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Abstract. We deal with a Quantum-Drift-Diffusion (QDD) model for the descrip-
tion of transport in semiconductors which generalizes the standard Drift-Diffusion
model (DD) through extra terms that take into account some quantum dispersive
corrections. We also study numerically the influence on the I-V curve of the electron
effective mass, the barrier height and width, and of the ambient temperature. The
performance of several linearization algorithms, i.e. a two Gummel-type iterations
and the fully-coupled Newton method are also compared.

1 The QDD Model

The unipolar QDD model for a semiconductor occupying the open bounded
region 2 C RY, d = 1,2,3, comprises the following set of equations in the
space-time cylinder 2 x (0, t]:
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where n is the electron concentration, V' the electric potential, F' the quasi-
Fermi potential, N4 the doping profile, V4,5, the barrier potential, V4, the ther-
mal voltage, n; the electron intrinsic concentration, p the mobility, while the
quantities #, g, €, m are the reduced Planck constant, the (positive) electron
charge, the semiconductor permettivity and the electron effective mass, re-
spectively. The above system, supplemented with suitable initial and bound-
ary conditions, is to be solved for the unknowns n, V, F'. The electron current
density is given by the constitutive law J = —gunV F, so that (1); represents
the classical continuity equation but with a nonclassical constitutive law for
the current density. Moreover, like in the DD case, the temperature is sup-
posed to be constant, having neglected all the energetic exchange phenomena.
In (1);-(1)3 we have singled out the two terms that characterize the QDD
model with respect to the DD model, i.e.
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(I) is the potential due to the presence of the heterostructure corresponding
to barriers and wells between the different materials, while
IT) is the dispersive term, modeling a typical quantum effect [1].
g q

The bipolar QDD model has been studied in [7] where the conditions un-
der which existence and uniqueness of the solution at thermodynamic equi-
librium hold are discussed, basically, via a variational argument consisting in
minimizing the total energy of the system. In nonequilibrium conditions, the
uniqueness of the solution is proved to hold only for moderate external volt-
ages ([7]). This fact has a real counterpart in RTD’s which exhibit a hysteresis
cycle for particular values of the external voltage, as proved experimentally,
as well as numerically ([3]).

2 TIterative Maps and Numerical Algorithms

In this section we address both the linearization techniques and the numerical
issues necessary to obtain an approximate solution to the QDD equations.

2.1 [Iterative Maps

To solve the (nonlinear) system (1);-(1)3 it is necessary to employ some lin-
earization techniques. In particular, we have compared three different func-
tional iterative algorithms:

1. The fully-coupled Newton method;
2. A two-step fixed-point map for F' which can be summed up as: Given
F®) &) k) first

— solve (1)a-(1)3 for n*+1) ¥ (k+1) with coupled Newton’s method, then
— solve the (linear) equation (1); for F(*+1);

3. A three-step generalized Gummel’s map such that: Given F(®) V(%) p(k)
— solve the (nonlinear) equation (1)y for n(**1) then
— solve the nonlinear version of (1)3 for V(*+1)

‘ (k+1) _ 1/(k)
vy k) — 4 (n(k+1) exp (!) — Nd) , finally
€ Vin

— solve the (linear) equation (1); for F(*+1),

The three algorithms above are ordered in decreasing degree of coupling:
algorithm 1. is a very well-known general purpose method, algorithm 2. is
theoretically and numerically studied in [7], whereas algorithm 3. is our novel
contribution, first devised in [8]. This last algorithm generalizes the classical
Gummel map to the QDD model, whereby three successive subproblems are
to be solved at each step. In particular, it consists of two nonlinear steps
for n*+1) and V*+1) | respectively, and a linear step for F*+1) We have
applied the three algorithms to the solution of a RTD and some numerical
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results are shown in Sect. 3. Hereafter, we shall study the stationary QDD
model, i.e. we shall assume % for all the variables. Let us dwell on algorithm
3. which can be considered as a generalized Gummel map, see e.g. [4]. From

+v? V+Voar—F
(1)2 and letting a = %, we have n = n; exp (aﬁ \/ﬁ;:h e ) , and
substituting in (1)3, we obtain
1L o2
a—=V?y/n + Vpar V-F
vy =2 <ni exp ( v v ¢ ) exp —— — Ng | , (2)
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which is the nonlinear version of the Poisson equation. Given V*) F(*) f >
0, the first step of the algorithm consists in solving the following boundary
value problem for n = n{k+1)

aivw‘ Vinln 2+ Vo + VO PR —gin 0
vn i ()
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Vn-v=0 onIN ,

where neq is the equilibrium value of the concentration, while I'p, I'y are two
subsets of the boundary 842 such that 82 = I'p U ', with I's # 0, and v
is the unit outward normal vector to 2. Then from (3) we formally obtain

Vin In "(’;:1) — vk 4 gk = a\/ﬁva/n(k“) + Vbar , which used in (2)

allows us to write the second step of the algorithm, to solve for V = V{(k+1),

as
— (k)
vy =4 (n(k“) exp (%) - Nd) in 2,
€

th
V:‘/eq"*"/ext onIp R (4)
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where Voq, Vext are the equilibrium value of the potential and the external
applied voltage, respectively. We point out that this equation can be regarded
as the QDD counterpart of the DD nonlinear Poisson equation for V, i.e.

- F
V3V = 4 (niexp (V ) —Nd> ,
€ Vin

where n; is replaced by n*+1) exp (W) Finally, the last step of the

algorithm requires solving the linear problem for F' = F(k+1)

V- (un**UVF) =0in 2 ,
F =Foq+ Vext on Ip (5)
VF-v=0 on I ,

where Fyq is the equilibrium value of the quasi-Fermi level. The sequence
of problems (3)-(5) defines our version of the Gummel map applied to the
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iterative solution of the QDD model. We remark that the nonlinear steps (3)-
(4) are both linearized with Newton’s method. Moreover, computationally, it
is advantageous to solve problem (3) for w = 4/n instead of n, which yields
the following problem for w = w(*+1)

aViw — 2Viypwln % + w(Voar + vk _ F(k)) =0in 2 ,

w:weq ' OnFD, (6)
Vw-v=20 only ,

where w; = y/n; and Weq = /Meq-

2.2 Numerical Algorithms

As far as the discretization is concerned, all of the three subproblems (6),
(4)-(5), after linearization, are solved using piecewise linear finite elements.
Special care is necessary for (5) which requires using piecewise harmonic
averages for the terms pn(*+1) . Important issues to deal with are the scaling
of the unknowns and the computational cost required to solve all of the
algebraic systems arising after the discretization. With reference to a one-
dimensional finite element mesh whose characteristic size is h, the following
scaling has been used throughout:

_ 4 =  1h2Q n = _
n=Nh", V=10 ﬁ\/ﬁ’ F=V,

where N is the value of the doping at the contacts. We have carried out
an extensive numerical validation which proves that this scaling guarantees
better conditioning of the algebraic linear systems and more equilibrated
coefficient matrices. Finally, to compare the three algorithms in terms of
computational cost, we have implemented all the numerical codes in Matlab
and we have simulated a one-dimensional RTD under different conditions.
The results, extensively discussed in [8], show that algorithm 1. is the cheapest
one when the sparse structure of the matrices is taken into account, otherwise
algorithm 3. performs better. Of course, the algorithms might perform other
ways when going to multi-dimensional problems.

3 Numerical Results

We show in this section several numerical results referring to a one-dimensional
RTD, i.e. a heterostructure based on two AlGaAs barriers and a quantum
GaAs well. The model correctly reproduces the Negative Differential Resis-
tance (NDR) of the I-V characteristic of the device. We aim at studying
physical phenomena like the dependence of the I-V characteristics on the
electron effective mass, ambient temperature, barrier height and width, as
well as to test the numerical algorithms, as already discussed in the previous
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section. We have considered a RTD whose geometry is shown in Fig. 1(left):
The device length is 75 nm, the doping profile is 5 x 102! m~2 in the channel
(well and barriers) and 10?* m~3 elsewhere, while all the other parameters
vary according to the following simulations. The mobility is assumed to be
temperature dependent (cfr. [6]).

Dependence on the Effective Mass

The following figures show some numerical results for a RTD at 77 K. The
barrier profile is shown in Fig. 1(right): the height and width are 0.3 V
and 5 nm, respectively, while the quantum well is 5 nm wide. Throughout,
Jmax, Jmin denote the current density at the peak and at the valley, respec-
tively, and the Peak to Valley Ratio (PVR) is defined as PVR= Jyax/ Jmin-
The next four figures in Fig. 2 display the I-V characteristic for the fol-
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Fig. 1. Geometry (left) and barrier profile (right)

lowing values of the effective mass m (from left to right and top-down):
[0.067,0.126,0.1675, 0.201)mg, where myq is the free-electron mass. Table 1
(left) summarizes the main results. Notice that the higher the effective mass,
the stronger the NDR phenomenon, while the PVR increases progressively.
Notice that for the lowest value of the effective mass the NDR does not oc-
cur. The last pair of figures in Fig. 3 show the electron concentration at the
peak and at the valley of the current for the fixed value of the effective mass
m = 0.126my. In particular, notice the large values of the concentration in-
side the quantum well, especially at the valley which confirm the resonant
phenomenon, in accordance with the basic theory of the device ([5]).

Dependence on the Temperature

The second series of simulations is carried out with barrier height and width
of 0.35 V and 5 nm, respectively, while the quantum well width is 5 nm and
the effective mass is m = 0.126mq. Several values of the ambient tempera-
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Fig. 2. I-V characteristic: m = 0.067mo (top left), m = 0.126mo (top right), m =
0.1675mo (bottom left) and m = 0.201mo (bottom right)
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ture are considered, i.e. [77,100, 150,200, 300] K. Table 1 (right) collects the
results (in I.S. units). Observe that the NDR is a typical low temperature
phenomenon, weakening as the temperature rises. This behavior can be ex-
plained theoretically by considering the different dependence of the current at
the valley and at the peak on the temperature. In the first case, the resonant
level is inside the energy gap, thus the higher the temperature, the larger the
current, because more electrons occupy the energy levels near the conduction
band. In the second case, the resonant level coincides with the conduction
band, thus the current is less sensitive to the temperature because all the
levels near the conduction band have large tunneling probabilities, almost
independently of their occupation. As a consequence, the PVR decreases as
the temperature rises, until the NDR disappears eventually.

Table 1. I-V characteristics as a function of m (left) and T' (right)

m X Mo Jmax X 10% Jmin x 108 PVR T p Jmax X 10® Jmin x 102 PVR
067 6.22 6.22 // 77 25 0 241 1.23  1.96
.126 5.19 3.84 135 100 2.61  3.97 2.6 1.53
1675 1.52 827  1.84 150 2.41  9.07 845  1.07
.201 654 284 2.30 2002.32  20.3 20.3 //

Dependence on the Barrier Height

For this block of simulations we have taken a barrier profile with barrier
width of 5 nm and a quantum well width of 5 nm, while the effective mass
is m = 0.126mg and T = 77 K. Several values of the barrier height are
considered, i.e. [0.1,0.2,0.25,0.32,0.4] V and the results are summarized in
Table 2 (left) (in I.S. units). In this case, the higher the barrier height, the
lower the tunneling probability, thus we expect a decrease of the current as
the height increases. The PVR should increase with the height because of the
contribution to the total current of those electrons drifting thermoionically,
which become more important at the valley ([2]).

Dependence on the Barrier Width

For the last series of simulations we have considered a barrier height of 0.325
V, a quantum well width of 5 nm, a fixed device length of 75 nm, an effective
mass m = 0.126mg, and T' = 77 K. The following values of the barrier width
have been studied: [5, 8,9, 10] nm, and Table 2 (right) collects the simulation
results (in I.S. units). As the barrier width gets larger the current decreases
due to the reduced width of the peak value of the transmission coefficient.
Moreover, the PVR, starting with a barrier width equal to the width of the
quantum well, should first increase and then decrease ([9]).
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Table 2. I-V characteristics at different barrier heights (left) and widths (right)

Height Jmax X 10° Jmin x 10° PVR Width x10™° Jmax x 107 Jmin x 107 PVR

0.2 3.23 3.23 // 5 35.0 21.7 1.62
0.25 1.24 1.21 1.03 8 .536 .299 1.79
0.32 378 .243 1.56 9 144 103 1.39
0.4 12 .041 2.95 10 041 .037 1.09

4 Conclusions

We have studied and applied the QDD model to the simulation of a RTD. It
turns out that the QDD model is able to reproduce typical quantum effects of
the device, such as the NDR and correctly reproduces the physical quantities
such as electron concentration, electric potential and quasi-Fermi level, even
over a wide range of variations of the parameters. We have also carried out
a parametric study of the I-V characteristic of the RTD as a function of
the electron effective mass, the width and height of the barriers, and of the
temperature. Moreover, we have compared three numerical algorithms and we
have proposed a suitable scaling of the equations in order to have numerically
stable problems.
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