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Abstract. In this work we deal with the numerical simulation of thermal oxida-
tion in silicon device technology. This application is a complex coupled phenomen,
involving the solution of a diffusion-reaction problem and of a fluid-structure in-
teraction problem. Suitable iterative procedures are devised for handling nonlin-
earities and strong coupling between the sub-problems to be solved. In particular,
we propose a unified dual-mixed hybrid formulation that allows for the simulta-
neous solution of the compressible/incompressible Navier equations in both solid
and fluid domains. The accuracy and the flexibility of the proposed approach are
demonstrated on benchmark test problems.

1 Introduction and motivation

Thermal oxidation of silicon is one of the several steps involved in the manu-
facturing of integrated circuits (IC). The silicon dioxide is the product of the
following chemical reaction

Si + 0 — Si0s.
Silicon dioxide is thermally grown on the silicon wafer bulk to:

— electrically insulate basic devices like transistors and capacitors built on
a single wafer

— act as gate oxide in Metal Oxide Semiconductor (MOS) structures or
serve as a mask against dopant implantation.

Numerical simulation of the thermal oxidation process is aimed at predict-
ing the oxide shape after oxidation in order to better assess the electrical
performance of the device. Moreover, it is of relevant interest to analyze
the stress history of the material in order to study its effect on the evolu-
tion of the oxidation process and to prevent mechanical failures. Realistic
simulations of the process are achieved by taking into account different phe-
nomena arising in a strongly heterogeneous assembling of materials. Fig.1
shows schematically the reduction from a 3D model to a 2D model of the
local oxidation structure (LOCOS). The most widely adopted mathematical
model of the oxidation process consists in solving two PDE systems, the first
being a diffusion-reaction problem for the oxidant and the second a stress
analysis in the oxide, nitride and silicon bulk. The two PDE systems are
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Fig. 1. Schematics of the thermal oxidation process in a local oxidation structure
(LOCOS): 3D model (left), 2D reduction (center) at the beginning of the oxidation
and 2D model (left) after process completion.

mutually dependent: the diffusion and kinetic reaction coefficients as well as
the geometry of the deformed domain depend on the stress distribution; in
turn, the chemical reaction forces the oxide-silicon interface to move, driving
the mechanical problem. This first level of coupling is handled by using in
the diffusion-reaction problem at the new time ¢"*! the coefficients and the
geometry computed from the stress field at time ¢". An incremental stress
analysis is then performed on the structure subjected to the displacements
due to the computed rate of silicon consumption and dioxide expansion (see
Fig.2).
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Fig. 2. Diagram flux for the full coupled problem.

This incremental stress analysis phase introduces a second nested level
of coupling, since it requires solving a set of coupled mechanical problems,
each one in a different material: the SisN4 mask and the Sibulk are indeed
modeled as linear elastic materials, while a non-Newtonian incompressible
fluid model with non-linear stress-dependent viscosity is used for the Si0s [3].
Different strategies may be pursued to handle this second coupled problem.
These will be object of discussion in Sect.3.1. The data exchanged between
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the sub-blocks in both the coupled systems are fluxes and stress dependent
quantities, so that the quality of their approximation clearly affects the ac-
curacy of the overall computation. In a standard displacement finite element
approach fluxes and stresses are typically post-processed quantities that suf-
fer from a number of limitations. Examples of these limitations are the failure
of the post-processed stresses at satisfying self-equilibrium and interelement
traction reciprocity, the lack of continuity of the fluxes at the interelement
interfaces and the possible onset of locking problems in the incompressible
regime. The aim of this work is to investigate and demonstrate the use of
alternative finite element formulations specifically tailored to overcome the
above mentioned shortcomings. These formulations, known under the com-
prehensive name of mixed and hybrid finite element techniques and origi-
nally developed in the framework of structural analysis, approximate with
the same accuracy and physical adherence both the primal fields (e.g. the
displacements) and the dual fields (e.g. stresses and fluxes). A convenient
implementation of the proposed methods, based on hybridization and static
condensation, yields efficient numerical algorithms with computational effort
comparable to standard displacement formulations.

The paper is organized as follows: in Sect.2 we discuss the finite element
discretization of the diffusion-reaction problem and of the fluid-mechanical
problem. Sect.3 deals with the decoupled algorithm used to iteratively solve
the thermal oxidation problem, while Sect.4 demonstrates the performance
of the numerical method on several benchmark test-cases. Finally, some con-
cluding remarks are drawn in Sect.5.

2 Finite Element Discretization

In this section we discuss the finite element discretization of each subproblem
in thermal oxidation.

2.1 Notation

In the following, we shall denote by (2 a bounded open set in R? with Lipschitz
continuous boundary I' = I'pUI'xy U, where I'p, 'y, I'r are the Dirichlet,
Neumann and Robin portions of I', respectively, with I'r = @ in the fluid-
mechanical problem. Let 7, be a regular partition 75 [2] of {2 into triangles

K such that - o
n=J K

KeT,

For each element K € 7Tj, we denote by 0K the Lipschitz continuous bound-
ary of K, by 0K;n; the portion of 0K such that 8K N I" = ) and by nx the
unit outward normal vector along the boundary K. Moreover, if v is any
function defined in (2, we denote by v¥ its restriction to the element K and
by vak its restriction on the element boundary 0K.
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2.2 Diffusion-Reaction Problem

The diffusion-reaction problem is solved using the following primal-hybrid
finite element nonconforming formulation:

find Cy, € W,fg* such that Yoy, € W,{YOC we have

> (/ DVC,, - Vo dx + D‘lksChvhds> :/ fopdz, (1)
K K

KeT, OKNI'g
where Wé\f gc is the set of affine functions that are:

- mid-point continuous on each edge of the triangulation
- equal to the average of g at the mid-point of each edge of I'p, for any
function g € L*(I'p).

In this formulation the primal variable C}, (approximate oxidant concentra-
tion) is sought to be a-priori discontinuous and the normal flux of the variable
itself arises as a Lagrangian multiplier to enforce interelement continuity. The
relaxation of interelement continuity for C} has the advantage of providing
an approximation pj, of the flux p = —DV( that satisfies element-by-element
the self-equilibrium condition and that has continuous normal components
across interelement edges between neighboring triangles. As a consequence,
the normal component of the velocity of the interface is directly computed
from the normal flux of the concentration as V,, = —py, - n/C}, where n is
the outward unit normal vector on the oxide-silicon interface (see [4] for the
physical-mathematical derivation of the above relation). Notice that no post-
processing on the computed approximate concentration field C}, is needed,
unlike in standard displacement-based finite element methods. Moreover, op-
timal second order convergence in L2({2) can be proved for C}, (see [6]).

2.3 Fluid-mechanical problem

For the solution of the fluid-mechanical problem, we adopt the novel dual
mixed-hybrid finite element formulation introduced and analyzed in [1]. This
method provides an accurate stress representation and at the same time han-
dles under a unified formulation both the compressible and incompressible
regimes by introducing a pressure function. This avoids resorting to the quasi-
incompressible approximation, which is a common approach to deal with in-
compressible materials in this application field, or using separate computer
codes, with a significant saving of software maintenance. The discrete formu-
lation of the problem reads:
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find (Uh,uh,)\h,ph,wh) € (Eh,gN x Up, x Ah,gD X Qp X Wh) such that

.
-= op T d.’L‘,—{— E (/u -div T d:c—/ Ap - Tnds)
9 / h h h h - h (h )

KeTn
N
+ [ Apptrrpdr+ | wpasT,dx = E gp - (Thm)ds V1, € Xy o,
o 2 Q 8KNIp

KeT,
Z/vh-divohdwz—/f-vh Yup € Uy,
% KeT, ' K 2
1
/p}\‘(itrah‘FPh)thw:O Van € Qn,
Q

/ Opasopdr =0 VahEWh,
2

— Z /SK pn - (opn) ds = Z / gN - Up Ypn € Apo,
KEeTh int

\ KeT, OKNI'n

(2)

, X and 1 being the Lame coefficients of the material.

~

A
A+ R)
Notice that for A = 400 system (2) becomes the discrete approximation of the
Stokes problem for incompressible fluids. As for the finite element spaces, for
k > 0, we denote by P;(K) the space of polynomials in two variables of total
degree at most k on the element K and by Ry (0K) the space of polynomials
of total degree at most k£ on each edge of K. Notice that functions belonging
to Ry (0K) need not be continuous at the vertices of K. Furthermore, we
denote by RT((K) the lowest order Raviart-Thomas finite element space [5]
on K and by Bx = curl(bg), where bg is the cubic bubble function on K.
The finite element spaces in (2) are defined as follows:

where p; =

Zhe= {TK € (RTo(K) ® Bk)?, 7%n = P¢ on FN}, Vi = {vK € (]P’O(K))Q},
Wh:{GGCO(ﬁ)wI‘ePI(K)}, th{quPo(K)},

Apy = {/\K € (Ro(0K))2, A =Py onFD}, VK € T,
3)

where P is the L? projection over the space of piecewise constant functions
and &,7 are given functions in (L?(I'x))? and (L?(I'p))?, respectively. Notice
that two kinds of Lagrangian multipliers have been introduced in formula-
tion (2). The variable wy, is a rotational parameter that avoids requesting the
stress tensor to be sought a priori in a symmetric function space. The hybrid
variable \p, is instead the Lagrangian multiplier that enforces back the con-
tinuity of the normal component of the stress tensor across the interelement
interfaces. The abstract analysis of the above formulation has been carried
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out in [1], where in particular a superconvergence result has been shown for
Ap, as typical of mixed methods with hybridization.

3 Iterative algorithm for the coupled problem

The numerical solution of the full coupled problem is achieved by a sequence
of successive steps. The computer code implements the following staggered
algorithm:

For n > 0, given at the time level t" the solution, the geometry and the diffusion and
reaction coefficients, at the new time level t"*! we have to:

1. solve the diffusion-reaction problem and compute the propagation velocity of the
Si0» -Si interface;

2. perform a mechanical stress-analysis in Si02, SizN4 and Si domains;

3. determine the new geometry of the Siand $i0» and the maximum allowed time
step At according to the present (deformed) configuration;

4. set t" = "L, "t = ¢! 4 At Update the stress-dependent D and k,
coefficients;

5. update the nodal grid point configuration by relaxing the deformed mesh;
6. if t"T! < ™" goto 1, else end simulation.

This decoupled procedure has the advantage of splitting the solution of the
full problem into several self-contained subproblems of smaller size. Particular
attention must be paid to the solution of the stress problem at point 2. of
the algorithm, topic that is addressed in the next section.

3.1 Fluid-mechanical coupled sub-problem

The stress analysis problem is a fluid-structure interaction problem. In its
basic implementation, the Stokes problem in the Si0y domain is solved first
and the computed normal stresses are used to load the elastic problem in the
Siand SisN4 domains. Eventually, no response from these latter materials is
fed back to the SiDy domain. This strategy, usually referred to as Boundary
Loading Method (BLM), is economical and widely adopted in the literature.
However, real-life elastic materials do possess memory and as a consequence
they tend to “squeeze out” the fluid while relaxing to their initial configura-
tion. Accounting for this behavior by simply loading back the Si0; domain
with the deformations computed from the Siand SiszN4 domains invariably
leads to severe instabilities in the overall numerical procedure, as can be ex-
plained by the following argument. Assume that the fluid-mechanical system
is modeled by a spring (elastic behavior) placed in series to a damper (fluid
behavior). An elementary analysis reveals that solving iteratively the motion
of the spring-damper system by a decoupled procedure leads to a conflicting
request on the time step At: indeed, in order to ensure stability of the pro-
cedure, At should be small enough when the displacement of the spring is
computed from the velocity imposed by the damper, while At should be large
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enough when the velocity of the damper is computed from the displacement
imposed by the spring. Based on the above considerations, we have adopted
the following approach:

1. The interaction between the Si domain and the Si0s-Si3N4 domains is
handled by the standard BLM, since it can be checked that the deforma-
tions produced by the Si domain on the SiDs are negligible.

2. The interaction between the Si0; and the SizN, domains is handled by
a coupled procedure, with an inner iterative map to solve for the non-
linear dependence of the oxide viscosity on the normal stresses. Notice
that this coupling procedure is easily implemented due to the use of the
unified compressible/incompressible formulation discussed in Sect.2, the
only difference being in the numerical values of the Lame parameters in
the two subdomains.

4 Numerical results

As a first test case, we show the results for a simple fluid-elastic structure
solved with the unified coupled procedure illustrated in the previous sec-
tion. The domain (2 is the unit square, with the upper half behaving like
a fluid, while the lower half behaving like an elastic solid (with a very low
Young modulus). For a certain time interval a compressive load is applied
on the top edge of the fluid domain. Then, the load is released and the elas-
tic solid relaxes recovering its original shape and squeezing out the fluid, as
shown in Fig.3 where some phases of the evolution of the phenomenon are
displayed. The second benchmark problem that we have considered is the

Fig. 3. Evolution of the coupled fluid-elastic solid system.

complete simulation of the thermal oxidation process in a LOCOS structure.
The computational domain is one half of the domain shown in Fig.1. The
geometry and the material properties have been chosen as in [4]. In Fig.4
the deformed configuration and the corresponding pressure field are shown
at different time levels. The typical "bird’s beak” shape of the final oxide
configuration is clearly recognizable. Notice also how the largest stress arise
on the junction line between the Si0s and the SizNy regions and in particular
near the lateral edge of the SigN4 band.
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Fig. 4. Deformed configuration (top, zoom of the area) and pressure field (bottom)
for t = 300,600, 1500s.

5 Conclusions

Thermal oxidation in silicon device technology is a complex coupled phe-
nomen, involving the solution of a diffusion-reaction problem and of a fluid-
structure interaction problem. Special attention has been devoted in the
present work to devising suitable iterative procedures for handling nonlineari-
ties and strong coupling between the sub-problems to be solved. In particular,
we have proposed a unified dual-mixed hybrid formulation that allows for the
simultaneous solution of the compressible/incompressible Navier equations in
both solid and fluid domains. Numerical results on benchmark test problems
show the accuracy and the flexibility of the approach.
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