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Abstract

In this work we develop an anisotropic a posteriori error analysis of
the advection-diffusion-reaction and the Stokes problems. This is the first
step towards the study of more complex situations, such as the Oseen and
Navier-Stokes equations, which are very common in Computational Fluid
Dynamic (CFD) applications. The leading idea of our analysis consists in
combining the anisotropic interpolation error estimates for affine triangular
finite elements provided in [14, 15] with the a posteriori error analysis based
on a dual problem associated with the problem at hand [6, 34]. Anisotropic
interpolation estimates take into account more in detail the geometry of the
triangular elements, i.e. not just their diameter but also their aspect ratio
and orientation. On the other hand, the introduction of the dual problem
allows us to control suitable functionals of the discretization error, e.g. the
lift and drag around bodies in external flows, mean and local values, etc.
The combined use of both approaches yields an adaptive algorithm which,
via an iterative process, can be used for designing the optimal mesh for the
problem at hand.

Keywords Anisotropic mesh adaption, a posteriori error estimators, advection-
diffusion reaction problem, Stokes problem, finite element methods, computa-
tional fluid dynamics.

1 Introduction and motivation

Many physical problems in CFD are characterized by solutions exhibiting direc-
tional features. Navier-Stokes, Stokes and Fuler equations are typical examples

*This work has been supported by the project MIUR 2001 “Numerical Methods in Fluid
Dynamics and Electromagnetism”.




where boundary, internal layers or shocks may develop. In these situations,
the effectiveness of finite element procedures can be improved if the mesh is
suitably oriented. However, standard a priori and a posteriori procedures do
not provide enough information to control mesh orientation. Some anisotropic
techniques based on heuristic approaches have been devised in the past (see e.g.
[9, 16, 24, 33]). A typical methodology consists in estimating the Hessian and/or
the gradient of the numerical solution and then using this information to drive
the mesh adaption procedure. Although the results are sometimes impressive,
these techniques yet lack a rigorous link with a bound of the discretization error.

More rigorous approaches using theoretically based anisotropic adaptivity
have been developed in, e.g. [2, 14, 27, 35] and [11] where the theory of [23]
is used in an anisotropic framework. In this paper, we extend the theory of
[14, 15] to the advection-diffusion-reaction and the Stokes problems. Precisely,
we develop an anisotropic a posteriori error analysis for both these problems,
moving from the dual-based approach illustrated in [6, 34]. This technique allows
us to adaptively control suitable functionals of the discretization error which
might be related to meaningful physical quantities such as e.g. the lift and drag
around bodies in external flows, mean and local values, etc. Since we employ
stabilized finite elements, we adopt stability coefficients chosen according to the
anisotropic analysis provided in [30].

The outline of the paper is as follows. In Section 2 we recall the anisotropic
framework of [14, 15] and the anisotropic interpolation estimates needed for
the sequel. In Sections 3 and 4 we address the advection-diffusion-reaction and
the Stokes problems, respectively, and present their anisotropic a priori and a
posteriori error analysis. Finally, in Section 5 we show how a nearly optimal
mesh, i.e. a mesh minimizing the number of triangles for a given accuracy, can
be obtained from the derived a posteriori error estimates. We assess the quality
of our a posteriori analysis on some numerical test cases.

2 Anisotropy: framework and interpolation error es-
timates

Let us briefly summarize the set-up leading to the anisotropic analysis used in
the sequel (see [14] for more details).
Let © C R? be a polygonal domain and let {73}, denote a family of conforming

triangulations of Q into triangles K of diameter hx < h, where h = II{na;_( hg. Let
€Tn

Tk : K — K be the invertible affine mapping from a reference triangle K into
the general one K, where K can be indifferently chosen as e.g. the right triangle
(0,0), (1,0),(0,1) or the equilateral one (—1/2,0),(1/2,0),(0,4/3/2). In either
cases, let Mg € R?*? be the (nonsmgular) Jacobian of Tk, i.e. T = (z1,22) =
TK( 7) = MK.’B + ik, for any Z = (Z1,72)" € K with tx € R2.

The distinguishing feature of our anisotropic approach consists in exploiting



the spectral properties of the mapping Tk to describe the orientation and the
shape of each triangle K. With this aim, let us factorize matrix Mg via the polar
decomposition as Mg = BxZg, Bx and Zgk being symmetric positive definite
and orthogonal matrices, respectively. Furthermore, Bx can be written in terms
of its eigenvalues \; zr, Ay g (With A g > Ay i) and of its eigenvectors 71k, 72,k
as BK = R%AKRK, with AK = diag()\l,K,/\Q’K) and R}; = [FLK,’FQ,K]. The
shape aspect-ratio of any K € T, with respect to K can be measured by the
stretching factor sk = A /Ay (> 1), s being equal to 1.

Starting from these decompositions, anisotropic interpolation error estimates

have been derived for both the Lagrange and Clément interpolation operators
[14, 15]. We state here only the results used in the sequel, while referring to
[14, 15, 30] for the detailed derivation.
Let V,, be the finite element space of continuous affine elements, and II; :
C%) — Vy, and I, : L?(Q) — Vy, the standard Lagrange and Clément linear
interpolants, respectively. We denote their restrictions to an element K € Tp
by Il and Ik, respectively. In view of the use of the Clément interpolation
operator, let Ag be the patch of all the elements sharing a vertex with K. In
the sequel, we assume the cardinality of any patch A as well as the diameter of
the reference patch Agp = Ty (Ak) to be uniformly bounded independently of
the geometry of the mesh, i.e., there exists a positive integer M and a constant
C > 0 such that, for any K € Ty,

card(Ax) < M and diam(Az) < C, (1)

where C > hg. In particular, the latter inequality rules out some too distorted
reference patches (see Fig. 1.1 in [30]).

Throughout, we use a standard notation to denote the Sobolev spaces of func-
tions with Lebesgue measurable derivatives, and their norms. The following
results can now be stated.

Proposition 2.1 Let v € H%(K), for any K € Ty, and let e denote one of the
three edges of K. Then there ezist two constants Cy = C1(K) and Cy = Cy(K)
such that

1/2
o — Tk (o)l e <CI[ZA2KAJKL )] , @)
1,j=1

A2 42 /2 . 9 1/2
lo — i (v) |20 < Ca (M) [ Z /\QK)\2KLZ,J( )] , (3)
K3
where

(7T Hi ()7, x)° dZ,  with 4, j =1, 2, (4)



and Hg(v) is the Hessian matriz associated with the function v (restricted to

Remark 2.1 The interpolation estimates (2) and (3) can be easily extended to
the case of vector-valued functions ¥ : Q — R?, where ¥ = (’Ul_,’l_JQ)T. In this case,
the above results still hold formally provided that the terms LZI’(J (v) be replaced by

L (@) = Z /(Fi,TK HK('Ul)'F]}K)2 dz, with i,j=1,2. (5)
I=1,2 3

Likewise, we can prove the following

Proposition 2.2 Letv € H'(Q) ._Then there exist three constants C1 = C1(M, 6),
Cy = Cy(M,C) and C3 = C3(M, C) such that, for any K € Ty, and any e € 0K

2 1/2
o = I (@)l 2y < o [ZA%,K(%GK(U)&,K)] ,
=1

2 1/2
1 L -
v = Ik (V)1 (r) < C2 y— [Z)\%K (Ti,j}(GK(U)Ti,K)] ;
) =1
) B 1/2
o= Iz < o [ SR i Gctrind)|
2,k Li=1

where G (v) € R?¥? js the symmetric positive semi-definite matriz given by
ov \? ov Ov
— | dZ ——dz
/(3I1> o 0x1 Oz .
G — T T
=2 oo, [(2)
0x1 0xo Oz
T T

Notice that the terms Li}’(j(v) and Gk (v) in (4) and (6) have the dimensions of
squared H?(K)-seminorm and H'!(K)-seminorm, respectively.

The result below turns out to be useful to complete the a posteriori analysis,
even if not related to the interpolation error estimates just mentioned (see [29]
for the proof).

(6)

Proposition 2.3 For any function v € H'(Q) and for any o, > 0, it holds
that

a (Fl,TK Gi(v)m,k) + B (FZTK Gk (v) T2 K)
|U|§{1(AK)

Gk (v) being the matriz defined in (6).

min(a, ,3) S S max(a, :8)3

Let us start our a posteriori analysis by dealing firstly with the advection-
diffusion-reaction model problem.



3 The advection-diffusion-reaction problem

We address the standard scalar advection-diffusion-reaction problem with mixed
boundary conditions: find u such that

—uAu—}—ﬁ-Vu—i—auzf in Q,

u =10 OIIFD, (7)
0

Ha—zzg on 'y,

where I'p and I'y are suitable measurable nonoverlapping partitions of the
boundary 0 of Q with I'p # @ and such that 9Q = T'p U Ty; the source
f € L2(Q), the diffusivity p € R, the advective field 8 € (Wh°(Q))2, with
V-g = 0, the reaction coefficient @ € L®(Q) with @« > 0 a.e. in Q, and
g € L?(Ty) are given data, while du/0n = Vu - 7i is the normal derivative
of u, 7 being the unit outward normal to 2.

The weak form associated with (7) is: find u € V = H} (Q) = {v €
H(Q) s.t. v|r, = 0} such that, for any v € V,

/uVu-Vuda'c’—lr/(E-Vu+au)vda'c':/fvd§:'+/gvds. (8)
Q Q

Q T'n

The discrete form associated with (8) is obtained by projecting onto the space
Vi, C V of continuous piecewise linear finite elements and stabilizing through
the streamline-diffusion method [13] which yield: find uj, € V}, such that, for any
vy € Vi,

/uVuh - Vo, dT + /(E Vuyp, + aup)vy dE
Q Q

+ > [k (—pBup+ B Vup + aup) (B Vo) dE
KeTy K

= [rodz+ [gmds + 3 [ricf(5-To)dz, ©)
Q

Ty KeTh i

where we have introduced the element stability coefficients 7x’s. Problem (9)
can be cast in the abstract form: find u, € V}, such that, for any v, € Vj,

Az (up,vp) = Fr(vp),

where the stabilized bilinear form A, : V x V — R and the stabilized linear form



F. : V — R for smooth enough functions u and v, are defined as

A (u,v) = /uVu-Vvd:i:’+/(ﬁ-Vu+ozu)vd:ﬁ'
Q Q

+ Z /TK(—uAu+5-Vu+au)(E-Vv)da'c’,
KeTh i

F(v) = /fvd:z':’+/gvds+z /TKf(E-Vv)df. (10)

T'n KeTh i

We also let Ay and Fy be the corresponding nonstabilized bilinear and linear
form, respectively, obtained by simply taking 7x = 0, for any K € Tj, in (10).
Notice that the exact solution u to (7) satisfies A, (u,v) = F,(v), for any v € V,
provided that u has extra regularity, namely u € V with Au|x € L?(K), for
any K € T;,. For example, v € H?(Q) suffices. Whenever this extra regularity
is guaranteed, the usual Galerkin orthogonality property with respect to A,

A (u—up,vp) =0, for any vy, € V4,

follows. Unfortunately, due to the presence of the mixed boundary conditions
in (7), this extra regularity is difficult to obtain in practice. In general if u € V
then it satisfies Ag(u,v) = Fy(v), for any v € V, and we have the following
(weaker) result

Lemma 3.1 Let e, = u — uy, then for any vy, € Vy,, it holds that

Ao(eh, ’Uh) = /uVeh - Vo, dZ + /(ﬁ Ve + eh)vh dx

Q Q
= Z TK(—uAuh+ﬁ-Vuh+auh—f) (E-Vfuh)da_c'.(ll)
KeTy i

Proof. The thesis follows on subtracting (9) from (8) tested against v = vy, for any
vy € V. O

Notice that relation (11) differs from the standard Galerkin orthogonality
property due to the presence of the stabilization terms and to the reduced reg-
ularity of the solution u of (8).

3.1 An anisotropic a priori error analysis

In [30] we re-addressed the question of a careful design for the element sta-
bility coefficients for a scalar advective-diffusive problem in the framework of
anisotropic meshes. We limited ourselves to problem (7), with o = 0, provided
with homogeneous Dirichlet boundary conditions and to the case of affine finite



elements. Starting from the analysis in [19] we studied the convergence of the
stabilized method (9) in a mesh dependent norm taking into account the effect
of the stability terms as functions of the coefficients 7x’s. The new values of the
latter are then obtained through error analysis considerations by requiring that
the convergence rate be of maximal order in both the advective and diffusive
dominated regimes. The main result of this analysis is:

Theorem 3.1 Let u € H%(Q) N H}(Q) be the solution of (8) with Ty = 0
and let up, be the corresponding linear finite element approzimation. Then the
expression for the stability coefficients and of the local Péclet number Peg as
functions of the anisotropic spacings is given by T = Ay i €(Pex) /(2 ||| L= (x)),
Pex = /\2’K||§||L00(K)/(6u), respectively, where {(Pex) = Pek if Pex < 1 and
¢(Pex) =1 if Pex > 1. For this choice there exists a constant C = C(K) such
that

ol <0 Y {8 (A Wl HlPere = 1)+ (1 - Per))
KeTy

1,1 2,2 1,2
[s%( Ly (u) + L (uw) + QS%LK (u)] },

where the quantities LZI’(](u) are defined as in (4), H(-) is the Heaviside function
and the discrete norm || - || is defined by

lwl} = g [Vll2oq) + Y I B Vol 2
KeTy,

for any w € H} ().

The choice for the 7x’s suggested in the theorem above will be numerically
validated in Section 5. We refer to [30] for more details and to [3, 4, 5, 7, 28] for
alternative approaches.

3.2 An anisotropic a posteriori error analysis

In this section, we extend the a posteriori error analysis carried out in [18] dealing
with an advection-diffusion problem associated with the transport of a solute
(like oxygen or lipids) by the blood stream in a large artery. In particular, we
follow the method of Dual-Weighted Residuals [6, 34] which allows to compute
optimally economical meshes as well as reliable and efficient error bounds for
arbitrary functionals of the error.

Let us introduce the following dual problem associated with (8): find z € V'
such that

Aj(z,v) = J(v) for any v € V, (12)



with Aj(-,-) the adjoint form to Ay and where J(:) : V' — R s a linear functional
to be suitably chosen according to the physical quantity to control. Notice that
if J(v) = [,¢v dZ with ¢ € L?(Q), then the choice of the space V for the
adjoint problem (12) is consistent with the theory in [23].

We can prove the following result

Theorem 3.2 Let u,up, and z be the solutions to (8), (9) and (12), respectively,
and ep, = u — up. Then for any zn, € Vi, we have

sen) = Y- { [oxtunc— o~ (- Va i+ 5 [iute—ayas} (o
0K

KeTh “ j

where, for any K € T, and e € 0K, px(up) = (f + pAup — B Vuy, — aup)|k
and

0 ifeecTp,
8uh
. -2 — — ; r
Je = (uanK ) ifecln,
auh : int
_u[an}(]e Zfeegh ’

are the element interior and boundary residuals, respectively, associated with the
finite element solution up. Here g is the unit outward normal to 0K, E,ilnt
denotes the set of the internal edges of the skeleton &, of the triangulation Tp,
and [Oup/Onk], = Oup/Onk + Oup/Ong: stands for the jump of the normal
derivative Oup/Onk over the edge e, K' being the triangle sharing the edge e
with K.

Proof. By choosing v = e, in (12) and exploiting the identity A§(z,v) = Ao(v, 2),

for any v € V, we obtain

J(en) = Aj(z,en) = Aolen,2) = //,LVeh -VzdZ + /(3 Vep, + aep)zdE. (14)
Q Q

Using Lemma 3.1 in (14), we have, for any zj, € V;,

J(en) = /Mveh'V(Z—Zh)df+/(g-Veh+aeh)(z—zh)d§:’

Q Q
+ Z /TK(—,uAuh+E-Vuh+auh—f)(g-Vzh)df.
KeTh i



The definition of e, and the weak form (8) yield

J(ep) = f(z—=2zp)dE+ [ g(z—2p)ds — [ uVup - V(z — 2p) dT
sz Jotmae- |

I'n

- /(B-Vuh +aup)(z — zp) dZ

Q

+ Z TK(—uAuh+5-Vuh+auh—f)(ﬁ-Vzh)df.
KEThK

We now express the integrals on 2 as sum of integrals over the elements of the triangu-
lation and we integrate by parts where needed to obtain

J(en) = Z /(f+,uAuh — B Vup — aup)(z — z3) d2
KeTh
ou Ou

- Y [ premawas- X [ (upet-g) -
KE€Tn o ngint KeThgkry

- Z /TK (f + pAun — B - Vup — aup)(B - Vap) di .
KeTn ¢

The result (13) follows on recalling the definitions of px (up) and je. O

Let us state the following theorem, which is the desired anisotropic a poste-
riori estimate for problem (7).

Theorem 3.3 Let u,up and z be the solutions to (8), (9) and (12), respectively,
and ep, = u — up. Then there ezists a constant C = C(M,C) such that

T > 1 .
I <O [lowtnlizgo (1+ 32 Wl ) + 57 liellzono
KeT, 2,K 2)\2,K

(isz(@gGKmk))”?, (15)

i=1
where pg(up),je are defined as in Theorem 3.2 and Gk (z) is given in (6).

Proof. The thesis follows from (13), by firstly adding and subtracting z in the term
involving the advective field,

= 2~k |B- - Pt (2 — ;
J(eh)—K;Th{IZPK(Uh)(z 2h K[ﬁ V((zn z)+z)])d$+2alj (2 Zh)ds}

then using the Cauchy-Schwarz inequality on all terms involving z — 2z together with
relation

8- V|l ky < ||g||Lw(K)||VZ||L2(K)

and finally using Proposition 2.3 (with a = sk and § = 1/sk) to bound [|Vz||L,(x) and
Proposition 2.2 after choosing zp|x = Ik (2). O



Remark 3.1 We point out that (15) has a classical structure, according to the
theory in [6, 34], as it can be cast in the form

[J(en)| < C Y ax Ri(up) wi(2), (16)
KeTy

where ax = (A /\Q,K)g’/?,

1 TK - 1 .
Ric(u) = —(npK(uh)u : (1 T T ) L el )
(/\1,1()‘2,1()1/2 0 )\Q,K Y 2>\;,/,2( FHer
and
1 o B 1 N
wK(z) = —(}\ \ )1/2 (SK (Tl,KGK(Z)Tl,K) + ; (TQ’KGK(Z)’I‘Q,K)) .
1,K “2,K

The target functionals of the discretization error are bounded in terms of
residuals and interpolation errors associated with the primal and dual problems,
respectively. Thus, choosing different control functionals implies changing the
dual problem only. In particular, the residual terms are related to the source of
errors when approzimating the solution of the primal problem, while the solution
of the dual problem determines the way these errors accumulate and propagate
according to the chosen controlled functionals.

Ezpression (16) will be used in Section § to develop an adaptive technique.

We are now in a position to analyze the Stokes problem.

4 The Stokes problem

In this section we extend the a posteriori analysis provided in Section 3 to the
Stokes problem. We seek the velocity 4 and the pressure p of an incompressible
fluid, subject to mixed boundary conditions: find (%, p) such that

—pAT+Vp=f in Q,
Vi=0 in Q,
(17)
p(Vi)i—pii=§  onTy,
ﬁ:6 OIIFD,

where I'p and 'y are suitable measurable nonoverlappi_ng partitions of the
boundary 992 of Q with I'p # (0 and such that 9Q = T'p U I'y; the source
term f € [L?(Q)]?, the viscosity u € R", § € [L?(T'n)]? are given data, and 7 is

10



again the unit outward normal to 9. The weak form associated with (17) is:
find (@,p) in W x Q such that, for any (7,q) € W x Q,

/uVu Vvd:c—/vadw—/f vdw+/g vds,

Q Q FN (18)
—/q V-adZ =0,
Q
where W = [HL_(Q))? = {7 € [H'(Q)]? s.t. ¥, = 0} and Q = L*(Q). If
Iy =0 then Q = L§(Q) = {v € L*(Q) s.t. [vdZ =0}
We discretize (18) by using the GLS method [21, 26]. The discrete problem
is: find (4, pp) in Wy, X Qp, such that, for any (0, qp) € Wp, X Qp,

/uVﬁh:Vz‘;’hdj'—/phv-ﬁhdf:/f-ﬁhd£+/§-ﬁhds,

—/th-a’hdj’— TK/Vph Vapdi=—)_ TK/f Vap di,
Q KeT, ¥k KeTn g

where both the spaces Wj, C W and Qp, C @ are formed by continuous piecewise
linear finite element functions over 73, and the 7x’s are the stabilization coef-
ficients whose expression will be specified in the next subsection. Due to this
choice of the finite element space, the stabilized methods, such as GLS, SUPG
[8, 20, 26] and the method proposed in [12], do coincide with each other.

4.1 An anisotropic a priori error analysis

As in the case of the advection-diffusion-reaction problem, when using stabilized
finite elements the design of the stability coefficients 7x’s in (19) is a critical
issue, in particular in the case of strongly anisotropic grids. In [32] numerical
experiments show that good results can be obtained using the minimum edge
length. In [30] we provide a theoretical construction of the stability coefficients
for problem (17) with 'y = (). We recall here the main result of this analysis.

Theorem 4.1 Let (@,p) € ([H(Q)12N[HZ(Q))?) x (L3(Q) N HY(Q)) be the so-
lution to (18) with Ty = 0 and let (dp,pp) be the corresponding affine finite

element approzimation. Then an anisotropic expression for the stability coeffi-
cients is given by Tk = a/\g’K/,u, where o =~ O(1) is a positive constant. With

this choice there ezists a constant C = C(M, C, I/(\') such that

2
oL i 1 . -
1=y —p)E <O 3 { SN2 L (@) + ;ZA?,K(n?}(GK@)m,K)} ,

KEeTy, 2Kz,] 1 =1

11



where the quantities LZI’(](ﬁ) and Gk (p) are defined as in (5) and (6), respectively,

M and C are given through relations (1), and the discrete norm ||(-,-)||n is
defined, for any (%, %) € HY(Q)? x (L3(2) 0 H' () by

. . 1/2
1@ D = (WY oy + D I Th1200))
KeTy

The definition in Theorem 4.1 for the stability coefficients 7x’s has been
obtained by error analysis considerations by demanding the maximal order for
the convergence rate of ||(@ — @p,p — pr)|ln. Numerical experiments confirm
that this choice gives better results than the naive choice Tk ~ h% /u [21], in
particular when the mesh is “aligned” with the solution, numerical diffusion
being reduced (see [30] for the details). In a loose sense, alignment means that,
on any element of the mesh, the largest directional (first or second) derivatives
of the numerical solution are along the direction 7% g of the minimum size of the
element, and consequently, the smallest derivatives are along the direction 7 g
of maximum spacing of the element. A theoretical investigation of the constant
« in Theorem 4.1 is carried out in [31].

4.2 An anisotropic a posteriori error analysis

Here we the extend the a posteriori error analysis of Section 3.2 to the Stokes
problem [17]. Again, we go through a dual problem associated with the primal
one according to the theory in [6, 34]. In this case, the dual problem related to
(18) is: find (w,r) in W x @ such that, for any (¥,q) € W x Q,

/,uV'u_J' : VidT — /rV-Udf = J1(9),
- [av-dz = 1),
Q

where J1(+) : [HY(Q)]? — R and J5(-) : L2(Q) — R are suitable linear functionals
chosen according to the quantities one wishes to control. Notice that the dual
Stokes problem coincides with the primal one, except for the boundary conditions
and the data, due to the symmetry of (18). Moreover, if J,(7) = [ @ - ¥ dZ
and J3(q) = [ % qdZ for any @ € [L{Q)]? and 4 € L?*(Q), then the boundary
conditions involved in (20) are consistent with the theory in [23].

Let us start with the following result

Lemma 4.1 Let €, = i — iy and e, = p—py. Then for any (T, qn) € Wp X Qp,
it holds that

/uVé'u . Vi, dif — /epV-'E'h dz — /qhv-au di=-)" TK/(vph — ) Vg, dz.
Q Q Q KeTn g

12



Proof. The proof follows on subtracting (19) from (18) tested against discrete
functions ¥}, and gp. O

Let us now state the following theorem, which is the starting point of our
anisotropic a posteriori error analysis for the Stokes problem.

Theorem 4.2 Let (d,p) and (idp,pn) be the solutions to (18) and (19), re-
spectively, and €, e, their corresponding discretization errors. Then for any
(U, qn) € Wh X Qp, we have

n@)+ne) = 3| [ @-ade+ [ - a)dz
K

KeTh i

+ 'rK/ }((uh,ph) -V, dZ + 5/]8 (W — vh)ds} , (21)
K oK

where, for any K € Ty, and any edge e € 0K, pi(in, pp) = (f_'+ uAUp — Vpp)|x
and p3(@n) = (V-@y)|k are the element internal residuals associated with the
momentum and continuity equations, respectively whereas

0 ifeecTp,
je = R 2(§- (w(Viniix) —pniix)) ife€Tln,
— (Vi k) — prik)], if e € EINY,

is the edge residual, proportional to the jump of the normal component of the
Cauchy stresses. The quantities ix,E;™ and [-], are defined as in Theorem 3.2.

Proof. Let us choose ¥ = €, € W and ¢ = e, € @ in (20). Notice that the same
choice for the space W for the primal and dual problems is motivated by the fact that
(@ —@n)|rp, = 0, i.e. there is no approximation error associated with the Dirichlet
boundary condition. Using Lemma 4.1, we have

J1(€u) + Jz(ep) = /IU,V(U_)' — Uh) : Vi ded — /(T - qh)V-ﬁdf

Q Q
—/pv-(w— Fu) i — [/W(w— B : Viln dF — /(r _ ) V-iin di
Q Q Q
—/phV-(u'i — ﬁh) d.’i{| — Z TK/(Vph — fj . th dzr . (22)
Q KeTn i

From (18) where we take @ = @ — ¥, € W and ¢ = r — g, € @ and integrating by parts

13



the fourth and sixth term in (22), we have

+TK/(Vph—f§-thdf] ,

K

where some of the integrals have been split over the elements of the triangulation 7p.
Result (21) follows on rewriting the above terms and using the definitions of the residuals
p-’ll((ahaph)asz(ah) and je- 0

Finally, we complete our a posteriori error analysis by proving the following

Theorem 4.3 Let (W,r) be the solution to the dual problem (20) with W €
[H2(Q)2 "W and let €,,ep, as in Lemma 4.1. Then there exists a constant
C =C(M,C,K) such that

11(8) + Tae)| < C Y {

KET,

L 1. A2+ A2\ /2 Z 1/2
[kl + Mo (53 ) ][ 52 ot erign)]
2,K

1,j=1

1/2
o T o o
[ R T S HZA w(Fextn) |}
2,K
(23)

where ﬁll((ﬂh,ph), p%( (ﬂh),fe are defined as in Theorem 4.2, the quantities Lz’{j(u'i)
and Gk(r) are given in (5) and in (6), respectively, and the constants M and
C are defined through (1).

Proof. Sincein (21) the functions ¥, and g, are arbitrary, we choose them as suitable
interpolants of @ and r, respectively, i.e. ¥y|k = Ik (@) and gy|k = Ik (r). Using the
Cauchy-Schwarz 1nequa11ty in (21), we obtain

1@ + Talep)l < 3 {11k (itn, pm) () |16 = T () |2
KeTn

+[1 % (@) L2cr) I = Irc ()l 2 (k) + Tre |55 (@hs P |22 () [V IR (7) | 22 (k)
1 - = =
+§||Je||L2(8K)||w - HK(w)||L2(8K)} . (24)
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For the purpose of obtaining a computable bound, it suffices to estimate the interpolation
errors in (24) together with the term ||V Ik (r)||z2(k). With this aim, we use Propositions
2.2 and 2.3, and the vectorial extension of Proposition 2.1. We have

2 o 1/2
@) + D) <C Y {nﬁlz(ﬁh,mnmm [ ) A%,KA%KL};%)]

KeTn ,j=1

+ [l (@n)l122(x) [Z)‘U{( kGK(r)F, )]1/2

1/2
T, — — — —
LV |5k (@n, o)l 2 [ZA?,K (Tz',TKGK(T)Tz‘,K)]
K P

I MNi+Mk N
e Mo ()T 5 o nig]|
2,K 1,j=1

We remark that the term ||V Ik (r)|| 2 (k) in (24) has been dealt with combining suitably
the triangle inequality together with Proposition 2.2 and Proposition 2.3 with a = sk
and 8 =1/sk, to give

IVIk(r)|l2x)y < ||V(IK( ) = ")lle2xy + [1V7]|L2(x)

[Z,\ i (PG (r )r,-,K)] "

Result (23) follows by suitably rewriting the anisotropic terms coming from the inter-

polation estimates. O
Expression (23) has a classical structure according to the theory in [6, 34],

analogously as what already said in Remark 3.1, as it can be cast in the form

| J1(8) + Ja(ep)] < C Y {aje Ric(iin, pr) wic (W) + af R (iin, pr) wi (r)}
KeT,

IA

(25)

where a}( = ()\LK /\Q,K)Q, 04%( = (/\1,1( >‘2,K)3/2’

1 1,- Ak TNk 1/2
R n) = 15—z (17 @)z + 3 Fllrone (552 ) ).
K (>‘1,K>‘2,K)1/2 K L) T g ellLA@K) )\g,K
1
R (iln,pn) =
% (Un, Ph) Crd ) (||pK(“h)||L2(K) +— /\Q’K 1% (Th, pa) |2 K))
and
1 1 9 71,1 1,2 1 99 12
7 — — L ) 11 2L > 77 _L ) -
() = e () 208 )+ o)
, 1 o ) 1 1/2
(UK('I") = W (8]{ (TI,KGK(T)TLK) ‘I" ; (TQ KGK( )TQ’K)> .

This formulation will be the starting point to drive the adaptive procedure in
the following section.
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5 Numerical assessment

Aim of this section is to explain how we can get suitable information from the
derived a posteriori error estimates to construct the new anisotropic adapted
mesh. Then we test such an adaptive procedure on some numerical test cases
for both the advection-diffusion-reaction and the Stokes problems.

5.1 Adaptive procedure

The anisotropic information provided by estimates (15) and (23) has been em-
ployed within the mesh adaptation procedures in a predictive fashion in order
to develop a metric based algorithm. Indeed a standard way of generating an
anisotropic mesh on a domain 2 is to endow it with a metric represented by a
symmetric positive definite tensor M : Q — R?*2 [10, 22]. An iterative pro-
cess is thus carried out and the information concerning the metric is updated
by employing the data stemming from the actual mesh. Within this iterative
procedure, by analyzing the solutions of the primal and dual problems on a grid
771’“ we seek for an optimal metric M to drive the generation of a better, adapted
grid Tk+1 The metric M is approximated in a piecewise constant fashion over
TF, ie. M| € R>*?, foraLnyKE'T]c

We have that M = R A=2RT where A = diag(\;, A2) and RT = (74, 7"2) are a pos-
itive diagonal and an orthogonal tensor, respectively. The quantities )\1, )\2, 71,79
are approx1mated by piecewise constant functions over the triangulation 771’“, i.e.
7‘1|K = rzK,/\ |k = )\”( for any K € 7"“ and for ¢ = 1, 2. Because of the def-
inition of the mesh metric (see [22]) these quantities are directly related to the
spacing and stretching directions on the adapted grid.

We are then interested in choosing matrix M so that: i) the discretization
error in the adapted grid be equidistributed on all the mesh elements while
i1) maximizing the area of the elements. This latter requirement improves the
efficiency of the solution of the linear system associated with the discretization
of the partial differential equation at hand, because it tries to reduce the number
of degrees of freedom, i.e., the size of the stiffness matrix.

In order to satisfy the constraints i) and i), let us move from relations (16)
and (25) by rewriting them as

[T(en) <C Y mx and |Ji(&) + Jalep)| <C Y nis
KeTy KeTy,

respectively, where the local estimator g = ax Rx(up) wk (z) in the advective-
diffusive-reactive case while nx = ak R (iih, pn) wk (W) + o R% (iin, pr) w(r)
for the Stokes problem. Notice that, except for the multiplicative constants
ag, a}(, a%(, the terms involved in the definition of the local estimators ng are
quantities independent of the measure of the triangle K at least asymptotically,
i.e. when the mesh is sufficiently fine.
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Since we can only act on the local estimators, we impose on the one hand that
nkg = 7 for any K € 7;:“, where 7 is a given tolerance, and on the other hand that
|K| be as large as possible. This amounts to solving a minimization problem
involving the Lg’s and the Gg’s terms. Let us analyze separately the two
problems.

The advection-diffusion-reaction problem _
In this case requirement ) amounts to solving the problem: find 5 and 71 k
such that

- (=T 5 1 /1 ~
SK (Tl,K Gk (2) Tl,K) + == (7'2,1( Gk (z) 7"2,1()

SK
be minimized subject to sg > 1, 7_"1,](,7_"2,}( S RQ,H'FLKH = ||’I727K|| = 1,7_"1,]( .
7o,k = 0 where || - || is the Euclidean norm. The solution of this minimization

problem (see [29]) identifies ,1_:'1, K with a unitary vector parallel to the eigenvector
associated with the minimum eigenvalue of Gg(z) while 3x = A\ x/ Ao x =
(max(eig(Gx (z)))/ min(eig(Gx(2))))*/?. Then 7|k = 71 x and M/dolk = 3K
Finally, requirement 3) allows us to obtain the specific values for A\; and \,.

The Stokes problem

In this case constraint 4i) leads to solving a minimization problem involving both
the L’s and the Gk’s terms. We proceed by solving two decoupled subproblems
for sk and 71k, the first one associated with the terms Lx’s and the second
one with the terms Gg’s.

Let us denote with hy x, he x, (with |k x| > |ho,k|) and g1k, 92,x, (with
g1,k > g2,k) the eigenvalues of Hg (W) and Gk (r), respectively. The solution
of the first minimization problem implies %1, K to be parallel to the eigenvec-
tor associated with the eigenvalue ho x and sx = (|h1,K|/|h2,K|)1/2. On the
other hand the solution of the second problem requires ?1, k to be parallel to
the eigenvector associated with the eigenvalue go x and 5k = (g1,x/ gz,K)l/ 2,
Finally, requirement i) plus demanding that each minima of the two subprob-
lems be equal to 7/2 allow us to obtain two couples of values for A\; x and Ay k.
The metric M is thus obtained by summing the metrics coming from the two
subproblems, weighting them with the corresponding residuals [22].

5.2 Some test cases

In this section we assess the performance of the adaptive procedure just de-
scribed on some numerical test cases.

We highlight that here we are not interested in discussing how the solution z of
the dual problem is actually computed. In other words, we are not concerned
with the discretization issue of the dual problem: we just assume that we have
some accurate enough approximation of z to compute the quantities G (z) in
(16) and Gk (r), L% (w) in (25), respectively (see also [1]).
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Throughout, all the anisotropic meshes have been obtained by the mesh gener-
ator BAMG [25].
5.2.1 The advection-diffusion-reaction problem

We consider in the following two test cases concerning pure advection-diffusion
problems (o = 0 in (7)).
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Figure 1: Double ramp test case: sequence of adapted meshes and numerical
solutions on the first and last meshes.
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The ”double ramp” example

For this test case let us choose in (7) u = 1073, f = 1, g = (1, 0)T and homo-
geneous Dirichlet boundary conditions, i.e. 'y = (. The domain £ coincides
with an L-shaped region contained in a square of edge length equal to 4 (see
Fig. 1). The solution u exhibits a strong boundary layer along x = 4, two cross-
wind boundary layers along y = 0 and y = 4 and a crosswind internal layer along
y = 2. With reference to Fig. 1, the adaptive process starts from a uniform mesh
(top-left) with 1024 triangles and the first adapted mesh (top-right) consists of
1411 triangles. The fourth and fifth adapted meshes (center-left and center-
right), reach 3805 and 4534 elements, respectively. The numerical solution on
the initial mesh and on the one obtained after five iterations are displayed in
the bottom-left and bottom-right positions, respectively. The functional J has
been chosen as J(v) = Ag(v,u) for any v € V. This choice allows us to control
the energy norm of the discretization error, as

J(u —up) = Ao(u — up,u) = Ao(u — up, u — up).

Notice that we have used the Galerkin orthogonality property which holds pro-
vided that Au|gx € L?(K), for any K € T;. All the four layers characterizing
the solution u are well-captured by the anisotropic error estimate (16) as the
mesh elements are stretched along the direction of the layers themselves.

The channel test case

Let us consider the same L-shaped domain ) as in the ”double ramp” test
case. We choose in (7) g = 1073, f = 0 and an advective field § = (y, —z)7.
Homogeneous Dirichlet boundary conditions are assigned on all the boundary
0N of the domain except for the edge £ = 0 where u = 1. The solution u exhibits
an outflow boundary layer at y=0 and two circular shaped internal layers. In
Fig. 2 we provide the initial mesh consisting of 4096 elements and the first
adapted one with 2189 triangles. The functional J has been chosen in order to
control the energy norm of the discretization error.

4 T 4m

35F 4 35F

3F 4 3r

251 4 25f

2F 4 2r

151 4 15f

1F 4 1f

05F 4 o0s5f

olt L L L L L olt L L L L L
-0.5 0 05 1 15 2 25 3 35 4 45 -0.5 0 05 1 15 2 25 3 35 4 45

Figure 2: Channel test case: initial and first adapted mesh.
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As Fig. 2 shows the adapted mesh suitably follows the directional features of
the solution u, the elements being stretched along the three layers.

5.2.2 The Stokes problem

We deal with two test cases.

The driven cavity flow test case

This test case shows the motion of a flow inside a plane square domain 2 = (0,1)?
with velocity @ = (1,0)? prescribed on the top boundary. A no-slip boundary
condition is imposed on the vertical sides as well as on the bottom horizontal side
and u = 107!. In Fig. 3 (top) we show the initial uniform mesh together with
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Figure 3: Driven cavity flow test case: initial and second adapted meshes (top)
along with the pressure field computed on the initial and the first adapted mesh
(bottom).

the anisotropic adapted mesh provided by estimate (23) after two iterations. The
pressure fields computed on the initial and the first adapted mesh are shown in
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the bottom of Fig. 3. The two spikes at the points (0, 1) and (1, 1) are not well
captured on the initial mesh while the anisotropic adapted mesh (6136 triangles)
turns out to be better to capture these features as the pressure field in Fig. 3
(bottom-right) highlights (compare also the vertical scales of the two pressure
plots). The target functionals are J;(7) = 0 and Ja(q) = [, 2pgdZ. This choice
aims at controlling the L2-norm of the pressure through the linearized functional

J2(q)-

Kim and Moin example

Let us consider the domain Q = (0.25,1.25) x (0.5,1.5). We have solved on
this region the Stokes problem such that the exact solution coincides with the
solution of the time-dependent Navier-Stokes equations for

—

i = (— cos(2mz) sin(2my) exp(—8n2ut), sin(2rwz) cos(2my) exp(—8n2ut))T,
p = —0.25(cos(4mzx) + cos(4my)) exp(—1672ut),

p=10"2and t = 0.5.
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Figure 4: Kim and Moin test case: initial and first adapted mesh (top) and the
corresponding approximated pressures (bottom).

All Dirichlet boundary conditions are assumed by restricting the above values for
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@ on the boundary 0. Figure 4 shows the initial uniform (1336 triangles) and
the first adapted mesh (5054 elements) (top) together with the corresponding
approximated pressures (bottom). The functional J has been chosen in order to
control the L?-norm of the pressure as in the driven cavity flow test case. Notice
how the adapted mesh matches the details of the pressure field.
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