o, and by interface fields A and
1 that represent the traces of u and o on 0K, respectively. Consequently, equations
(2.3) present integral terms that enforce in a weak sense the flux (2.1) and constitutive
(2.2) equations over each element, in addition to boundary terms that enforce in a
weak sense the continuity of the internal and interface fields.
After integration by parts, the weak form of problem (2.1) becomes:

findueU, o €%, A€ Ay and p € A such that VK € Tj, we have

/ (0 = Faa ()0, d — (11 — Faay(\))oloxc = / fods Vo e V(K),
K K

(2.4)
/ Kk low dw—}—/ ww 5 dz — Aw|sr =0 Yw € W(K),
K K

where U = ¥ = L2(), A is the space of functions defined only at the nodes of T, A
is the manifold of A made of functions equal to g at ¢ and z,,, and V(K) = W(K) =
HY(K)={veL*K)|v, € L*(K)VK € Tp}.

The DPG discretization of the one-element weak formulation (2.4) reads:

find up, € Up, o € T, An € Agp, and pp, € Ap such that VK € 75, we have

(2.5)

w\

(oh = Faav(un))Vh,e dx — (p — Fagv(An))vn|ox = / fondz Vv, € Vi (K),

/ K lahwhdz'—i-/ uhwh,wdx—)\hwhb;(:o thEWh(K).
K K
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REMARK 1. Throughout the paper we refer to formulation (2.5) as the plain DPG
method. The local finite element space is

DPG}(K) = {(un, ohs My 13 Uy wh) |

(Uhs Thy Ans 3 VR, W) € Un(K) X Vi(K) VK € Tr},
where we have set
26) Un(K) =Un(K) x Zp(K) x Ag,n(0K) x Ap(0K),
Vi(K) =Vi(K) x Wp(K).

The local spaces are selected as
Uh(K) = Eh(K) = ]Pk(K) and Vh(K) = Wh(K) = Pk_H(K), k Z 0,
where Py, is the space of polynomials of degree equal to or less than k, while

AR(OK) = {{mc}i=1 |7k € R, at the nodes of K }
Ag,h(aK) = {T]h (S Ah(aK) |77h =gif OKNT # @}

The global finite element space for the internal field wuy, is
Uy = {uh € LZ(Q) |uh|K S Uh(K)VK S ﬂb} .

Analogously for the internal field oy, i.e. ¥ = Uy. The global finite element space
for the test functions vy, is

Vi = {’Uh S L2(Q) |’Uh|K € Vh(K)VK S 771},

and here again the same space is used for the test functions wy, Wy = V3. The global
spaces for the interface unknowns are

Ap={{ni}izo[mi €R,i=0,... ,n},
where functions are defined only at the nodes, and similarly
Ao ={nn € Ap|np = gifi=0o0ri =n}.
Finally, the global finite element space is
DPG} = (U x Sh X Mg p X Ap) X (Vi x Wh).

Formulation (2.5) is of Petrov-Galerkin type, since different trial and test finite
element spaces are used. It is also characterized by a completely symmetric treatment
of both equations and both unknown fields. In fact, the flux and constitutive equations
are integrated by parts; this has the consequence that both u; and o}, have the same
identical continuity requirements. Hence, equal-order interpolation can be used for
these variables.

Furthermore, it is important to realize that up|ogx # An and op|sx # pn- In other
words, there can be jump discontinuities at the element boundaries between the in-
ternal and the interface fields. These latter variables act as inter-element connectors,
gluing together neighboring elements, and enjoy a higher convergence rate than the
internal variables, as shown in refs. [5, 7] in the case of the elliptic model problem.
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Since the internal variables are discontinuous across elements, they can be statically
condensed leading to a linear system in the sole interface variables, as commonly done
in mixed-hybrid formulations. Alternatively, one can render the test functions con-
tinuous at the nodes; this has the effect of eliminating the interface fields, and yields
a discrete problem in the sole internal variables, which fits the method into the stan-
dard framework of DG formulations. The boundary unknowns can then be recovered
through an element-by-element post-processing of the internal solution. Therefore,
this scheme comes equipped with a consistent (no choice to perform a priori) and
built-in way to recover higher order accurate boundary fluxes, i.e. there is no need to
develop special post-processing techniques to recover this information as it might be
necessary with other continuous (see ref. [10]) or discontinuous (see ref. [1]) formula-
tions. An example of the static condensation procedure will be given in section 4.4,
while more details about the application of this technique to the DPG formulation
and the relationship between the DPG method and DG methods can be found in ref.

[7]-

In the next sections we show how to devise a stable discretization scheme for
the advection-diffusion problem (2.1), by properly applying the variational multiscale
philosophy proposed in [11] to the DPG formulation (2.5) introduced in the present
article.

3. Multiscale Modeling and the DPG Method. The aim of the section is
to prepare a proper discrete functional setting for a stable numerical approximation of
the advection-diffusion problem (2.1) based on the DPG formulation (2.5), which, in
the presence of strong advection is affected by numerical instabilities. In doing this, we
modify the finite element structure of the method by considering the effects of subgrid
scales on the computed solution. This strategy extends to the DPG formulation the
idea of wvariational multiscale modeling recently proposed by Hughes and coworkers
in ref. [11] and further analyzed by Brezzi in ref. [6]. As it will be shown in sections
4 and 5, the DPG formulation with multiscale modeling leads, at least in the case of
the lowest order member of the DPG family, to a robust finite element discretization
of the advection-diffusion equation (2.1) that maintains stability and accuracy even
when the problem is strongly advection-dominated.

3.1. Coarse and Fine Scale Decomposition. The basic idea of the multi-
scale formulation is to consider an augmented space where problem (2.5) is to be
solved for. The aim of the strategy is to enlarge, for a given mesh parameter h, the
resolution of the original finite element space by decomposing the solution of the aug-
mented problem into coarse (visible) and fine (invisible) scales. Eventually, the fine
scales are eliminated in favor of the coarse ones (when the governing equations are
linear) through a process that can be conveniently recognized (and implemented) as
the classical procedure of static condensation (see [6] for a wider description of this
subject).

We introduce therefore the augmented trial space

(3.1) UA(K) = Up(K) + Bu(K),

where the space Uy (K) is defined in (2.6) and By (K) is a trial bubble function space
formally structured as

(3.2) By(K) = By(K) x By(K) x {0} x {0} VK € Tp.

B, (K) and B,(K) are yet unspecified infinite dimensional function spaces that repre-
sent the fine scales augmenting the finite element trial space of the DPG formulation.
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As a consequence, we have the following spatially overlapping sum decomposition of
the fields u;, and o, within each element K

(3.3) u,’;‘ =y + Up, 0';14 =0p +0p VK € Ty,

with @, € Up(K), Gn € Zp(K), Uy € By(K), 5, € B,(K), and where (-)* indicates
now the augmented fields. Notice that no augmenting spaces are introduced for the
interface variables. We shall come back to this point later on.

As a general rule (see [6]), the spaces B, (K) and B, (K) should be chosen in such
a way that (3.3) is a direct sum. Assuming that

(3.4) UA(K) = L*(K) x L*(K) x R? x R?,
the most natural choice for selecting the bubble space is
(3.5) By(K) = B,(K) = L*(K) \R VK € Ty,

since the constant scale is already contained in the coarse trial space.

Two remarks are in order with the trial space decomposition (3.3). First, note
that there is no boundary condition associated with the fine internal fields, since in
the DPG method the role of supporting these conditions together with the continuity
across elements is left to the interface fields. Therefore, we do not have to assume
null fine scale modes on 9K as in other finite element methods. The second remark
is that in a one-dimensional problem, as the one considered here, there is no need to
consider a splitting similar to (3.3) for the interface variables Ap, and up. In fact, the
fine scale modes could only amount to Dirac delta functions defined at the element
nodes, which are however already contained in Aj and A, . Therefore, the original
and augmented spaces must coincide, and we can set in the following

/\If?ZXha :U’If?zﬁh'

The situation would be different in multiple spatial dimensions, where one could have
functions with local support on the edges or faces in order to model fine boundary
scales.

Since the discrete formulation considered in this article is of a Petrov-Galerkin
type, we have now to consider a sum decomposition of the test function space too. In
analogy with (3.1), we set

(3.6) VA(K) = Vu(K) + By(K),

where Vi, (K) is defined in (2.6) and By(K) is a test bubble function space formally
structured as

(3.7 By(K) = B,(K) x By (K) VK € Th.

Here again, B, (K) and B, (K) are yet unspecified infinite dimensional function spaces
that represent the fine scales augmenting the finite element test space of the DPG
formulation. As a consequence, we have the following spatially overlapping sum de-
composition for the test functions

(3.8) U,’? = Ty + Up, wﬁ =Wy + Wy, VK € Ty,
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where Ty, € Vi(K), Wy € Wp(K), U, € B,(K) and @y, € By (K). Assuming that
(3.9) VA(K) = HY(K) x HY(K),
the most natural choice for selecting the bubble space is
(3.10) B,(K)=B,(K)=H"(K)\R VK €Ty,

since, as before, the constant scale is already contained in the coarse test space.

Examples of the use of the multiscale decompositions (3.3) and (3.8) in the DPG
formulation (2.5) will be shown in sections 4.1 and 4.2.

3.2. Coarse and Fine Scale Subproblems. Let us now employ the coarse
and fine scale decompositions introduced in the previous section to construct a finite
element approximation of (2.1) using the DPG formulation. With this aim, we insert
(3.3) and (3.8) into (2.5), where the replacement Up(K) < UA(K) and Vi (K)
VA(K) is understood, obtaining as a result a non-linear augmented problem. This
latter problem is characterized by having unknowns of both finite (@, and &5) and
infinite (U, and o) dimensional nature.

REMARK 2. Throughout the paper we refer to this augmented formulation as the
multiscale DPG method.

Unless otherwise stated, we assume henceforth that the problem at hand is linear,
i.e. Faqv(u) = au, where in general a = a(x) is the given advective speed. This allows
us to simplify the exposition without giving up generality, since the non-linear case
can be dealt with through linearization, e.g. via Newton’s method, which yields a
sequence of problems of the type (2.5) (see also section 5).

Following a standard procedure in multiscale variational formulations, it is con-
venient, though not necessary (as pointed out later on), to split the linear augmented
problem into two coupled linear subproblems. The first subproblem (corresponding
to taking v, = U, and wy, = Wy, in (2.5)) determines the coarse scales accounting for
the effects of the fine ones, and reads:

find uy € Uh(K), up € Bu(K), o € Eh(K), op € BU(K), A € Ag,h and pp € Ay
such that VK € T;, we have

( —
/ (Ch — aUp)Vh o dx — (fp, — aAp)Vk|oK
K

+/ (gh — aﬂh)ﬁh,z dx = / fopdx Vo, € Vh(K),
(3.11) $ K K

/ Kflﬁhmh dx + / UpWh, 4, dr — Xhmhbk
K K

+/ kil/&hmh dx +/ ﬂhmh’z dx =0 Yy, € Wh(K)
K K

The second subproblem (corresponding to taking vy = v}, and wy, = wy, in (2.5))
gives rise to a set of equations for the fine scales that are driven by the residuals of
the coarse scales, and reads:

find w;, € Uh(K), up € Bu(K), op € Eh(K), oy € BU(K), PYS Ag,h and up € Ap
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such that VK € T, we have

.
/ (&h - aﬂh)ﬁh,m dr = / ’I“hﬁh dzr
K K
— ((Eh — aﬂh) — (ﬁh - a/\h)) 6h|8K Yoy, € BU(K)7
(3.12) {
/ Iﬂ:_l&hﬁh d.’L'—I—/ ﬁhmh,z dz =/ spWp, dx
K B K K
\ —(@h — An)Wh oK Y@, € By (K),
where we have set
Th =f +0hz — (aU4) 0, sp=—(k""oK — Uh,z)-

Clearly, being able to solve the fine scale subproblem (3.12), one could eliminate
the fine scale modes uy, and o, by back-substitution into the coarse scale subproblem
(3.11), ending up with a linear system in the sole (finite dimensional) coarse scale
unknowns uy, and .

Some remarks are in order about the solution of the coarse and fine scale sub-
problems (3.11) and (3.12). First, we note that problem (3.12) states that the fine
scale modes @y, and o, are driven by the residuals in the element interiors (rp, and sp)
and by the residuals at the element boundaries, i.e. the jump terms between internal
and interface variables. As the mesh size h goes to zero, all residuals will tend to zero,
and the fine scales will eventually disappear, as expected. In fact, when the mesh size
is zero all scales are coarse, i.e. visible. The second remark is that, solving for the
fine scale modes u, and o, shows that the present formulation comes equipped with
an automatic error estimator. In fact, assuming that a decomposition of the exact
solution u, o in terms of coarse and fine scales can be performed analogously to (3.3),
we may define the unresolved part of the exact solution as

uunr:u_uza, Uunr:U—Ezg.
According to the relative weight of coarse and fine scales, the quantities uynr and oyny
provide important information on the local behavior of the exact solution u, o. Since
in practice u and ¢ are clearly unknown, it is convenient to replace them with their
approximations &y and oy, obtaining the following computable relations

Uynr = U = Up, Ouynr — 0 = Op.

These relations provide a simple (and hopefully effective) indicator to drive the grid
adaptation process.

Having set up the variational multiscale framework for the DPG discretization
of the (linearized) advective-diffusive model problem (2.1), we discuss in section 4
the implementation of the multiscale procedure and then conclude the presentation
by applying the methodology in section 5 to the non-linear advective-diffusive model
problem.

4. The Linear Advection-Diffusion Problem. An important observation
that should be made concerning the multiscale DPG discretization of the one-dimen-
sional linear advective-diffusive problem is that, since we do not have fine interface
scales, problem (3.12) can be solved independently on each individual element. In
fact, there is a natural decoupling of the fine scale problems, while the coupling
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among elements is confined at the coarse level. This of course would not be true in a
multi-dimensional problem. In this case, one might think of lowering the cost of the
multiscale method by introducing some localization hypothesis in order to perform the
computation of the fine scales on an element by element (or maybe patch of elements
by patch of elements) basis. This would clearly come at the cost of some degraded
performance, since the effects of the fine interface fields would be neglected in this
case.

Integrating (3.12) on each element K € T, to obtain 4y and o, as functions of
Tn, Oh, A and By, and plugging the solution back into (3.11), one can then solve
this latter problem in terms of @, o, Ap, and 7. This can be done exactly for the
present model problem. In general, for more complex operators or in multiple spatial
dimensions, the exact elimination can not be performed, and it is then natural to seek
a solution to the local (elemental) fine scale problem using an approximate method.

We analyze both the exact and the approximate modeling of fine scales in the
following for the problem at hand. For simplicity, we limit the attention to the lowest
order finite element space in the DPG family, denoted by DIP’G%. In this case, the
trial functions for the internal coarse scales are constant within each element, and are
written | g: = @' and Gp|g: = &' for the i-th element. The elemental residuals are
then simply

rh = f —a,a, s, = —k"'5.
4.1. Exact Subgrid Model. Let us integrate by parts both terms at the left-
hand side in (3.12) to obtain
—/ (Gh — aﬁh),zﬁh dxr + (5}1 — aﬂh)ihbj( = / U dx
K — JK
—(@n — my) — (a(@h — An)) Onlox Vo, € By (K),
/ (Iﬁ)_lah@h dx — / ﬂh,wah dr + (ﬂh@h)kﬂ( = / spwy, dz
K _ _ Jk B K
+(An —Tn)Wh|ok Y, € By(K).

(4.1)

Choosing 95, and @y, arbitrarily in Hy(K) C (H'(K) \ R), we have that boundary
terms in (4.1) disappear. Furthermore, using the continuous and dense injection of
HY(K) in L*(K), yields the strong form of problem (2.1,2.2) in the interior of each
element K € T},

(4.2) { e+ (@i)e =1,
h— Up,z = Sp-

Taking now ¥), and wy, arbitrarily in H'(K) \ R and using (4.2), we get
(4.3) (0% — aup)onlor = (uz — aX)nlox, up Bhlox = Ny @hlok-

The second relation in (4.3) yields uji = A# at the nodes (that is, the continuity of
u3'), while the first relation in (4.3) yields, after back substitution, o' = us! at the
nodes (that is, the continuity of of'). The nodal continuity of the total advective-
diffusive flux o7 — aujl is then automatically recovered provided that a is nodally
continuous.

REMARK 3. Continuity of the total flux for any advective speed a(x) could be

obtained by resorting to an alternative DPG formulation which includes a priori the
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advective flux in the definition of the “flux” unknown, i.e.

0=kKug— Fog(u).

In order to carry out the required analytical computations, we assume henceforth
that the problem coefficients are given constants over each element K € 7, denoted
by x%, a® and f¢, respectively, so that r, = ri and sp = s¢.

To uniquely determine the fine scales Uy, 0, in the class of equivalence (L?(K)\
R)2, we integrate equation (4.2) over K = [z;,7;41] together with the conditions
(3.5) and the constraint

(4.4) / 'ljh dr = / 5]1 dr = 0.
K K

More on the meaning of these constraints in the next section. We finally obtain

_ K o ath? ea"(wfwi)/n" — hi
up = E((az) Th,+8h) (1—7m +(a') ;U—ZL','—E Th,
_ . L atht eai(z—zi)/ni
U'h:K,z ((al) 17‘h+3h) (1—7m
Due to conditions (4.4), the only nonvanishing fine scale term in (3.11) for DPG) is
[ k163w dz. This can be expressed as

/(@*amw=@mrmmﬂ@*f—ﬁnm
Kl

denoting the linear finite element test function on the i-th element as wp|x = (1 —
8)W; + 8 Wit1, with s = (z—x;)/h%, 0 < s < 1, the coordinate in the reference element
K= [0,1]. The quantity Topt is the well known intrinsic time or stability parameter
that ensures a nodally exact solution for piecewise constant f (second order accurate
in the general case, see e.g. [9]), i.e.

W~
(4.5) Topt = 2| Eopt (@),

a® = |a?|hi/2k! being the Peclet number associated with element K¢ and
= th(t) = %, teR

(4.6) E(t) ={ BB =3 tER
0, t=0.

4.2. Approximate Subgrid Models. The exact elimination procedure de-
scribed in the previous section is actually applicable due to the simplifying hypotheses
on the linear differential operator and on the form of the problem data. In the case of
a different operator, e.g. a non-linear one, such a procedure is, in general, no longer
feasible. Under such circumstances, we must resort to an approximate method, which
we describe again in the case of the linear advection-diffusion problem, but that is
applicable in principle to any kind of operator (see section 5 for an application to the
Burgers equation).
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We now solve (3.12) under conditions (3.5) in an approximate manner. To this
end, we set throughout the section

Un(K) = Zp(K) = Po(K), Vi(K) = Wi(K) =Pi(K) VK €T,

which amounts to assuming the coarse trial and test scales to be modeled by the
lowest order method of the DPG family. We also assume to dispose of suitable (yet
unspecified) finite dimensional subspaces By p(K), By,n(K) (for the trial functions)
and By p(K), Byp(K) (for the test functions) of the infinite dimensional bubble
spaces introduced in (3.2) and (3.7). Then we use once again a discontinuous Petrov-
Galerkin method over each element to provide an approximate solution to (3.12), that
yields

/ (6h — aﬂh)ih,w dx = ’f‘hﬂh dx
K K _
(47 — ((@n — 1) — a@h — Xn)) Bnlox Vin € By,n(K),
/ Iﬁ:ilahﬁh d$+/ ﬂh'ﬁh,z dx =/ Spwy, dx
K _ K K
+()\h — ﬂh)ﬁhkﬂ( Yy, € Bw,h(K).

Though in principle several choices of the bubble spaces are possible, we describe in
the following one such procedure, which has the advantage of showing a link between
the multiscale variational method and the classical p enrichment approach, performed
using hierarchical bases (see also section 4.3). Thus, in view of a hierarchical con-
struction of the augmented spaces for both trial and test functions, we select

(4.8) Byn(K) = Pry1(K), B, n(K) = Pry1(K),
' Byn(K) = Prya2(K), By h(K) = Pry2(K),

supplied with the following orthogonality conditions that are convenient for practical

implementation of the method

(4.9) /Kﬂhﬂh de=0 V(@ in) € Un(K) x Bun(K)),

| /KW’I de =0 V(@hon) € (En(K) x Bon(K)),
and
(4.10) /Kﬁhﬁh de =0 V(Oh,0h) € (Va(K) x By,n(K)),

. /Km,@h dz = 0 (@, @) € (Wi(K) % Bya(K)).

We can prove the following proposition which formalizes the aforementioned link
between the multiscale approach and the hierarchical p enrichment method.

PROPOSITION 4.1. Under the choice of spaces Up(K) = Xp(K) = Po(K),
Vi(K) = Wi(K) = Py(K), which characterizes the DPGY method, plus the bubble
spaces (4.8) and the conditions (4.9,4.10), the multiscale DPG method with approzi-
mate subgrid model is equivalent to the plain ]D)]P’G;“IJrl method, k > 0.

Proof. Since the interface degrees of freedom of the DPG method are not affected
by the multiscale procedure, it suffices to consider the internal variables. Then the
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proof follows by recognizing that conditions (4.9,4.10) select, for any element K, each
bubble space as a polynomial space of dimension equal to k£ + 1. In particular, the
maximal degree of the polynomials in the two pairs of bubble spaces is £+ 1 and k +2
for By p, By, and By, By,n, respectively. Moreover, these bubble polynomials are
proportional to the Legendre polynomials of degree ranging from 1 to £+ 1 and from
2 to k + 2 for the trial and test bubble spaces, respectively. Finally, the (internal)
augmented solution (ujl,o7) and test functions (vjl,w;l) are sought in (Px41)? and
(Pyt2)?, respectively. O

REMARK 4. Throughout the article we refer to the DPG multiscale formulation
with approrimate subgrid modeling as the multiscale ]D)IE"(G?Z”“Jrl method, k > 0, where
the first superscript refers to the polynomial degree of the trial coarse scale modeling
and the second superscript refers to the polynomial degree of the enriching trial bubble
space.

REMARK 5. It was shown in ref. [2] that, once the plain DPG method is equipped
with a quadrature rule, the resulting discrete scheme is equivalent to an implicit Runge-
Kutta method of the collocation type. In particular, the use of Gauss-Legendre quadra-
tures yields the Kuntzmann-Butcher (Gauss) Runge-Kutta family of schemes, which
exhibits maximal order for a given number of stages when applied to arbitrary differ-
ential operators. According to this view, the plain ID)IPGQ method requires using the
k + 1-point Gauss-Legendre quadrature to attain maximal accuracy. Thus, when deal-
ing with the multiscale D]P’G%Hl method, the use of k+ 2 Gauss-Legendre quadrature
nodes is advisable, if not mandatory, to deal with the case of varying problem data
K,a and f.

Having characterized the choice for the bubble trial and test function spaces, we
provide an example of the fine scale elimination procedure in the case of the lowest
order DPG element, i.e. k= 0.

Using the orthogonality condition (4.9) for the trial spaces, since the coarse scales
are modelled as constants on element interiors, the fine trial modes are null-averaged
linear functions, @p|g: = (1 — 2s) 4!, a4’ being the fine scale degree of freedom on the
i-th element. Considering now the orthogonality condition (4.10) for the test spaces,
given that the coarse scales are linear, the fine modes are now the quadratic functions
Un|kxi = (68 — 65 + 1) 0%, where ¥ is the fine scale test degree of freedom on the i-th
element. Notice that the (reference) fine scale test function ¥ has zero average over
[0,1] and vanishes at the two Gauss-Legendre points 1/2 & 1/3/6. Inserting now the
discrete approximations to Uy, op, Up, Wy into (4.7) and solving for the coefficients
u?, o, we get

1o -

a' = 3 (Ait1 = Xi),
(4.11) 2

ot = > (i1 — 1)

Once again, the only non-vanishing fine scale term in (3.11) is

ht .
6Kt 7

(4.12) / n_15hmh dz = (Wip1 — ;)
K

Using once again (3.11), the discrete constitutive equations in the coarse scales write

(4.13) o' = % Rit1 — Xi),
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while the discrete flux equations give
(4.14) By — iy — a'(Ai = Ai1) = f°h'.
Therefore, using (4.11)2, (4.14) and (4.13), (4.12) yields

[ R d = (@01~ ) ()7~ ) 7,

where 7p is now an approximation to the exact solution 7,p¢, and reads

B~
(4.15) B = i €s(a’),
with
(4.16) £s(t) = % teR.

It is interesting to observe that, since in a neighborhood of the origin

~ 1t ¢ 1
H=—4+-——4...—Z
Eopt (1) t+3 45+ e

we have
&n(a’) = bops () + O(R?),

which ensures fourth order accuracy to the scheme when f is piecewise constant. This
could also be improved, by considering higher order discretizations for the local fine
scale problem (4.7). The increase in accuracy of the approximate subgrid model will
be demonstrated on several numerical examples in the next sections.

4.3. The Multiscale DPG Method as a Hierarchical Finite Element
Formulation. In this section, we wish to briefly comment about the relationship
between the DPG finite element method with variational multiscale modeling and
the classical p enrichment approach, performed using hierarchical bases. A similar
discussion with reference to the more classical Galerkin method is the topic of ref. [4].

The fact that the finite element bases are of a hierarchical nature is crucial, since
it allows us to identify some of the degrees of freedom as associated with the faster
modes while the others represent the slower resolvable ones. In fact, this identification
would not be possible using, for example, standard Lagrangian bases. However, it is
also important to realize that the elimination of the fine modes in favor of the coarse
ones, equations (3.11) and (3.12), while fundamental for showing the effect of the
former scales on the latter ones in the linear case, is irrelevant as far as the computed
solution is concerned.

In other words, once the finite element spaces are chosen according to the criteria
discussed in sections 3.1 and 4.2, if we were to solve the linear problem associated with
the DPG multiscale formulation directly or through the two (successively) coupled
subproblems (3.11) and (3.12), we would clearly get exactly the same result. This is
rather evident, if one only considers that the process of eliminating the fine scales as
functions of the coarse scales is nothing else than the static condensation procedure
of the internal degrees of freedom in a hierarchical p method.
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To summarize, for the linear case one could in principle proceed in two alternative
but totally equivalent ways. In the first case, the faster modes are computed through
equation (3.12) (or (4.7)) and then inserted into (3.11) to yield the sole coarse de-
grees of freedom. Alternatively, one could simply solve a larger linear system whose
unknowns are both the fast and slow degrees of freedom, which are therefore com-
puted simultaneously. Of course, in this latter case one must not forget that the
faster degrees of freedom represent the fine unresolved modes, that therefore must be
discarded. The solution must consequently be regarded as that obtained by the sole
use of the coarse degrees of freedom. In particular, in the case of the plain H])]P’GfLH,
or equivalently, due to Proposition 4.1, of the multiscale ID)]I"(x‘w?l’]H'1 method with the
special bubble spaces discussed therein, the faster degrees of freedom are associated
with the bubble functions of degree up to k¥ + 1 and k + 2 for the trial and test
spaces, respectively, while the coarse degrees of freedom are the ones connected with
the DPG) part of the trial and test basis functions. Results and comments about
the application of the DPG-multiscale formulation to the non-linear steady Burgers
equation will be shown in section 5.

4.4. The Stabilizing Effect of Multiscale Modeling. The effects of the
multiscale modeling go well beyond the increase in accuracy discussed above, and
result into a stabilized finite element discretization of the advection-diffusion model
problem. To show this, consider the solution to the advection-diffusion problem using
the plain version of ]D)]P’G(,)” i.e. with no multiscale modeling. For simplicity, we
consider a uniform grid of size h and again we assume that a and k are constant
throughout the domain, while the source term f is piecewise constant. For each

element K¢ € Ty, i = 0,...,n — 1, we have the following linear system of algebraic
equations
( h .
ot——u'+ N = 0
2K
ho
o'— 4+ u' — iy = 0,
(4.17) { 2%k \
—oltau—aki+pm = fig,
. ) -h
o' —au'+ a)\i—i-l — Mi+1 = fZE,
\

where o, u are the degrees of freedom associated with the internal variables, A; and
Wi (j =1, i+ 1) are the degrees of freedom associated with the interface variables at
nodes z; and x;;1, while f? denotes the value of f in element K. System (4.17) can
be written in matrix form as

Ay + B 0,
Cy+ DA+ Ep 7,

where y = (a'iaui)Ta A= ()‘ia)‘i-i—l)Ta r = (/J/iap/i-i—l)T and f = fih/2(151)Ta and
where the following matrices have been defined

b -1 1 0 -1 a
A= }f’ ,B= ,C: )
_ 1 0 -1 1 —a
—a 0
D = , F =B,
0 a

(4.18)

Il
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with A, B,C,D,E € R**?. Since A is an invertible matrix, we can eliminate the
internal variables y in favor of the displacement interface variables A to get

(4.19) y=—-A"'BA\.

Then, since also F is invertible, we can do the same for the flux interface variables pu,
to obtain

(4.20) p=E"'(f-(D-CA'B))).

Relations (4.19) and (4.20) hold for each element K* € T, i = 0,...,n — 1. In
particular, it is seen that, once the nodal displacement variables A are computed,
one can easily recover both the flux interface variables and the internal variables,
whenever needed, by simple element-by-element post-processing.

Imposing now the continuity of the interface variable p, at each internal node
zi, 1 =1,...,n—1, we eventually end up with the following square linear algebraic
system of size n — 1 in the nodal unknowns \;

2
(4.21) (1 +y)Xic1 +2X — (1 =N = (F + fi+1)%, i=1,...,n—1,
where Ao = ¢(0), A\, = ¢g(X) and v = ah/2k. It is immediate to check that for
a = |y| < 1, the matrix associated with (4.21) is an M-matrix, since its off-diagonal
terms are non-positive and its principal minors are all positive. This property provides
stability to the discrete formulation and ensures that a discrete maximum principle
holds for the plain version of DPGY (see [12]). The M-matrix property is clearly lost
for a > 1, and the solution will be highly oscillatory in this case.

Using now DPGY with the approximate subgrid model and following the same
static condensation procedure as before, we get

(422) — (L+7(1+&M)) X1 +2(L+ M) — (1 =71~ () Xin

= (L +EBENS+ =GO, =101,

which gives an M-matrix for any a. Hence the solution will not oscillate even for
arbitrarily large values of the local Peclet number. The approximate subgrid result
should be compared with the one obtained with the exact subgrid model, that gives

(4.23) = (14 7(1 + Eops (7)) Nict + 2 (1 + Yeopt (1) X = (1 = (1 = Eope (7)) i

~ . ~ . 2
= (1 + B + (0B, =1L

4.5. Numerical Validation for the Linear Case. We now test the proposed
formulation on a practical example. In order to measure the convergence rate of the
method, we need to introduce appropriate norms. At first, we denote by I x (v) the
approximation of [ x Vdzx using the trapezoidal rule for any function v € L?(Q) that
is also sufficiently smooth on each K € 7. Moreover, for each K € T, we denote by
{_;?7 K}?:o the k£ + 1 Gauss-Legendre points on K, k > 0. At this point we can define
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F1G. 4.1. Error curves for the coarse scales in the linear case: errors in u (left) and o (right)
for the approzimate subgrid multiscale model using DPG?L finite elements.

the following three norms:

n—1 1/2
vlln,z2(0) = (ZILKi (U2)> ;
i=0

_ k.
lwllr,cPoo = o Rax | Ofgfgklw(wj,m)

177,00 = Orgiasxnlml,

).

where w is any bounded function defined at the Gauss points of 7, and 7 is any
bounded function defined at the nodes of 7. The first one is a discrete L?(Q) norm,
while the other two norms are discrete maximum norms over the set of Gauss points
and &, respectively. The quadrature formula used in the discrete norm is accurate
enough not to pollute the computed accuracy, and at the same time avoids to sample
the solution at superconvergent points. The cases K = 0 and & = 1 have been
considered in the numerical experiments reported below.

The following symbols are used in the graphs: for any h, symbol “*’ refers to
I - ln,z2(0), while symbols ‘00’ and ‘o’ denote || - ||4,Gpr,co and || - [|4,00, respectively.
Finally, in all figure labels the symbol (-)¢ = (-) indicates the coarse scales.

The convergence behavior of the approximate subgrid model for ]D)]P’(G(,)L is com-
pared on the solution of problem (2.1) with X = 1, u(0) = u(X) = 0, a = 1,
k=1-10"2 and f = 22. We show in figure 4.1 the errors between the analytical
solution and the computed coarse scales in the appropriate norms as functions of h.
Fourth order convergence is observed for the interface fields, while the internal field
errors measured in the L2 norm are only first order accurate. The accuracy of these
fields increases when the errors are measured in the discrete Gauss point maximum
norm.

The fourth order accuracy of the boundary unknowns can be explained by recall-
ing that the multiscale DPGY with approximate subgrid modeling coincides with the
plain DPG}, using a hierarchical base (see Proposition 4.1 and the concluding remark
of section 4.2). Since the order of DPG¥ for any non-linear problem is 2 (k + 1) for
the interface unknowns [2], we should indeed observe fourth order accuracy for these
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F1G. 4.3. Solution in terms of the internal values Uy, up and Tp, op using multiscale ]D)]P’G?L
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solid line: fine modes.

fields. The internal unknowns are then only first order accurate in the L? norm be-
cause we are discarding from the solution its linear components up, oy, since they
are here interpreted as the unresolved modes. By retaining the linear components,
we would indeed achieve a higher accuracy for the internal unknowns at the price,
however, to loose the stabilizing properties of the multiscale formulation. This last
statement will be verified in the next section, in the case of the non-linear steady
Burgers equation. Similar results are discussed at greater length in the context of the
Galerkin method in ref. [4]. The solutions in terms of the nodal values Ay and py, are
shown in figure 4.2 for the case kK = 510 and h = 1/32 for the plain DPG?, finite
element formulation and DIP’G?L equipped with the approximate subgrid model. Al-
though both schemes are asymptotically second order accurate, the oscillating nature
of the solution computed by DPG?, should be contrasted with the smooth behavior of
the stabilized scheme. Finally, figure 4.3 shows the solutions in terms of the internal
values Uy, up, and @, oy, for the case K = 1-1072 and h = 1/16 using the approximate
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subgrid model. The coarse scales up, and 7 are represented as circles centered at the
mid point of each element since they are constant at the element level, while the fine
scale solutions are linear function with null mean value, as previously explained.

5. The Non-linear Advection-Diffusion Problem. We consider now the
classical steady Burgers equation, where the convective flux reads

1
Foav(u) = 3 uZ.

The plain DPG method applied to this model problem yields

1 1
/ (O'h — iui)vh’z dzr — (,uh — 5 /\i)’uhkﬂ( = / f’l)h dx Vv € Vh(K)7
(5.1) K K
/ fflahwh dx + / UL Wh,z dx — )\h'wh|aK =0 Ywy, € Wh(K)
K K

Once again we consider the multiscale D]P’Gg’o for simplicity. The choice of the trial
and test functions is identical to the previously discussed linear case, and in particular

52) upls =0+ (1 — 28) 4t € Po(K?) @ By, 1 (K?),
' vplgi = (1 — 8)0; + 81 + (652 — 65+ 1) 0% € Py (K?) & B, pn(K?),

where s = (z — x;)/h?, and similarly for op|x: and wp|gi. The resulting discrete
non-linear problem can then be solved by Newton’s method as anticipated in section
3.2.

At this point it is clear that the solution of a non-linear problem can proceed
along the same identical guidelines as a linear(ized) problem (see section 4.2), and
does not differ from the solution of any non-linear finite element problem when a
hierarchical basis is used. In fact, we can either eliminate the fine scale corrections at
each Newton iterate in favor of the coarse scale corrections, or we can solve a larger
problem where both corrections are computed simultaneously. Either way, the final
(converged) solution will be identical, and we just need to consider the coarse scale
degrees of freedom. For simplicity of implementation, the second approach was chosen
in this work, to the possible price of a slightly larger computational cost (of no great
significance in this one-dimensional setting).

Some remarks are in order about the non-linear case. First of all, it should
be noted that the analogy with stabilized methods, i.e. methods that make use of
stability parameters of the sort of the previously encountered 7,5t and 7g, does not
hold any more in this case, since the elimination of the fine scales in favor of the
coarse residuals is, in general, no longer possible. Second, the use of Newton method
for approximating the solution to a non-linear problem, yields a linearized problem
for the corrections of the interface unknown A, whose stiffness matrix is an M-matrix,
analogously to the linear case of section 4.4. Since the non-linear solution is obtained
by adding a finite number of corrections, and each correction is monotone, even the
non-linear solution will be monotone. Therefore, even in the non-linear case the
multiscale solution can not oscillate. This observation has been anticipated in ref. [4]
for the multiscale version of the Galerkin method.

5.1. Numerical Validation for the Non-linear Case. The solution to the
non-linear problem (5.1) was computed with the proposed method for the case k =
1-1072, X = 1, u4(0) = 1, u(X) = 0 and f = 0. Figure 5.1 plots the errors in the



A MULTISCALE FORMULATION OF THE DPG METHOD 19

10° 10
8
<
< 107 107
El
o )
§ 10" 10"
<
o=
i
2 10° 107
g
=
ot 10° 10°
El
_10 -10
10 - 10 -
10 10° h 0™ 10°  h
Fi1G. 5.1. Error curves for the coarse scales in the non-linear case: errors in u (left) and o

(right) for the approzimate subgrid multiscale model using ]D)]P’G?l finite elements.

- 10

10

!
N

=
o

|
w

=
o

|
IS

=
o

a0, 2 gy 10U

!
&)

=
o

6 -
10 - -3

10
10 10° nh 107 10™ 10 10 h

F1G. 5.2. Error curves for the complete solution (coarse + fine) in the non-linear case: errors
in u (left) and o (right) for the approzimate subgrid multiscale model using DIF’G?L finite elements.

various computed fields using the appropriate norms, in terms of the discretization
parameter h. The same convergence behavior observed in the linear case is here
confirmed even for the non-linear problem. In particular, fourth order convergence is
observed for all computed interface variables, while linear convergence is obtained for
the internal variables when measured in the L? norm, see figure 5.1.

By retaining the linear components, a higher accuracy is achieved for the internal
unknowns, as shown in figure 5.2, however, the stabilizing properties of the multiscale
formulation are lost, as anticipated in the previous section. Second order convergence
can be obtained also for the internal fields when sampling them at the (two) Gauss-
Legendre points (see remark 5).

Figure 5.3 plots the computed solutions in terms of the interface fields A, and
up, obtained in the case h = 1/32 and compares them with the analytical ones. The
stabilizing effects of the proposed method are evident even in this non-linear case.
Finally, figure 5.4 shows the solutions in terms of the internal values uy, up and o,

oy, for the case h = 1/16.
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6. Conclusions. We have analyzed the application of the variational multiscale
method to the DPG formulation of the one-dimensional advection-diffusion model
problem with both linear and non-linear constitutive relations for the advective flux.
Using the the multiscale framework, we have shown the equivalence between the plain
I]J)IP’(GQJrl and the multiscale D]P’G%Hl methods for a particular choice of the approx-
imate subgrid scales. We have enforced general orthogonality conditions for the fine
and coarse splittings of the test and trial spaces, which can be used for conveniently
constructing hierarchical multiscale p methods. We remark that these orthogonality
conditions are not necessary but turn out to be practical for implementation. More-
over, the above ideas can be extended to multi-dimensional problems.

We have analyzed both the exact and the approximate elimination of the fine
modes for the linear problem. In the former case, we recover the well known optimal
stabilization parameter that ensures a nodally exact scheme, as expected. In the latter
case, we obtain a consistent approximation of the optimal stabilization parameter,
that increases the order of the basic underlying finite element method and avoids the
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appearance of spurious oscillations in the numerical solution. We have numerically
investigated the scheme when applied to a non-linear model problem, reaching similar
conclusions as in the linear case.
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