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Abstract

In this work, we address the numerical solution of fluid-structure interaction prob-
lems. This issue is particularly difficulty to face when the fluid and the solid densi-
ties are of the same order, for instance as it happens in hemodynamic applications,
since fully implicit coupling schemes are required to ensure stability of the result-
ing method. Thus, at each time step, we have to solve a highly non-linear coupled
system, since the fluid domain depends on the unknown displacement of the struc-
ture. Standard strategies for solving this non-linear problems, are fixed point based
methods such as Block-Gauss-Seidel (BGS) iterations. Unfortunately, these methods
are very CPU time consuming and usually show slow convergence. We propose a
modified fixed-point algorithm which combines the standard BGS iterations with a
transpiration formulation. Numerical experiments show the great improvement in
computing time with respect to the standard BGS method.
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1 Introduction

Large displacements low speed problems where a flexible elastic structure interacts with the
flow of an external or internal fluid occur in many engineering fields: from civil engineering
(aeroelasticity) to biomechanics (biomedical flows). One challenge arising in the numerical
approximation of these fluid-structure problems, is the definition of fast and accurate
coupling algorithms that allow to predict the longterm time evolution and the stability
of the overall system. This issue is particularly difficult to face when the fluid and the
solid densities are of the same order, for instance as it happens in hemodynamics, since
only implicit schemes can ensure stability of the resulting method (see [16, 18, 10]). Thus,
at each time step, the rule is to solve a highly coupled non-linear system (the fluid domain
depends on the structural motion) using efficient methods that preserve, inside inner loops,
the fluid-structure subsystem splitting. Standard strategies to solve this non-linear system
are fixed-point based methods as Block-Jacobi or Block-Gauss-Seidel (BGS) iterations, see
(3, 16, 18, 15]. Recent advances concerns the use of Block Newton based method [24, 8, 10]
for a fast convergence towards the solution of the non-linear coupled problem.



In this paper we focus on accelerating numerical algorithms involving fixed-point iter-
ations. It is well known that the standard Block-Jacobi or Block-Gauss-Seidel iterations
are very CPU time consuming. Indeed, we must add, to the often slow convergence of the
algorithms, the cost of updating the fluid mesh and the corresponding fluid matrices at
each iteration. We propose a modified fixed-point algorithm which combines the Block-
Gauss-Seidel iterations (see [3]) with a transpiration formulation (see [11, 22, 23, 5, 7, 14]).
The underlying idea of our approach relies on the fact that standard BGS iterations associ-
ated to moderate interface deformations can be treated through transpiration techniques.
These formulations do not require updating the fluid computational mesh and matrices.
They only involve modifications of the interface boundary conditions.

The outline of this paper is as follows. In section 2, we introduce the fluid-structure
interaction problem and its mathematical description. We use the classical Arbitrary
Lagrange-Euler formulation for the fluid. Section 3 we address the time discretization and
the coupling algorithms, focusing on implicit schemes. We describe the BGS iterations. In
section 4 we provide the new algorithm, it combines the Block-Gauss-Seidel iterations with
a transpiration formulation. Finally, in section 5, we report the numerical results. They
point out the great improvement in computing time of the proposed algorithm.

2 Mechanical problem

The system under study occupies a moving domain Q(#) in its actual configuration. It
is made of a deformable structure Q°(¢) (vessel wall, pipe-line, ... ) surrounding a fluid
under motion (blood, oil, ... ) in the complement Qf(¢) of Q%(¢) in Q(¢) (see Figure 1).
The problem consists in finding the time evolution of the configuration Qf(¢), as well as
the velocity and Cauchy stress tensor within the fluid and the structure.
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Figure 1: Geometric configurations

We assume the fluid to be Newtonian viscous, homogeneous and incompressible. Its
behavior is described by its velocity and pressure. The elastic solid under large displace-
ments is described by its velocity and its stress tensor. The classical conservation laws of
the continuum mechanics drive the evolution of these unknowns.



The fluid state satisfies the following incompressible Navier-Stokes equations written in
Eulerian conservative formulation:

2L+ divlpu @ u— o(u,p) =0, in (1),
ot (1)

divu =0, in Qf(t),

where u, p and p stand, respectively, for the fluid velocity, pressure and density. In addition,
the fluid stress tensor is given by

o(u,p) = —pl+up [Vu+ (Vu)'],

with u the kinetic viscosity of the fluid.

Because of the large displacements which are involved, the variation in time of the
actual configuration can not be neglected. The evolution of the fluid domain QI(¢) is
induced by the structural deformation through the fluid-structure interface I'¥ (¢). Indeed,
by definition Qf(t) = Q(¢t) — (). It leads us to describe Qf(¢) according to a map A,
acting in a fixed reference domain Qf. This approach is usually used for the solid domain
*(t), by means of the Lagrangian formulation [2, 12| as we will precise later. Therefore,
to describe the evolution of Qf(t), we introduce a family of homeomorphisms {A;}, g+ (see
figure 1)

At : Qf) — R3
Ty H——> T = .At(ﬂ?()).

The choice of the configuration QY and of the map A; may be arbitrary, hence the
name of Arbitrary Lagrangian Eulerian (ALE) formulation given to the resulting equations.
Given a material reference configuration 2§ for the solid (see figure 1) the map

28 : Oy x Rt — R?,

stands for the solid motion. For zq € Qf, 2°(x0,t) represents the position at time ¢ > 0 of
the material point z,. This corresponds to the classical Lagrangian flow [2, 12]. The map

. . . =f
A; can be defined from xfrg, as an arbitrary extension over the domain €2,. In short, the
ALE map A; is given by

—f
.At(ﬂfo) = EXt(%S‘Fg)(.fo, t), Vxg € QO’

. =f
where Ext represents an extension operator from I'j to €2,.

0
Remark 1 In the sequel _t| stand for the time derivative operator keeping the space
Zo

variable zo fized. More formally, if u : Q(t) x Rt — R, then
8u 3 1
E\xo = [& (UOAt)] oA,

where the composition operator applies to the space variables only.
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Remark 2 The operator Ext is arbitrarily defined inside Q. It can be any reasonable

extension of the material interface deformation:

0A;

At = EXt(a:TFBV)’ Wh‘g

__+8
= Ty
For instance, Ext may be defined from an harmonic extension of the interface displacement.

This map allows us to rewrite the time derivative in (1), yielding to the classical incom-
pressible Navier-Stokes equations written in ALE conservative formulation [16], satisfied
by u: Q) x Rf — R and p: Qf x Rt — R:

0T +diviu® (u—w) —o(u,p)] = 0, in Qf(t),
Ot |z (2)

divu = 0, in Qf2),
where the quantities J4, and w are defined by:

0
F.At = a—.At, JAt = det(FAt) > 0,
Lo

Yo A
ot

Remark 3 By definition, i° represents the solid velocity, whereas w stands for the velocity

of the fluid domain, which usually differs from the fluid velocity inside QI(t).

The solid evolution is given by its displacement d around the reference material configura-
tion €23,

(29, t) = xo + d(x0,t), Vo € X,
and the stress tensor field S (second Piola-Kirchoff tensor [2]). The field S is related to

d through an appropriate constitutive law (see [2, 12]). Then, the pair (d, S) satisfies the
non-linear elastodynamic equations [2]:

d—dive(FS)=f, in Q. (3)

The coupling between the solid and the fluid is realized through standard boundary
conditions at the fluid-structure interface I'j, namely, the kinematic continuity of the
velocity and the kinetic continuity of the stress [16]:

u=w, on IY, (1)
FSng = Jo(u,p)F Tng, on Ty,

where J and F' are defined by




and ng stands for the unit normal vector on I'fj pointing inside {2j. In summary, the strong
coupled problem, with a ALE formulation for the fluid, is given by:

f9¢];4tlt
ot |z

+div [pu ® (’U, - w) - O'(’U,,p)] = 07 in Qf(t)a
0
divu =0, in Qf(t),

u=w, on I,
o(u,p)n =g on Ty(t) UTLou(t),

pod — divo(FS) = f in €, (5)
FSnyg=JoF'ng, on T},
d=0, on FOD,
FSny=0, on Ty,
0A,

— S —
Ay = Ext(2]y), w= o
where g stands for the external forces acting on the fluid. For simplification purposes, no
fluid body forces are considered. The boundary conditions to be imposed on 'y, () UT oy (2)
as well as on 905 — 'y = ' U 'Y will depend on the problem under consideration.

Problem (5) can be written in weak variational form as follows: find A; : Qf — R3,
u: Q) x Rf — R, p: Qf(t) x R — R and d : Q2 x Rt — R? such that

d
p_
dt Qf(t)

—/ g(t) -v" da —|—/ ¢ divudz =0, V(' ¢") eV xQf,
Tin(t)UT out () Qf(1)

u-vfdx—p/ div[u®(u—w)]-vfdx+/ o(u,p) : Vo' dz
Qf(t) Qf(t)

u=w, on I,

m®(d,v*) + a*(d, v°) = / f-vidz — / Jo(u,p)F Tng-v®ds, Yve V= H%E(Q(s))3,
I‘W

2 0
s 0A, .

Ay = Ext(z]ry), w= 8—tt’ in QF.

(6)

Here, the spaces of fluid test functions are defined, as in [9], by

Vf:{voAt’l, UEHI(Q{))?’}, QfZ{qO-A[l, qeLQ(QB)},

m(d, v®) = /Q

stand for the solid mas and stiffness integrals. Similar integrals appear when dealing with
more general structures such as elastic beams or shells in large displacements (see [1, 16]).

and
pod - v dz, a®(d, v®) :/ FS:Viv*dz,
Q

S s
0 0



3 Time discretization: coupling algorithms

Concerning the time discretization of (6) several schemes can be considered. For instance,
a first strategy, which leads to the standard loosely coupled algorithms [6, 19, 20], consists
in taking an explicit scheme for the fluid (respectively for the structure) and an implicit
scheme for the structure (respectively for the fluid). Thus, at each time step, the fluid
solution is completely determined starting from the solution of the previous time step and,
once the fluid load at the interface has been computed, the structure can be advanced
on time updating the position of the interface. In short, the geometry and the interface
coupling are explicitly treated. This strategy is computationally cheaper and performs well
in many practical situations, for example, in aeroelasticiy applications [6, 19, 20]. However,
numerical experiments and some analysis on simplified models (see [16, 18, 10]) indicate
that these staggered algorithms are unstable when the structure is light, in particular
when the fluid and structure densities are comparable, as it happens in hemodynamic
applications. In these situations, fluid-structure equilibrium must be ensured at each time
accurately. In other words, the geometry and the interface coupling have to be implicitly
treated, and then implicit schemes must be considered.

For the above mentioned reasons, in this paper we will focus on fully coupled implicit
schemes. In the sequel, we consider in (6) an implicit Euler treatment of the velocity
derivatives in the fluid domain and a mid-point rule for the structural equation. The
resulting time discretized problem writes: find u™** : Qf(¢,,1) — R®, p"*1: Qi (t, 1) —
R and d"' : Q8 — R® satisfying the following coupled non-linear problem:

1 :
Ap oy = Ext(a®pw), W™t = A (Ay,,, —A), in Q)

i "t ol de + p/ div [u" ! @ (u"™ — w"th)] v dz
At Qf (t41) Qf (tn+1)
+ / o™, p"th) Vo' dz — / g(tns1) - v da
Qf(tn+1) Fin(tn+l)Urout(tn+l)
. oon P n_ f £ f f f
+/ qfdlvu+1d:v=—/ u" v dr, VY(',¢) eV x@Q,
Qf(tn+1) At Qf(t ) (7)
u" = w1 on TV (tnya),
1 . : 1
A_th(drH—l o dn,vs) + 5 (as(dn+1,vs) + as(dn,vs))

= —/ ot p"n -vida, Vot eV
™ (tnt1)

1,. . 1
—(d" 4+ d") = —(d" — g in €.
@) = ) i 9
Therefore, at each time step, we have to solve a highly non-linear system, where the fluid
domain and the structural displacement are tightly coupled. Assuming that problem (7)
has been appropriately discretized in space, for instance by a FEM formulation, we formally



write the resulting non-linear system as a fixed point problem,

(x', wh) = M((x",w'), (x*,w®)), (fluid mesh update),
(u,p) = F((u,p), (xf, Wf)), (fluid subproblem), (8)
(x*,w*) = S((x*,w®), (u,p)), (solid subproblem),

where (u,p), (x5, w®) and (xf, w') stand, respectively, for the discretized fluid velocity and
pressure, the structural motion and velocity, and the fluid domain motion and velocity at
a given time step.

Standard strategies to solve (8) are Block-Jacobi or Block-Gauss-Seidel iterations,
see [3]. For instance, the Block-Gauss-Seidel method consists in sub-iterating between
the three subproblems. For £ > 0 we set

(xh g, why) = M((Xfc, wh), (x5, w})), (update the fluid mesh),
(uk—f—la pk—i—l) = .7:((11]9, pk:): (Xfc—f—la ch—{—l))a (solve the fluid SprrOblem)a (9)

(511, Wip1) = S((x5, wh), (Wet1, Pegt)),  (solve the solid subproblem),

with 1o, py, x5,wS, x) and wi given from fluid-structure state computed at the previous
time step. We stop the iterations when the difference between two successive interface
displacement falls below a fixed tolerance (see also subsection 4). Eventually, we can add
a relaxation step on the structure displacement, see [16, 18, 10, 15].

It is well known that this strategy is very CPU time consuming. Indeed, we must add
to the often slow convergence of the algorithm the cost of updating the fluid mesh and
the corresponding fluid matrices at each iteration. In this paper, we propose a method to
improve the performance of the standard BGS iteration (9).

4 New algorithm: BGS with transpiration

Each iteration of the Block-Gauss-Seidel method (9) involves the numerical solution of

the following non-linear problem: for k£ > 0 find A;* : Qf — R, upf! : Qf , — R,



ppi s Q. — Rand dif] : Qf — R3 satisfying :

k+1 _ s,n+1 n+l _ 1 k+1 : £
‘Atn+1 - EXt(xk \I‘g)a Wy = Kt (‘Atn+1 - -Atn) , 1n QO’
P n+1 f : n+1 n+1 n+1 f
— up v dr +p dlv[uk+1®(uk —wkﬂ)}-v dz
At Q§c+1 Qi_}_l

+/ o(uptl, pptl) - Vol dz — / g(tns1) -v' da
af TinUlout

k+1

+/ ¢' divujiide = i / u"-vtdz, V(o ¢Y) € VI x @,
Q Qf (tn)

- At (10)

n+l1 _ _ n+l w
Upl] = Wi/, on Iy,

1 : . 1
_ms(dzi—% _ dn’vs) + 5 (as(d;cH_l,vS) + as(dn’vs))

At
= —/ o(upt,ppti)n-v®da, Wo* € V*,
F}JCV-'FI
1 . . 1 .
5(d;;i} +d") = Kt(dgﬁ —d"), in Q.

Here Af;:ll represents the ALE map computed at the (k + 1)-th iteration of the BGS
method, and Qf ;| the corresponding fluid domain, namely Qf_, = Af;:ll (Q5).

Then main disadvantage of the standard BGS method lies on the fact that its itera-
tions are very costly. Indeed, each iteration (10) involves an update of the fluid domain
Qf 1 (tn41) and of its velocity w,’;j:ll Consequently, the fluid matrices have to be recomputed
on this new configuration. This feature arises because we are using an ALE formulation
for the fluid (large displacements are involved in the whole fluid-structure problem). How-
ever, between to successive BGS iterations the fluid-structure interface frequently exhibits
moderate variations.

In order to be able to solve a low cost fluid-structure problems featuring moderate
deformation, aeronautical engineers have developed transpiration techniques, from an idea
of Lighthill [13]. These formulations do not require to update the computational grid, but
only involve modifications of the interface boundary conditions (see for instance [11, 22, 23,
5, 7, 14]). Consequently, whenever the fluid-structure interface shows a “small” variation
(with respect to a specified tolerance TOLyans) between steps & and k + 1 of (10), the
interface motion can be taken into account for the fluid problem through transpiration
boundary conditions, without the need of updating the mesh and, consequently, the system
matrices.

A transpiration interface condition on I'} can be derived, in a heuristic way (see [11,
22, 23, 14] and refer to [5, 7, 17] for a more rigorous justification), from a truncated Taylor
expansion of the fluid velocity in the neighborhood of the reference fluid-structure interface
'y, see figure 2:

upli (th) = wifa (o)) — Vol (o) (whg — o) + o(|lzkyy — 2, (11)
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Figure 2: Taylor expansion of the fluid velocity.

on I'j. Thus, from the kinematic condition

n+1l __ n+1 w
Upyp = wpy, on Ty,

we get the following transpiration condition on the known interface I'}/

n+l _ , n+l n+1l, f f W
Uppg = Weyp — Vu1c+1(351c+1 — ), on TIY.

The implicit dependence on uﬁ% can be made explicit by modifying the relation into

uZﬂ = w,’;j:ll — VuZ“(a:fc+1 — mfc) (12)

This latter condition can now be used to approximate the fluid subproblem in (10).
Indeed, by setting
Qf

trans

=0f IV

_ FW n+1 n+1 n+1 n+1
trans — k>

Utrans = U > Wirans = W 5
we introduce the following transpired fluid subproblem

1
w,’;‘]:ll =5 (dzJrl — d”) , on I,

P n+1 f : n+1 n+1 n+1 f
A_t . Upyr1 "V dz + P div [uk—e—l ® (U’trans - wtrans)} v dz
Q Q

trans trans

+/ o(upty, pptl) : Vo' dz — / g(tny1) -v' da (13)
Qf 1—‘in(tn+1)UF0ut (tn+1)

trans

+/ ¢ divuptlde = Ait u"-vtdz, VO, ¢Y) e VI x @,
Qgrans Qf(tn)

n+l _ , . n+l n+l/gn+1 _ gn+l w
Upyy = wpi — Vug (dlc+1 dg™), on T

The obtained fluid-subproblem allow us to take into account the interface motion, while
keeping a fixed fluid domain. This is achieved by using non-standard boundary condi-
tions on the fixed reference interface '}, ., without the need of updating the mesh and,
consequently, the system matrices.



Remark 4 In (13) the velocity w};ill s no longer needed inside the fluid domain. There-
fore, we just compute it at the fluid structure interface I} .

In the same way, the fluid load at the moving interface can be recovered from a similar
Taylor expansion:

T 1(Th41) = Thir (24) + Vopi (2)) (@1 — 23) + 0(|[ 231 — 23)), (14)
on I'y. Thus, in (10), the solid subproblem can be now replaced by

1 : : 1
_ms(dzi% _ dn’vs) + 5 (as(d;cH—I’US) + as(dn’vs))

At
= — /Fw JA?‘:—-:I (0k+1 + V0k+1($£+1 - ./L'fc)) F;éilno T da, You® - VS’ (15)
1 dn—{—l dn) _ i(dn—i—l _ dn) : Os
2( k+1 T = Af Ykt ;L 34

Remark 5 A simpler approzimation, see [14, 5], can be obtained by replacing the one
order Taylor expansions (11) and (14) by zeroth order expressions. Hence, the interface
transpiration condition in (13) reduces to

n+l _ _ n+l w
uk—|—1 - wk:—i—l? on Ftrans?

and the fluid interface load in (15) to

/ oxs1n - v° da. (16)
FW

k

By exploiting the previous considerations we have derived the modified BGS algorithm
reported in figure 3. The boxes on the right of figure 3 represents the transpiration loop.
Here, instead of updating fluid mesh and matrices, we just enforce the transpiration ve-
locity wf™ at the interface. Tolerances TOL®, ~and TOLYY = define the range of relative
interface displacements where the transpiration formulation will be used. The convergence
test of the whole algorithm is always made after two standard BGS iterations, (2x in the
figure), in order to ensure the convergence of the original coupled problem. This also im-
plies that the algorithm terminates with standard BGS iterations and with an updated
mesh.

The convergence test can be done on the relative error

dify — di

. < TOL,
Il

in a suitable norm, for example the discrete L*° norm. The main advantage of the relative
error is that it is adimensional. However, when the structure is almost at rest, this stopping
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k=k+1
Y

compute (AfH , wit]) from

the structural state (dp,drt)

and update the fluid domain

Y

compute (upt],pit1) by solving

the fluid subproblem in Qf |
provided with the kinematic
condition upf] = wf ; on T},

Y

compute (dgﬂ,dgﬂ) by solving

the solid subproblem

\i

relax the structural displacement
and velocity

compute (upfy, ppf1) by solving

the fluid subproblem (13) in
Qirans

condition (12)

with the transpiration

W
on Ftrans

Y

compute (dgill,dz_tll) by solving

the solid subproblem (15)

Y

relax the structural displacement
and velocity

T
F ||dn+1 _ dn+1|| )

- k+1 — %

i T ref < TOL;Irlans

2x k

\i ' \i
MAXITERyans O
+1 F ||d2ﬂ B dtnr—gés|| out
A | Convergence test on d; et > TOL{ns O
k
Convergence test on djf}
- T

Figure 3: Diagram of the proposed algorithm. In blue the BGS part, in red the transpira-

tion steps.
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Axes

Figure 4: The computational domain.

criteria becomes too restrictive. This is not the case when using adimensional absolute
errors. Therefore, we have chosen here the following expression

ity — di ™|

gt < TOL,

where d™ is a reference displacement of the domain. For example, for the study of blood
flow in an arteriy it could be the mean radius of the vessel.

In order to test whether to activate the transpiration part of the algorithm, the relative
error described above is useless. Indeed, what we have to measure in this case is how much
the computational fluid domain is distant from the actual fluid domain. The transpiration
may be adopted only when this distance is small. Hence, the condition that has to be
satisfied is

” d;cl—_:——% - d?r_:;{s | |

Lzef < TOLtransa

where L is a characteristic length of the fluid domain at the k-th iteration. In blood
fluid dynamics Li*f can be taken as the minimum of |R + dj || over the interface points.

5 Numerical experiment

We have applied the above algorithm to a fluid-structure problem arising in the modeling
of blood flow on large arteries. Namely, a thin elastic tube conveying an incompressible
viscous fluid. In order to simplify the problem we considered the axisymmetric incom-
pressible Navier-Stokes equations (see [4]) combined with a generalized string model (see
[18]) for the structure. The initial domain is a cylinder of radius R = 0.5cm and length
L = 12cm. The cylinder wall may deform only along the radial direction. The fluid and
the structure are initially at rest.
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The weak axisymmetric formulation of the Navier-Stokes equations reads

d
p— / ru-v—i—p/ r((u—w)-Va)u-v—i-p/ r diva(w)uv—i-p/ weuv +
dt Joag Q) Q) Q)
1
+2,u/ T (ea(u) : £4(v)) —|—2,u/ — Uy Uy — / rpdivav—/ pU,
910) ORA 1) 910))

=/ rf-v+/ rg-v
) o (2)

/ rqdivau—i-/ qu, = 0,
1) Q1)
1

where €,(u) = 5 (Vau + (Vau)T>, Y, = ( g’" ) and div,u = 0,u, + 0,u, stand for differen-

tial operators in the cylindrical coordinates, Q(t) for the half section of the fluid domain
Qf (¢) at time ¢ and IV (¢) = [ (¢)UL oy (¢) the inlet and outlet Neumann boundary sections.

The wall displacement 7 is modeled by a vibrating string model (see [21]) governed by
the equation , ,
on Sg(? n n Eh _—
ot? 02> (1-1v?)R?
where the forcing term H is equal to (o(u,p — po)n) - e, (the full contribution of the fluid
Cauchy tensor to the normal stress is taken into account). The external pressure py and the
initial pressure of the fluid are both set equal to zero. The wall density is p,, = 1.1g/cm?, its
thickness A = 0.1cm, Young Modulus E = 8.25 - 10*dyne/cm?, Poisson coefficient v = 0.5
and longitudinal stress S, = 2750g/cm?.

On the outlet we impose o(u,p)n = 0 and on the inlet one “pressure wave” of a period
of 5 ms, i.e.,

Pw h H’

B —ﬁ[l—cos(@)}n , t < 5ms,
"(“’p)n_{ 0 ’ .t > 5ms.

with P, = 4 -10* dyne/ cm?. The fluid density is p = 1 g/cm® and the viscosity pu =
0.035poise. We have adopted axisymmetric PyisolPy/P; finite elements for the fluid and
P, for the structure. The time is discretized by a mid-point scheme for the structure and
implicit Euler for the fluid equations (see [18]), with a time step of At = 0.1 ms.

We have used the simplified form (16) for the forcing term and the following values for
the tolerances in the proposed numerical scheme: TOL = 107° for the fixpoint (absolute)
convergence test with reference displacement equal to 10% of the initial radius of the
artery, TOL® = 0.05, TOL®™ = 0.1 and MAXITERans = 50. We approximate the

trans trans
characteristic length of the domain by the initial radius of the artery, Li*f = R.
In figure 5 we report the number of sub-iterations per time step required by the stan-

dard BGS method compared with the one obtained using the modified BGS scheme with
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Figure 5: Iterations history.

MAXITERrans | 50 | 200
Standard 157min
Order 0 99min | 101min
Order 1 102 min | 106 min

Table 1: CPU time w.r.t. standard BGS or first order transpiration scheme.

transpiration. The number of BGS iterations is strongly reduced in the transpiration ver-
sion. Let us notice that at each time step, the number of outer iterations is almost equal
in the two schemes. However, the computing time is greatly reduced: a gain of 35% over
240 time steps.

We have also tested the zeroth order formulation with (12) substituted by uZﬁ = w}c’j:ll
The CPU time and the number of iterations are of the same order. The slight difference in
CPU time derives from the computation of the fluid velocity gradients. The fact that the
convergence obtained with the two alternatives is similar is due to the limited contribution
of the velocity gradients for this test case. Indeed, the additional contribution given by
the first order scheme is only 107 times the zeroth order term. This hangs on from the
very little variations in the wall displacement between the first two BGS iterations and the
following transpiration ones.

6 Conclusion

In this work we dealt with the numerical solution of fluid-structure interaction problems
in which the fluid density is comparable to that of the structure (for instance in hemody-
namics applications). Thus, at each time step, we had to solve a highly non-linear coupled
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Figure 6: Wall displacement.

system, since the fluid domain depends on the unknown structural motion. We proposed
a modified fixed-point algorithm which combines the Block-Gauss-Seidel iterations with a
transpiration formulation. Numerical experiments pointed out the relevant improvement
of computing time with respect to the standard method.

The sensibility analysis of the different parameters (MAXITER a5, TOL, use of zeroth
or first order transpiration formulation) as well as variants of the algorithm and other tests
will be reported in a forthcoming work (see [4]).
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