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Abstract

In this work we deal with the numerical simulation of thermal oxidation in silicon
device technology. This application involves the coupled solution of a diffusion-
reaction problem and of a fluid-structure interaction problem. These two problems
are mutually dependent through the exchange of stresses and fluxes that are typi-
cally post-processed fields in standard finite element approaches, and as such they
may suffer from a lack of accuracy and from physical inconsistencies. In this article,
we propose a novel approach to the simulation of the thermal oxidation process,
that is characterized by the use of mixed and hybrid finite elements. The main
advantage of such formulations is that stresses and fluxes are directly computed
quantities, rather than obtained from post-processing techniques. We also address
the procedures and the techniques that must be devised for handling the coupled
interaction problem and the presence of a computational grid moving in time. The
numerical approach we propose is eventually validated on a realistic example of the
thermal oxidation process in a local oxidation structure (LOCOS).
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1 Introduction and motivation

The up-to-date technology in silicon integrated circuits involves the continu-
ous embedding, butting and overlying of structural elements. Such elements,
characterized by strongly heterogeneous mechanical properties, develop during
fabrication stresses that can produce defects leading to current leakages and
short-circuits that affect the electrical performance of the device. Therefore,
process device simulation based on accurate physical models and advanced nu-
merical methods can provide an important tool to drive the design strategy.

In this article, we concentrate on one of the several steps involved in device
manufacturing, namely the thermal oxidation process, which tipically occurs
in the isolation of adjacent electrically active zones on a semiconductor chip
and in the fabrication of Metal Oxide Semiconductors devices (MOS).

The first satisfactory mathematical model for the thermal oxidation process
was proposed in [11], where a one-dimensional diffusion-reaction equation pro-
vided an approximation of the physical phenomenon. Several corrections have
been then proposed in order to accomplish for a more detailed analysis, for ex-
ample in the case of thin oxide films [17]. More advanced models including the
influence of the stress field on the oxide growth have then been developed in
[20] guided by the experimental works of [5]. In particular, the fluid-mechanical
description of silicon dioxide has gone from a purely elastic approach [16] to
linear viscous [9] and nonlinear viscous models, even adopting highly sophis-
ticated models as done in [21].

The numerical solution of the problem has been pursued mainly using finite el-
ement methods, as done in the code SUPREM [13] and its subsequent versions,
and in the code NOVEL [18]. In these codes, standard finite element formula-
tions are generally adopted. In this paper we exploit instead the use of mixed
and hybrid finite element formulations. Since the two subproblems involved
in thermal oxidation (oxygen diffusion and consequent silicon dioxide volu-
metric expansion) are mutually dependent through the exchange of stresses
and fluxes, these latter quantities need be very accurately represented. This
latter is indeed the main goal of mixed-hybrid formulations, where stresses
and fluxes are directly computed quantities, rather than obtained from post-
processing techniques.

The paper is organized as follows. We start giving in Sect.2 a brief overview of
the physical aspects underlying the oxidation process and its overall mathe-
matical modeling. In Sect.3 we discuss the mathematical model for the oxidant
diffusion-reaction process and its numerical approximation by a primal hybrid
finite element method implemented as a nonconforming approach (see [22,24]).
In Sect.4 we discuss the mathematical model for stress generation in the struc-



ture and its numerical approximation using the dual-mixed hybrid (DMH)
finite element method introduced and analyzed in [8]. Sect.5 deals with the
algorithm used to iteratively solve the problem, and in particular with the
part concerning the fluid-mechanical analysis. Due to the presence of a mov-
ing boundary, special techniques are required to manage the mesh in order to
preserve its quality during process simulation. These techniques are described
in Sect.6. In Sect.7 we show the numerical results obtained in the simulation of
a real-life semiconductor device, and we collect in the concluding Sect. 8 some
remarks and possible improvements on the oxidation process simulation.

2 Physical and mathematical modeling of thermal oxidation

In this section we give a brief description of the thermal oxidation process and
provide some details about its mathematical modeling (for a more comprehen-
sive discussion of the mathematical models of the thermal oxidation process,
we refer to [20] and [21]).

The oxidation process consists in growing at high temperature a layer of silicon
dioxide (Si0z) on a silicon wafer bulk (Si). The Si surface is partially masked
by a silicon-nitride (Si3N4) pattern impermeable to the oxidant penetration
and is exposed to oxygen or water vapor at high temperature for a certain ox-
idation time (generally, 1-2 hours). The oxygen diffuses through the oxide and
reacts with the silicon at the Si-Si0, interface. Since the Si0, has a molar
volume 2.2 times larger than Si, at each time of the process a volume fraction
of the new grown oxide replaces the silicon that has been consumed, while
the remaining volume fraction pushes the old oxide upward. This constrained
volume expansion gives rise to large stresses and in particular causes the Si0,
to undergo a compressive state and the Si to undergo a tensile state. Experi-
mental evidence [20,5] shows that this state of stress significantly affects both
the 0, diffusion in the pre-existing Si0, layer and also the chemical reaction
kinetics between the 0 and the Si. The combination of these effects alters
the final shape of the Si-Si0; system that presents non planar regions (even
when the oxide grows on planar regions) and gives rise to the so-called “bird’s
beak” region. A schematic representation of the thermal oxidation process in
a local oxidation structure is shown in Fig.1.

The mathematical model of the process is constituted by a sequence of quasi-
stationary steps each involving the solution of two PDE systems over a domain
whose shape is changing in time. The first system is a diffusion-reaction prob-
lem for the oxidant and the second system is a stress analysis problem in the
oxide, nitride and silicon bulk. The two PDE systems are mutually dependent:
the diffusion and kinetic reaction coefficients as well as the geometry of the
deformed domain depend on the stress distribution; in turn, the chemical reac-
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Fig. 1. Schematics of the thermal oxidation process in a local oxidation structure:
3D model (left), 2D reduction (center) at the beginning of the oxidation and 2D
model (right) after process completion.

tion forces the oxide-silicon interface to move, driving the mechanical problem.
After solving the diffusion-reaction problem, a stress analysis is performed
to compute the new stress field and the resulting deformed configuration of
the structure (see Fig.2). In particular, the stress analysis phase introduces
a second nested level of coupling, since it requires solving a set of coupled
mechanical problems, each one in a different material. In the present work,
the SizN; mask and the Si bulk are modeled as linear elastic materials, while
a non-Newtonian incompressible fluid model with nonlinear stress-dependent
viscosity is used for the Si0, [20]. It appears evident that the data exchanged
between the sub-blocks in both the coupled systems are fluxes and stress de-
pendent quantities, so that the quality of their approximation clearly affects
the accuracy of the overall computation.
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Fig. 2. Flow chart of the thermal oxidation process simulation.

3 Diffusion-Reaction Problem

The process of oxidant diffusion in the Si0, domain is described by an elliptic
boundary value problem (Fick’s law) driven by the 0, ambient concentration



and by the chemical reaction between the 0, and the Si species occurring at
the Si0,-Si interface (see Fig.3). The oxidation diffusion in nitride and silicon
is negligible if compared with the diffusion in the oxide domain. For this reason,
the diffusion problem is solved only in this latter region. Moreover, since the
timescale for oxygen diffusion in the oxide is much smaller than the timescale
governing the movement of the interface, the thermal oxidation problem can
be treated using a quasi-stationary approximation, i.e., at each time step a
stationary problem for diffusion (and displacement) can be solved.

The diffusion-reaction problem reads:
find the oxidant concentration C' in the oxide domain €2 such that

(—div(DVC)=0 in Q
c=c on FD,
{ 1
Da—c—i-ksC’:O on ['g, (1)
on
oC
{ % =0 on FN,

where on the domain boundary I' = I'p UT'y U I'g with outward unit normal
vector n, we prescribe the ambient O, concentration C* (on I'pp), we include
the effects of the chemical reaction (on the Si-Si0, interface I'p), D being
the diffusion coefficient and ks being the reaction coefficient, and we prescribe
no-flux boundary conditions (on I'y) in correspondence of the metal stripe
and of the vertical symmetry axis. The diffusion and reaction coefficients are
defined as the following functions of the stress field [20]

de O-nnvrr
D=D ks = ks ) 2
where 0,, := (on)-n, p is the hydrostatic pressure, Kp is the Boltzmann

constant, 7" is the process temperature, D, and k;, are the stress-free diffusion
and reaction coefficients and V; and V, are suitable activation volumes. A
schematic representation of problem (1) with its boundary conditions is shown
in Fig.3. Notice that, due to symmetry with respect to the central vertical axis,
only one half of the domain of Fig.1 is considered.

The new oxide formed at the interface with the silicon defines at each step the
position of the interface itself. To express the velocity of propagation of the
interface discontinuity, we introduce the variable p,, = DV representing the
oxidant flux. This latter quantity and the interface normal velocity are related
by the following Rankine-Hugoniot condition (see [21])

/FRﬂpom-n]]ds—/FR[[C]]Vnds:O on [g, (3)



Fig. 3. Computational domain and boundary conditions for the diffusion-reaction
problem.

where the symbol [ - ] indicates the jump of the quantity across the interface
['g (that represents a line of discontinuity), V,, is the normal velocity of the
interface (the unit normal vector being oriented from the oxide to the silicon).
Relation (3) can be satisfied by enforcing the following (stronger) pointwise
condition

|[ Pox -1 ]]
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3.1 Finite Element Discretization

In view of the finite element approximation of (1), we introduce a regular
partition 7, of Q (see [10]) into triangles K such that Q@ = Uger, K and we
indicate by 07, the set of the edges of T,. For each element K € 7, we denote
by |K| and hg the area and the diameter of K, respectively, while for each
edge E € 07, we denote by hg the length of E. We also denote by 0K the
boundary of K and by ng the unit outward normal vector along the boundary
0K and for each node N, of T}, we denote by P, the patch of elements which
have N, as a common vertex. Finally, we denote by P,(K), r > 0, the space
of polynomials of degree < r on each element K.

The diffusion-reaction problem (1) is solved using a primal hybrid method
implemented as a nonconforming method, that reads:

find C)'¢ € W)NE. such that

> (/ DVCYNC . Vv, dz + D™k, ONC ds) =0 Yo, € WNE
K b

KeT, OKNI'p
(5)

where for any given function gp : I'p — R we define W;'C as the set of
functions that are:



- affine on each K € Tp;

- continuous at the midpoint of each internal edge of 07, and attain at the
midpoint of each edge lying on the Dirichlet boundary I', the value of the
average of gp on that edge.

We refer to [22,24,4] for a comprehensive mathematical presentation of the
primal hybrid/nonconforming formulation. Here, we only observe that the
nonconforming approximation is more flexible (i.e., less stiff) than the stan-
dard piecewise linear continuous finite element approximation. Moreover, the
fluxes represented as independent variables enjoy the property of local auto-
equilibrium and satisfy interelement traction reciprocity (see [4], Ch.1).

In the primal hybrid method, the approximate concentration C}, is a piecewise
linear discontinuous function over 7, and the approximate fluxes p,; s - n are
piecewise constant over 97,. The degrees of freedom for Cj and p,gp - n are
shown in Fig. 4 (left).

computed field

Poz,h T
Pozx,p T

Poz,h - T
@ degrees of freedom of the primal hybrid method

@ degrees of freedom of the nonconforming method

Fig. 4. Degrees of freedom for Cj, and py;p - n for the primal hybrid formulation
(left) and coincidence with the nonconforming approximation (right).

The nonconforming approach is the most efficient way for coding a primal
hybrid method, since after elimination of the variable p,; ) - n, it leads to a
symmetric positive definite algebraic system of dimension equal to the sum
of the number of internal edges and the number of edges belonging to I'y.
This latter system can be regarded as a generalized displacement problem for
the variable CNC which is readily verified to coincide with the variable Cj,
computed by the primal hybrid formulation (see Fig. 4, right). The flux pog 5-n
can be recovered by a post-processing procedure. In our case, this procedure
can be conveniently limited to the elements having an edge on I'g, i.e. where
the oxidant flux is needed to compute the interface velocity using (4).



4 Fluid-mechanical problem

Several possibilities exist for the mechanical modeling of the materials involved
in oxidation process; in particular, different continuum-mechanics models need
be adopted to describe faithfully the mechanical behavior of each material
(oxide, silicon and nitride). In accordance with the experimental results of
[5,20], the SizN, stripe and the Si bulk can be modeled - in a first basic
implementation - as linear elastic materials (with anisotropic elastic properties
in the case of Si), while it is apparent that a non-Newtonian model is needed
for the Si0,. Precisely, the Si0, can be represented by an incompressible fluid
with nonlinear viscosity of Eyring type

Tmaw/ac 2 2
= - -, < max = - 4 Y 6
M(O) Ho Sinh(Tmam/Uc) ’ i \/(011 0-22) / o ( )

where p is the stress-free constant viscosity and o, = 2KgT/V,, is a critical
stress value, V, being an activation volume.

In this work we adopt for the discretization of the fluid-mechanical problem the
dual mixed-hybrid finite element formulation (DMH) proposed and analyzed
in [8]. The DMH formulation is a mixed formulation capable of dealing with
both compressible and incompressible regimes, as happens in the case at hand.
This avoids introducing the quasi-incompressible approximation for handling
the incompressible fluid problem or the difficulty of using - and maintaining -
two separate computer codes, which is the commonly adopted procedure when
compressible and incompressible problems coexist within the same physical
model.

4.1 Formulation of the continuum-mechanics problem

In this section, we illustrate the mixed form of the linear isotropic elasticity
model problem that will serve as the basic setting for the DMH formulation.
The extension of the method to deal with anisotropic linear elastic materials
is carried out in [6], while the treatment of the elasticity model problem in
the incompressible case with nonlinear viscosity (Stokes problem for a non-
Newtonian fluid) is deferred to Sect.5.

Let M>% = {r € R**?}, and MZ2 = {r € M>?: 7 + 77 = 0}. Then, the
mixed formulation of the linear elasticity problem reads: Given a volume force
f:Q — R? a displacement up : 'y — R?, a traction gy : 'y — R?, find

a displacement u :  — R? a stress o :  — M?*2, a pressure parameter



p:Q — R and a rotation tensor v : Q — M%*? such that

skew?
—dive = f in Q2
0= 2:U'mat(vu - ’7) - lj'matppé in €2
1 .
p=——=tro in Q
\ 2 (7)
aso =0 in Q2
U =1Up on FD
on =gy on 'y,

where tro = Ele 04, 80 = 091 — 019, 0 is the 2 x 2 identity tensor and
P = Amat/ (mat(Amat + Hmat))s Amats Bmat Deing the Lamé coefficients of the
material such that \,,,; = 400 for an incompressible material, with p = 1/ pna¢
in the incompressible case. The variable v is the infinitesimal rotation tensor
that allows to weaken the symmetry constraint on o and was introduced in the
PEERS formulation [1]. The variable p is a pressure parameter that allows for
a straightforward discrete treatment of the incompressible case (Apqr = +00)
and is the main novelty of the present formulation with respect to the original
PEERS approach. For A,,,; — o0, system (7) can be indeed conveniently
interpreted as the conservative form of the Stokes equations in fluid dynamics

([ _divo = f in O
o =2ve(u) — pd in 2

{ divu =0 in €2 (8)
U = Up on I'p

(on=gn on 'y,

where €(u) = (Vu + (Vu)T)/2 is the strain rate tensor, v = piq is the
kinematic viscosity and u is to be intended here as a velocity field. Indeed,
using in (7)s the fact that e(u) = Vu — 7, taking the trace of this latter
relation, and using the definition (7); of p, we get

(tI‘O’ + 2umatpp) = (Mmatp - 1)3

tre(u) = dive =
Hmat mat

that for \A,,,; = 400 recovers the incompressibility constraint divu = 0.

System (7) is the starting point for introducing the DMH formulation ad-
dressed in the next sections. The distinct feature of formulation (7) is that it
incorporates the idea of the introduction of the pressure variable originally pro-
posed in the works [14,15] into the stress-displacement mixed approach with a



relaxed symmetry of the stress tensor. For an alternative stress-displacement
unified mixed formulation in the isotropic case, we refer to [12].

4.2 Finite element approximation

The linear elasticity problem (7) is numerically solved using the dual-mixed
hybrid (DMH) method proposed, analyzed and extensively validated in [8,6].
In order to introduce the discrete DMH formulation we define for every K €
Ts, the following finite element spaces:

gy h = {Ti{( € (RTy(K) ® Bx)* VK € T, Thn = gy on FN},

Un = {vf € (Po(K))> VK € To}, An={m € (Ro(0K))? VK € T, },

W), = {eh € CO(Q) | 0K € (P,(K))* VK € Th} Qn = {q,ff € Py(K) VK € Th},

where RT(K) is the Raviart Thomas finite element space of lowest order [23],
Ry (0K) is the space of piecewise constant functions on each edge of 0K and
By = curl(by) = (Obx /0y, —0bx /0x)T, bk being the cubic bubble function
on K. The DMH approximation of the continuum mechanics problem reads:

find (oh,uh,)\h,’yh,ph) € EgN,h x Uy x Ay, x W}, % Qh such that
a(on; Th) + 0(Uny An, Yoy Pr; Th) = G() ¥V 7 € T,

b(On; Vh, thy Oy qn) + c(Pr; gn) = F(vn) Y (Un, fih, Oy qn) € Un X Ay X Wy X Q.
9)
where

1
‘TR d Yo, € & V1, € X
QMmat/Qoh Th AT Oh 9N shs Th 0,h>

b(Vh, Hhs Oy Qi Th) = Y (/th'diVThdx—/aK,uh-(Thn)ds)

KET;,

-l—/Q th tr (7,) dx + /QHas(Th) dx N(vn, phy On, qn) € Up X Ay X Wy X Qp, T € Lo,

a(op; ) =

c(pn; qn) = /Q/)ph gndx  Vpp,qn € Qp,

G(m) = /uD - Tpnds V7 € ¥, F(vp) = /f - vy, dx Yoy, € Up,.
Q

Tp

10



The additional unknown A, in (9) is the Lagrangian multiplier that enforces
the condition of traction reciprocity of the stress o across each edge of 7. Re-
laxing the traction reciprocity constraint turns out to be advantageous in the
numerical implementation of the DMH formulation since it allows to perform
static condensation of the discontinuous variables o}, and uy, leading to a linear
algebraic system of reduced size whose unknowns are the interface displace-
ments )\, (hybrid variables) and the pressure and rotational parameters p;, and
~r- This latter system can be regarded as a generalized displacement-pressure-
rotation formulation of the linear elasticity (Stokes) problem. The degrees of
freedom for the various unknowns in the DMH finite element approximation
are shown in Fig. 5.

e
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Fig. 5. Degrees of freedom in the DMH finite element method.

5 Treatment of the coupled problem

This section deals with the description of the algorithm for the simulation of
the time evolution of the thermal oxidation process. A preliminary discussion
of this subject has been already carried out in Sect. 2 where a flow-chart illus-
trates the procedure. Here in Sect. 5.1 we set up more in detail the sequence
of steps to be executed at each time level of the simulation algorithm, while
in Sect. 5.2 we give some details on the proper modeling of silicon-to-oxide
volumetric expansion. Then, the solution approach to the fluid-mechanical
problem is addressed in Sect. 5.3 and Sect. 5.4.

5.1 Algorithm for the simulation of the thermal ozidation problem

At each time level, the simulation procedure of the thermal oxidation process
consists in executing the following steps until a fixed oxidation time 7,, is
reached:

11



(1) solving a diffusion-reaction problem for the oxidant within the Si0, do-
main (cf. Sect. 3), in order to determine the oxidant concentration at the
Si0,-Si interface '

(2) computing the velocity V,, normal to T';,; by (4);

(3) repositioning the mesh nodes belonging to I'y,; according to the value V,;

(4) determining the portion of the Si domain that is crossed by I';,; during

the time interval (such a portion corresponds to the amount of Si volume

that is involved in the oxidation reaction);

(5) solving, through a coupled algorithm, the fluid-mechanical problem in all
the materials (cf. Sect. 4);

(6) repositioning the mesh nodes according to the computed displacement/ve-
locity field;

(7) relaxing the computational grid according to the quality control criteria
described in Sect. 6.

5.2 Modeling the volumetric expansion

Silicon volumetric expansion occurs during oxidation due to the fact that the
molar volume of Si0, is larger than the molar volume of Si. To account for
this phenomenon, two modeling approaches can be pursued. The first approach
consists in enforcing a discontinuity in the normal component of the velocity
field at the interface. By doing so, volume expansion is included in the model
through a boundary condition imposed on the two elastic and fluid subprob-
lems [20,13]. In the present work we adopt a second approach, that is analogous
to that proposed in [21], consisting in the introduction of a stress-free defor-
mation associated with the oxidation reaction. By doing so, the velocity field
remains a continuous function at the interface. This latter approach appears
to be more attractive compared to the previous one in view of the introduction
of a viscoelastic description of oxide rheology.

We assume that in the silicon dioxide domain the following decomposition of
the strain rate tensor D, = (Vv + (Vv)T)/2 holds

D, = Da + D,, (10)

Da being the stress-free deformation rate and D, being the strain rate asso-
ciated with the state of stress in the material. Assuming that tr D, = 0 (i.e.
no volumetric deformation is associated with the stress state), we have

1
Dy =~ _yp, (1)

Vo and dV, being the specific volume of the silicon dioxide undergoing the
volumetric expansion and its variation due to the chemical reaction, respec-
tively. Having introduced the decomposition (10), the stress-strain constitutive

12



equation for a fluid in which a stress-free expansion is occurring reads

1 1
o+ p5 - D, = —DA. 12
2lu'mat 2lu'mat ! ( )

Relation (12) differs from the usual law valid for a Newtonian fluid due to the
presence of the (known) term Da, that can be straightforwardly accomodated
within the DMH formulation discussed in Sect. 4. In order to correctly account
for the increase of the silicon molar volume Vg; to the oxide molar volume Vg;q,
according to the ratio Vgig,/Vsi = 2.2 = 74y, the stress-free deformation rate
DA must obey the following relation

tn+l ‘/SiUQdV
/ tr Da dt = / AL log(Yoz)-
tn Vi VQ

5.8  Stability analysis of decoupled algorithms for fluid-structure interaction
in thermal oxidation

In this section, we present two possible decoupled algorithms for handling the
fluid-structure interaction in the thermal oxidation process. For both methods,
a stability analysis is carried out with reference to a one-dimensional fluid-
structure interaction model problem. Despite the simplicity of the model, the
results of the stability analysis indicate the impossibility to apply decoupled
algorithms to the problem at hand, this being a strong motivation toward
the introduction of some coupling mechanism between the fluid and mechani-
cal subproblems. With this aim, two basic strategies can be devised, the first
strategy being the use of relaxation schemes (in the framework of domain-
decomposition techniques, see [19]), the second strategy being the use of a
fully coupled solution of the fluid-structure problem. In this article, we have
pursued this latter alternative, as discussed and motivated in Sect. 5.4, defer-
ring the former alternative, that is clearly attractive from the point of view of
computational efficiency, to future investigation.

In view of the presentation of the iterative algorithms, we refer ourselves to the
simple one-dimensional fluid-structure interaction model problem constituted
by an elastic element with stiffness £ placed in series with a viscous damper
with viscosity r (see Fig.6). We also suppose to neglect inertial terms, as is
the case of the thermal oxidation process.

13
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Fig. 6. Spring-damper model.

We assume throughout that the two endpoints of the system are kept fixed
and denote by u the displacement of the midpoint of the system. Moreover,
let Fy, = —ku be the force on the spring and F, = —ru be the force on
the damper. Then, the following equation describes the time evolution of the
spring-damper system

ri+ ku = 0. (13)

To solve (13), the following two iterative algorithms, denoted by (A) and (B),
may be employed. Algorithm (A) is described by the relations:
given u™, n > 0, compute the sequence

FP = —ku", o2 = B ﬂ, ut = + "2 AL, (14)
T r

where u” is the displacement at the time level ¢t and v™+'/? is the velocity
which leads to the displacement u™*! of time level #"*! starting from u”.
Algorithm (A) can be interpreted as a Dirichlet (for the structure)-Neumann
(for the fluid) iteration. Solving (14) for u™ we get

kAt
u" = C\", A=1——, (15)
T
C being a constant depending on the initial condition. The sequence u" re-
mains bounded as n — oo if

N<l = At<2% (16)

Condition (16) states that algorithm (A) is stable provided that the time step
is lower than a fixed threshold value.

Algorithm (B) is described by the relations:
given v" 1, u™ n > 1, compute the sequence

n n—1
o2 — ur—u

Fn+1 — _,’,,Un+1/2
At T

; F]?_H — _kun+1 — —F:H_l, (17)

Algorithm (B) can be interpreted as a Neumann (for the structure)-Dirichlet

14



(for the fluid) iteration. Solving (17) for u™ we get

" n n 1 r / kAt
u = Cl/\l + 02/\2, /\1,2 == im(:‘: 1 + 47 - ].) (18)

C; and Cy being constants depending on the initial condition. The sequence
u" remains bounded as n — oo if

Ao <1 = At > 2 % (19)
Condition (19) states that algorithm (B) is stable provided that the time step
is larger than a fixed threshold value.

In the case of the fluid-structure interaction problem in thermal oxidation, it
turns out that the coupling Si0,-Si3N, should be treated by a scheme of type
(A), while the coupling Si-Si0, should be treated by a scheme of type (B). To
see this point, suppose to advance from " to t"*! according to the following
decoupled strategy:

e computation of the velocity and stress field in the oxide subdomain. This
problem is governed by the forcing terms due to volumetric expansion
through the following interface boundary conditions: at the Si-Si0, inter-
face Dirichlet boundary conditions are imposed based on the displacement
computed in the silicon subdomain at time ¢", while at the Si05-SizN4 in-
terface Neumann boundary conditions are imposed based on the stress field
computed in the nitride subdomain at time t";

e computation of the displacement and stress field in the silicon and nitride
subdomains. These two problems are governed by the following interface
boundary conditions: at the Si-Si0, interface Neumann boundary condi-
tions are imposed based on the stress field computed in the oxide subdo-
main at the present time level, while at the Si0,-SisN, interface Dirichlet
boundary conditions are imposed by integration of the velocity computed
in the oxide subdomain at the present time level.

According to the above strategy, it clearly follows that the Si0,-Si3N,4 coupling
is treated by a scheme of type (A) since the elastic material imposes a force
and the viscous material imposes a displacement, while the Si-Si0, coupling
is treated by a scheme of type (B) since the elastic material imposes a velocity
to the boundary of the fluid subdomain whose response is in turn represented
by a system of loads on the elastic material. Coming back to the stability

T'si 5
conditions (16) and (19), we see that they require to take At < 222 and
SizNg
At > 2751% iy the case of algorithm (A) and (B), respectively. These two

Si
requirements are mutually conflicting, as the typical values of the physical

parameters in the problem at hand do not allow to pick up a value of At
satisfying the above conditions simultaneously. For this reason, the use of

15



the (computationally attractive) decoupled algorithms has been abandoned in
favor of the coupled approach described in the forthcoming section.

5.4 A coupled algorithm for fluid-structure interaction in thermal oxidation

The difficulties described in the previous section can be overcome by solv-
ing the fluid-mechanical problem in thermal oxidation through a coupled ap-
proach. This strategy appears to be particularly well suited for the DMH
formulation since this latter is able to cope automatically (due to the uni-
fied framework discussed in Sect. 4.1) with materials exhibiting heterogeneous
compressibility properties by properly employing the formal analogy existing
between the incompressible elasticity equations and the Stokes problem in
fluid dynamics.

Let us thus consider the fluid-mechanical system defined in the spatial domain
Q = Qg UQyp, Qg being the region exhibiting elastic behavior (Si and SisNg)
and j; being the region with fluid behavior (8i0;). Let I'; = 0 N 00y
denote the interface separating the two regions. Since we are interested in
the quasi-stationary evolution of the system, we have Qg = Q¢ (¢) and Qp =
Qi (t), and the same assumption holds for the source term f and the boundary
conditions. The mathematical model of the fluid-structure interaction problem
reads:

divo® + fé(t) =0 in Qg(t),
Ao — e =0 in Qg(t)
divelt + f1Y(t) =0 in Qp(),
1
80 Il §—D,=—D in Qu(t (20)

2/J'mato- + 2,U/matp A - fl( )’

| dive=0 in Qp(t)
U= on I'(?),

<
on+alln =0 on Ty(t),

where v and v denote the displacement and velocity field in the solid and in
the fluid, respectively, f and ff' are volume forces in the solid and in the
fluid (equal to zero in the specific case of thermal oxidation), & = Du/Dt and
A denote the material (or Lagrangian) velocity and the compliance tensor in
the solid, respectively, % (u) is the strain tensor, and D,(v) and Dx are the
complete strain rate tensor and the stress free strain rate tensor (see Sect.5.2),
respectively. System (20) must be supplied with suitable Dirichlet and Neu-
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mann boundary conditions on 02. The interface conditions (20)s and (20)7
enforce the continuity of the displacement (adherence condition) and the con-
tinuity of the normal stress (action and reaction principle), respectively. The
approximation of (20); 5 and (20)3 5 can be carried out by using separately
in each material subdomain the DMH formulation. This requires to:

e discretizing in (), stress, pressure, displacement and infinitesimal rotation
fields;
e discretizing in )y, stress, pressure, velocity and rotational velocity fields.

To close the problem, the interface conditions (20)s and (20); must be added,
after suitable discretization.

Within the context of dual-mixed hybrid formulations, treating condition (20);
turns out to be quite natural, since this condition amounts to enforcing the
continuity of the normal stress across interelement edges. Having character-
ized the mathematical setting for the stress behavior at the interface, the dis-
cretization of (20); follows the standard hybridization procedure based on the
introduction of a Lagrange multiplier A which is approximated by piecewise
constant functions on each edge of I'; (cf. Sect. 4.2).

Treating the adherence condition (20)g is a more delicate question since it
involves computing the time material derivative of the displacement of a point
belonging to the interface. Notice that working under the hypothesis of small
displacements for the solid region and neglecting the inertial terms, system
(20) actually represents a lagrangian description for the structure, while the
fluid is described under an eulerian framework.

In the following, we shall thus provide some considerations that justify the
procedure for the computation of the above derivative that has been adopted
in this work. With this aim, we start introducing the initial configuration of
the system, denoted by 2°. Then, we denote by X the coordinates of a material
point in the configuration Q° with respect to an absolute frame of reference,
while z denotes the coordinates of a material point in the configuration Q!
that is occupied by the system at time ¢ with respect to the same frame of
reference. Moreover, let ® be the map representing the displacement field of
the material which leads from the initial configuration to the configuration ¢

Q0 - Q) 2(t, X) = OY(X).

The regularity of motion requires that ®* is a continuous and invertible map.
Let now 7, denote a regular triangulation [10] of Q° such that Q= Uker, K.
(This assumption implies that Q° has no curvilinear boundaries). Moreover,
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we also assume that 7y satisfies the following condition
o o 0
3E,7 C &, &, #{0}, suchthat T)= (] e (21)
eiESII;?

This condition states that the interface I'; is constituted solely by edges of 7
and that ['; does not cross any element of 7. Let us now consider a suitable
discretization ®" of the map ®°

th . 00 t.h
P 0 — bk

Qb being the approximation of the configuration ! that is obtained by
applying ®"". Moreover, let 7; be a regular triangulation of Q%" such that
Q= Uker;, K. We also assume that 7; is the image of 7y through ®%"

T: = @“*(To). (22)

We adopt for ®>" the affine map obtained from the nodal displacements com-
puted with the reconstruction procedure illustrated in Sect. 6.1.

Assuming for the moment that '} is always constituted by the same material
points, (21) and (22) imply

36,? C &' suchthat Ti= [(J e Vte(0,T,) (23)
t

e
e €€’

Denoting by 7 (z,t) the basis functions for the discrete velocity in the fluid
domain at time ¢, we have

mu(@,t) =mnyo (@)™ =my(X(z,1), =€
Now, using the fact that %‘ = 0 we can write
X

D/\u( t)—%
Dt YT o

(,8) = 3 da,i(t) m,(x, 1) (24)

X

Since for the interface edges we have 75 ; = 5, ;, relation (20)s reads

G, (1) = o, i(t)- (25)

When the above procedure is applied to the simulation of thermal oxidation,
relations (22) and (23) are compatible for points lying on the Si0,-SisN, in-
terface but not for points lying on the Si-Si0, interface. Indeed, due to the
chemical reaction, condition (22) would imply the interface to possibly cross
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the interior of the elements, thus preventing the fulfilment of (23) and re-
quiring to handle elements that have partly elastic constitutive behavior and
partly a fluid behavior. In order to avoid this latter situation, we have decided
to satisfy condition (23) at the price of sacrifying to fulfil condition (22) at
the generic time ¢. As a consequence, condition (24) has only an approximate
validity, this approximation being as much accurate as the displacement field
across the interface is uniform in the direction of V/,.

5.4.1 Time advancing scheme

The spatial discretization of problem (20) gives rise to solving a Differen-
tial Algebraic system of equations (DAE) constituted by the algebraic equa-
tions emanating from (20);_57 and by the differential equations emanating
from (20)¢. The DAE system can be cast into the following matrix form

i Y I0
z z 00

Q
|
~
_|_
S
Q
|

(26)

where b is a given vector, I is the identity matrix and K is the stiffness matrix
which is a nonlinear function of the geometry configuration of the system and
of the stress state in the material through (6). System (26) has been solved
using the #-method, with an inner fixed-point iteration to handle the nonlin-
earity of the problem arising from (6) (the small geometrical deformation of
the computational domain during the time step being neglected in the lin-
earization procedure). To support the validity of this latter approximation,
notice that the order of magnitude of the stress in the Si0, film (1000 M Pa)
implies a variation of the viscosity of three orders of magnitude according to

(6).

To improve the time accuracy of the above procedure, we have also investigated
the use of higher-order time advancing schemes. To test the procedure, we
have applied the fifth-order BDF method implemented in the Matlab odel5s
solver (see [26]) to approximate the time evolution of the model fluid-structure
interaction problem described in [7]. Fig. 7 compares the error curves for the
f-method and the BDF scheme as functions of the computing time. The results
show the dramatic improvement in computational efficiency due to the use of
the higher-order method.
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Fig. 7. Comparison between the §-method (circles) and the BDF method (squares).
On the z-axis the cpu time (in seconds) is reported, while on the y-axis the dis-
placement error is reported.

We conclude this section by briefly discussing the quantitative choice of the
time step during the simulation of the time evolution of the thermal oxidation
process. On the one hand, a reasonable compromise must be reached between
accuracy and total computational effort (consider that typical values of Ty,
are of the order of 1 hour). On the other hand, since the incremental defor-
mation of the device geometry is proportional to At, this latter quantity must
be properly bounded in order to preserve an admissible geometry of the finite
element mesh. Computational experience has shown that the need of main-
taining a high quality of the grid, in particular during the starting phase of
the process, can be satisfied by adopting the strategies described in Sect. 6
and taking a maximum value for At of the order of 20 s.

6 Grid management techniques

In this section we address the issue of the management of the computational
grid. This aspect is crucial in the computer implementation of the algorithm
described in Sect. 5.3 due to the need of maintaining a good quality of the
mesh during the simulation of the thermal oxidation process evolution.

6.1 Reconstruction of the displacement field for grid updating

In order to update the mesh, we must dispose of the nodal displacement. Thus,
given the discontinuous computed displacement field of our approximation, we
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describe in this section the procedure for reconstructing a nodal-valued dis-
placement field. The error analysis carried out in [8] shows that the interface
displacement, denoted by Ay, enjoys a higher convergence rate than the corre-
sponding approximation of the displacement field inside each element, denoted
by up. Then, the field Ay is the preferable choice to reconstruct the displace-
ment field. The problem is that \j, is piecewise constant on each edge of the
triangulation (cf. Sect. 4.2), whereas in order to deform the mesh we need
dispose of singly defined nodal displacements. These latter must be thus re-
constructed from the values Aj, possibly without substantial loss of accuracy
(or at least without spoiling the present order of convergence with respect of
the mesh parameter h). To do this, we have developed an averaging procedure
based on a mechanical analogy which assumes that each vertex of the mesh
is connected to its neighbor through an elastic spring. Solving for the point
of equilibrium of the system of springs subject to the given displacement A\,
yields the deformed configuration of the mesh (see Fig.8).

Fig. 8. The new position of the vertex is the point of equilibrium of the spring
system subject to the displacements A, (red spring system).

In order to assess the quality of the results provided by the reconstruction
procedure, a numerical experiment has been conducted on a test problem in
the incompressible case (Stokes problem) for a fluid squeezed between two
parallel plates moving one toward the other with constant velocity (see [8] for
the details). In Fig.9 we represent as functions of the mesh discretization pa-
rameter ~A the maximum absolute errors between the exact solution 1., and A,
(computed at the midpoints of each edge) and between the exact solution and
the reconstructed displacement u}, (computed at the vertices of the mesh). We
observe that the maximum error on the (reconstructed) vertex displacement
field is larger than the maximum error on the edge midpoint displacement
field. However, the O(h?) convergence rate of the DMH formulation is main-
tained and the ratio between the two errors is acceptable. This behavior has
been verified using both structured and unstructured meshes.
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6.2 Preserving the mesh quality

During the simulation the quality of the grid tends to progressively deteriorate
due to the advancing of the Si-Si0, interface and to the large displacements
occurring in the oxide region (see Fig.10). To cope with the above problems,

A% DO
0.79 ‘ 1?5 0.79F é?:ﬁkﬁ%
078 078 V' |
PR o mmg%gxé}agmwﬁmﬂ'ﬂmﬁ ﬁ;VAVAV
SARRAARES VAVAVAV“WNEAM(}“} "A(m
076 VALY, %xﬂ'gﬂ VAVAVAT TAVAY2g K 076
R ey %uu%ﬁﬁﬁunm'
R VAVAVAVAVAAPATAVs Earurl S AVAVAVAVAVLY, ' ”
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0.72 0.74 0.76 0.78 0.82 072 0.74 0.76 0.78 08 0.82

Fig. 10. Deformation of the grid during oxidation: starting grid (left) and deformed
grid after 150 s (right).

after each step of the oxidation evolution a reqularization procedure is applied
to the current grid by suitably repositioning the mesh nodes without altering
the topological structure of the grid itself. In order to drive the algorithm, we
use a quality inder defined for a mesh triangle K as (see [3])

K
e = 43— (27)
> b
E
EcdK
where ng = 1 in the case of an equilateral triangle, while nxg — 0 in the
case of a degenerate element. Then, the regularization procedure consists in
minimizing for each patch P, surrounding the mesh node N, the quantity

Qp = Z 1/nk. Newton’s method is used for solving numerically the mini-
KEP,
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mization problem, this not resulting into an appreciable overload with respect
to the overall computational burden of the problem. The regularization tech-
nique based on the local control of the quality index (27) has been successfully
implemented in the thermal oxidation simulation system discussed in the ar-
ticle, providing particular benefit in handling the case of nonconvexr patches
that frequently arise during deformation in the bird’s beak region of the oxide
(cf. Fig. 10 and Fig. 14). To improve the robustness of the procedure in partic-
ularly unfavorable situations (which is the present case as shown in Sect. 7),
a local remeshing is performed whenever the quality index (27) falls below a
fixed tolerance.

7 Numerical results

In this section we validate the performance of the coupled simulation algorithm
described in Sect. 5 on a real-life thermal oxidation process test case. The
geometry of the considered semiconductor domain is shown in Fig. 11 (left).

component halfwidth: 1.500 upum

mask halfwidth: 0.750 um

silicon thickness: 0.750 um

native dioxide thickness: 0.015 um " Y Y Y Y} 1
mask thickness: 0.060 um um

Fig. 11. The silicon wafer before oxidation (left): the green color denotes the SizN,
mask and the blue color denotes the native oxide film. The computational domain
and its finite element discretization consisting of 2127 triangles (right).

The symmetry of the problem allows to limiting the simulation to half the
region shown in Fig. 11 (left); The following values of the problem coefficients,
relative to a wet oxidation, have been assumed in the numerical computations
(see [11,20,2,25]):

diffusion-reaction problem:

Dy =8 x102um?s !, Cy = 3 x 10" molecules um 3, Vy = 17 x 1076 um?,
N; = 4.4 x 10" molecules pym 3, ko = 7.9 x 10 ' pm s~ ! and V, = 12.5 x
1076 ums3;

fluid-mechanical problem:

FEsin, = 0.39N pm 2, vsign, = 0.3, posign, = 20 N spum 2, o.gin, = 0.1 X
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1073 Npum™2 c116: = 0.1657 N um™2, cia5:1 = 0.0639 N um™2 and cyg: =
0.0796 N um=2.

Notice that an orthotropic description of the elastic properties of the Si bulk
has been assumed, due to the presence of different elastic coefficients c;;g;.
This issue requires to properly generalize the DMH formulation described in
Sect. 4.1 to the case of a material governed by an anisotropic stress-strain
relation (see [6,7]).

Plane strain conditions are assumed in the solution of the fluid-mechanical
problem. A homogeneous Dirichlet boundary condition is enforced on the
bottom of the domain, symmetry conditions hold on the vertical edges and
a homogeneous Neumann condition is imposed on the remaining sides of the
domain.

Figs. 12 and 13 show the computed results at the time levels t; = 15 s and
to = 300 s. The various graphs include (ordered from left to right, top to
bottom): the oxidant concentration, the o4, 0y, and oy, components of the
stress tensor, the pressure distribution p and the maximum shear stress Tnaz-
This latter variable is of special relevance as it influences directly the value of
the viscosity coefficient in the Si0, region.

The main production of a novel Si0, film occurs at the bird’s beak region,
where there is a large oxidant concentration at the Si-Si0, interface. Due
to the volumetric expansion, the new oxide, constrained by the above SisNy,
results in a compressive state (negative values of oy,), and is forced to flow
outward (a sort of horizontal outflow squeezing effect), this producing the
characteristic “bird’s beak”shape. On the contrary, we observe that only a
small fraction of the available oxidant can diffuse throughout the interior re-
gion underneath the SizN, mask, where the Si0; production turns out to be
negligible. This latter region, where the mask tends to be moved away from
the oxide film, is thus characterized by a tensile stress state (positive values
of o,,). As a consequence, the resulting load on the SizN, mask is a (counter-
clockwise) torque, balanced by the o, distribution in the mask itself. During
the oxidation process evolution, the stress field in the Si0, film tends to relax,
due to the viscous flow, while the increased thickness of the film progressively
inhibits further oxide production. As a consequence, the region characterized
by a stress tensile state moves deeper under the SizN, mask. A more refined
detail of the stress distribution in the bird’s beak region of the device is shown
in Fig. 14.

Turning to the quantitative analysis of simulation results, we observe that the
computed stress exceeds the expected values, in particular as for the value of
02z, if compared to typical values in the literature (see [21,25]). An explanation
to this effect is to be ascribed to the uncertainty in the values of the fluid-
mechanical parameters of the various materials that are used in the numerical
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Fig. 12. Simulation results at ¢t; = 15 s.

simulation, in particular those relative to Si0y and SisN4. Actually, while the
elastic parameters for Si and the characteristic stress 0. = 100 M Pa for Si0,
are well established in the literature, no similar agreement seems to exist for
the viscosity pg. As for SizNy, relatively few data are available and all of them
are the result of the calibration between wviscoelastic models and experimental
data. The use of these parameters within a linear elastic model for SizN, (as
done in our simulation algorithm) can be clearly a source of inconsistency,
due to the fact that the presently adopted model does not allow for stress
relaxation during the oxidation process, and therefore it should be regarded

as a first step toward a more extensive validation and improvement of the
simulation algorithm.
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Fig. 13. Simulation results at ¢t = 300 s.

8 Conclusions

In this work we have studied the numerical approximation of the thermal
oxidation process in semiconductor technology using mixed-hybrid finite el-
ements. The main goal of the research activity is twofold, on the one hand
aiming to investigate and validate properties and potentialities of the above
finite element methodologies, on the other hand willing to dispose of an accu-
rate and flexible tool for the simulation of such a complex industrial-relevant
problem.

The mathematical model of thermal oxidation requires solving a sequence
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Fig. 14. Detailed view of the bird’s beak region at to = 300 s.

of quasi-stationary systems of PDEs, namely, a diffusion-reaction problem
for the oxidant and a fluid-mechanical problem in the three materials in-
volved in the process, namely, Si (elastic anisotropic material), Si0, (viscous
non-Newtonian fluid) and SizN, (elastic isotropic material). The diffusion-
reaction problem is numerically solved using a primal-hybrid method imple-
mented as a nonconforming generalized displacement formulation, while the
fluid-mechanical problem is discretized using a dual-mixed hybrid formula-
tion which is capable of treating in a unified and robust framework both
compressible and incompressible regimes. Both formulations provide an accu-
rate and self-equilibrated approximation of fluxes and stresses unlike standard
displacement-based finite element approaches.

Special care is devoted to properly treating the fluid-structure interaction
problem. In particular, a stability analysis reveals possible failure of decou-
pled algorithms, this prompting for the use of a coupled algorithm to handle
the fluid-mechanical problem. With this aim, a #-method is employed for ad-
vancing in time, while a fixed-point iteration is performed to account for the
nonlinear dependence of the fluid viscosity on the shear stress in the oxide.
The resulting scheme is robust and accurate, provided that suitable grid reg-
ularization techniques are adopted.

The numerical performance of the simulation tool are extensively validated
on the solution of fluid-mechanical interaction model problems, as well as in
the study of a real-life semiconductor oxidation problem. The obtained results
exhibit in general good agreement with experimental data and the literature,
although a better calibration of some problem coefficients is still needed to im-
prove the quantitative adherence of the computed values of maximum stresses.

This latter issue is strictly connected with future research activity on both
the model and the algorithm that have been considered in the present article.
Among possible extensions, we mention:

e the introduction of a viscoelastic description of Si0, and SizN, rheology,
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which allows to account for stress relaxation, and the adoption of an elasto-
plastic constitutive law for Si;

the improvement of the time-advancing strategy by resorting to the use of
higher-order difference schemes;

the adoption of relaxation schemes based on domain-decomposition tech-
niques to improve computational efficiency in the solution of the fluid-
structure interaction problem;

the adoption of a suitable a posteriori error indicator to adaptively drive
the grid management procedure;

the extension of the simulation tool proposed in this article to deal with
three-dimensional problems.
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