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Abstract

The motion of an incompressible fluid confined to a shallow basin with a slightly varying
bottom topography is considered. Coriolis force, surface wind and pressure stresses, together
with bottom and lateral friction stresses are taken into account. We introduce appropriate
scalings into a three-dimensional anisotropic eddy viscosity model; after averaging on the
vertical direction and considering some asymptotic assumptions, we obtain a two-dimensional
model, which approximates the three-dimensional model at the second order with respect
to the ratio between the vertical scale and the longitudinal scale. The derived model is
shown to be symmetrizable through a suitable change of variables. Finally, we propose some
numerical tests with the aim to validate the proposed model.

1 Introduction

Simulation of free surface flows plays an important role in many engineering applications such as
in the coastal exploitation and navigation. Classical mechanics (see e.g. [14]) describes the flow
of a Newtonian, viscous and incompressible fluid through the three-dimensional Navier-Stokes
equations (here called “NS3d” equations). In particular, we will consider the NS3d equations
with an anisotropic stress tensor, where different eddy viscosities appear, in the horizontal and
in the longitudinal scales. We further suppose the stresses on the free surface to be given both
by atmospheric pressure and wind; on the bottom a friction force is taken into account. Gravity
force and Coriolis force both act on the fluid as volume forces.

It is well known that the numerical solution of NS3d equations for a free surface flow is
generally very onerous. For this reason, in order to make the simulation of the water level as
efficient as possible, when the ratio between the vertical and the horizontal scales is small, it is
usual to consider the so called “Shallow Water” approximation.

In the literature (see e.g. [25]), in order to obtain a Shallow Water approximation (2D or
3D) of NS3d model, the viscosity is neglected in the derivation and a posteriori is added in the
Shallow Water model by the so-called efficient-viscosity (see e.g. [15]). In this paper, following
the idea of Gerbeau and Perthame in [9], we want to include the effect of the viscosity directly
in the derivation of a two-dimensional Shallow Water system. In this way, we obtain a (real)
viscous Shallow Water (or Saint Venant) system in which the effect of the physical viscosity can
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Figure 1: Vertical cross-section of the domain

be recovered. This model, referred to in the sequel as SW2d, represents an improvement over
the classical model for the description of a river flow in which the longitudinal scale is larger then
the transversal one. Our model can be viewed as an extension of the one-dimensional model
proposed in [9] and the differences between the physical NS3d model and this one will be pointed
out. Finally, the difference between the physical stress tensor arising from NS3d equations and
the approximated stress tensor arising from our model is estimated.

This paper is organized as follows. In Section 2 we provide the derivation of the conservative
model SW2d. In Section 3 the symmetrization of SW2d model, the SSW2d model in a not-
conservative form is presented; we also discuss there about second order viscous perturbations
of SSW2d model and about the convergence of its solution to the one of the unperturbed problem,
as the perturbation vanishes. In Section 4 we present some preliminary numerical experiments
are carried out in order to validate the SSW2d model with respect to the classical shallow water
system.

2 Derivation of the SW2d model

Let us consider an incompressible fluid with constant density ρ > 0 in a three dimensional
domain U which is normal with respect to the vertical direction z and vertically bounded by the
surfaces z = η(x, t) and z = b(x):

U := {(t, x, y, z) : t ∈ (0, T ), (x, y) ∈ Ω, z ∈ (b(x, y), η(t, x, y))}, (2.1)

where T > 0, η : [0, T ] × Ω → R (T > 0) denotes the elevation, b : Ω → R
− the bottom depth

with respect to the same reference level and H = η − b the total height of the fluid from the
bottom to the free surface (see Fig.1). We denote by Ω the projection of U on the xy-plane and,
for the sake of simplicity, we assume Ω be the following rectangular domain:

Ω = {(x, y) ∈ R
2 : y ∈ (−L2/2, L2/2), x ∈ (xin, xout)}, (2.2)

where L2 > 0 and xin < xout (for the sequel, we set L1 = xout − xin).
The governing equations for the motion of an incompressible fluid in U × (0, T ], T > 0, are
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the Navier-Stokes equations (in the sequel, NS3D) that can be written as:
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(2.3)

where v = (u, v, w)T and p are the velocity and the pressure fields, respectively, l is the Coriolis
coefficient and g is the gravity acceleration (oriented downward). σ is the following symmetric
tensor (with null trace):

σ = (σij) =







µhD11 µhD12 µvD13

µhD21 µhD22 µvD23

µvD31 µvD32 µhD33






, (2.4)

where D = 5v + (5v)T , µh, µv are two positive constants, representing the horizontal and
vertical eddy viscosity coefficients with µh << µv (see, for instance, [19]). As usual, the physical
stress tensor σ � (symmetric), is obtained adding pressure to σ:

σ � = −pI + σ. (2.5)

Remark 2.1. For an isotropic Newtonian fluid a unique viscosity coefficient µ usually appears. In
this paper we will assume the Shallow Water approximation, then the stress tensor (2.4) has to preserve
isotropy only with respect to the vertical axis, so that the introduction of two different (eddy) viscosities
in the tensor is physically justified.

Observe further that tensor (2.4) has the same form as the tensor proposed by Levermore and Sam-

martino in [18], provided one considers the horizontal eddy coefficient µh to coincide with the bulk

viscosity coefficient, in their work µe. The authors made the physical assumption that µe should be much

smaller than µh with the rigid lid approximation; in our case, we take µh and µe of the same order of

magnitude.

System (2.3) must be completed by the initial condition for the velocity field, for the elevation
and by suitable boundary conditions. In particular, the boundary of U can be splitted into 5
different sides: the free surface S, the bottom surface B, the inflow surface Lin, the outflow
surface Lout and the closed surface Lc± (see Fig.2).

On S and on B both dynamical (involving the stress tensor) and kinematical conditions are
set, while on Lin, Lout and Lc± only kinematical conditions will be set. In particular, wind and
atmospheric stresses are given on the free-surface. Therefore,

s ����� |xy
= C|W |W , s ����� |z = pa, (2.6)

where s ����� is the total three-dimensional stress acting on S, W is the wind velocity, C ia
suitable coefficient and pa is the (positive) atmospheric pressure.
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Figure 2: Cut of domain U at level z = z̄ ∈ (b(x, y), η(t, x, y))

At the bottom B we assume that s ����� = kv(t, x, y, b), where k > 0 is the friction coeffi-
cient. Finally, we assume that the boundary Γ of the two-dimensional domain Ω (2.2) may be
partitioned as follows:

Γ = ∂Ω = Γ ��� ∪ Γ � �
	 ∪ Γ � , (2.7)

where Γ � = Γ � + ∪ Γ �� ,

Γ ��� = {(x, y) ∈ Γ : x = xin, y ∈ (−L/2, L/2)}, (2.8)

Γ � �
	 = {(x, y) ∈ Γ : x = xout, y ∈ (−L/2, L/2)},
Γ ��� = {(x, y) ∈ R

2 : x ∈ (xin, xout), y = ∓L/2}. (2.9)

The suffixes in, out and c stay respectively for inflow, outflow and closed, and refer to a possible
physical characterization of the boundary edges. Correspondingly, we define:

L = {(t, x, y, z) ∈ [0, T ] × R
3 : (t, x, y) ∈ (0, T ) × Γ, z ∈ (b(x, y), η(t, x, y))} (2.10)

and analogously Lin, Lout and Lc± . Normals to L are depicted in Fig.2. Following the previous
notations, for every t ∈ (0, T ], we complete the Navier-Stokes system with the following set of
boundary conditions:

on S :











1

%
σ � · n � + s ����� = 0,

w =
∂η

∂t
+ v · 5η;

(2.11)

on B :







1

%
σ � · n � + s ����� = 0,

w = v · 5b;
(2.12)

on L :











v · n � = 0 on Lc±

v · n ��� > 0 on Lin

v · n � �
	 < 0 on Lout

(2.13)

where nk with k equal to b, s, ±, in and out denotes the outward normals to the bottom, the
free-surface and the close boundaries.
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2.1 Adimensionalization of the NS3d system

In this section, we introduce an adimensional form of the NS3d equations, assuming that the
ratio ε between the vertical and the longitudinal scale is small. In particular, let us consider the
following absolute scales:

for the total length: L1, for the width: L2,
for the heigth: A, for the x-component of the velocity: U.

(2.14)

As we are in the Shallow Water assumptions, we consider A � L1 and A � L2. Moreover, since
we are interested in river flow simulation, we assume that L2 � L1. On theses assumptions, we
set:

ε := A/L1, γ := L2/L1, νh :=
µh

ρUL1
, νv :=

µv

ρUL1
. (2.15)

Note that νh and νv represent the inverse Reynolds numbers with respect to the eddy vis-
cosities µh and µv, while γ is considered to be a finite ratio such that ε � γ. The corresponding
derived scales are then:

for the time: L1/U, for the y-component of the velocity: V = γU,
for the pressure/density: U 2, for the z-component of the velocity: W = εU.

(2.16)

For the sake of simplicity we indicate again by η, b,H, u, v, w, p/%, respectively, elevation,
bottom level, total distance from the bottom level to the elevation level, velocity components
and specific pressure, after rescaling. The gravity acceleration g, the Coriolis coefficient l, the
surface stress s ����� and the friction coefficient k, are respectively rescaled as G, λ, S ����� and α.
Moreover, let us denote again by pa the rescaling of the atmospheric pressure.

It is worth mentioning the rescaling criteria for these last quantities. Denoting with square
brackets the term whose dimension we need to the rescaling, we have:

g −→ G

[[

1

%

∂p

∂z

]]

= G
U2

A
, l −→ λ

U

L2
,

s ��� � −→
(

S ��� � |x
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p

%
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∂x

]]
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p

%

∂η

∂y

]]
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[[

p

%

]])

=

=

(

S ����� |xεU
2,S ��� � |y

εU2

γ
, paU

2

)

,

k −→ αU,

s � � � = kv −→
(

αu

[[

p

%

]]

, αvγ

[[

p

%

]]

, αwε

[[

p

%

]])

=

=
(

αuU2, αvγU2, αwεU2
)

.

(2.17)

2.2 Asymptotic assumptions and integral averages

On the basis of physical assumptions, we assume that the vertical eddy viscosity is much greater
than the horizontal one and that friction on the bottom depends linearly on the (relative) depth
of the river, taken into account by the parameter ε. We can suppose that:

νv = εν0, νh = O(ε2), α = εα0. (2.18)
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Rescaling (2.3) together with boundary conditions (2.11)-(2.13) and using (2.14)–(2.17), we
obtain the following system:
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together with boundary conditions on S and on B respectively. Therefore, indicating by [σ �
11],

[σ �
12], [σ �

22], [σ �
23], [σ �

33] the rescaling of the stress tensor’s components, we have on S:
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Note that the third equation above is the result of a linear combination of the three equations
representing the dynamical condition on the free surface (see (2.11)).
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Following the same step, we rescale the conditions on B as follows:
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Now, the idea is to neglect quantities which are O(ε2) in (2.19)-(2.21). In view of such
approximations, we may then rewrite (2.19) as follows:
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Moreover, as soon as the gradient of the free surface remains bounded and recalling that the
bathymetry surface is assumed to be regular on Ω, we have that:

N(ε, η) = 1 + O(ε2), N(ε, b) = 1 + O(ε2).

We then complete (2.22) with upper and lower boundary conditions:
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The initial condition and the boundary conditions on (0, T )×Γ are not affected by the rescaling.
As we suppose the vertical scale to be ”small enough” with respect to the longitudinal scale,

we don’t loose much in precision (in the following we will specify exactly how much) if in (2.22)
we substitute to the velocity components and to the pressure, the corresponding integral averages
on the vertical axis from z = b(x, y), (x, y) ∈ Ω to z = η(t, x, y), (t, x, y) ∈ [0, T ] × Ω. Recalling
that H = η − b and using the notation

f̄(t, x, y) =
1

H(t, x, y)

∫ η(t,x,y)

b(x,y)
f(t, x, y, z) dz, (2.25)

if in (2.22) we integrate the first two equations from the bottom to the free surface and the third
equation from the bottom to a given vertical level z, we obtain on (0, T ] × Ω (using (2.23) and
(2.24)):
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Recalling that normals to ∂Ω (see Fig.2) don’t depend on z, and assuming v̄ = (ū, v̄)T , the

boundary conditions are now set on (0, T ) × Γ by:











v̄ · n � = ±v̄(t, x, y) = 0 on (0, T ) × Γ � ,

n ��� · v̄(t, x, y) = ū(t, x, y) > 0 on (0, T ) × Γ � � ,

n � � 	 · v̄(t, x, y) = −ū(t, x, y) < 0 on (0, T ) × Γ � �
	 .

(2.27)

Initial conditions on {t = 0} × Ω are given by:

v̄ = v̄0, H = H0. (2.28)

Let us now consider terms with an approximation of O(ε). From (2.22), (2.23), (2.24) and
(2.18), one obtains:

1

%
p(t, x, y, z) = S ����� |z + G(η(t, x, y) − z) + O(ε), (2.29)

∂2u

∂z2
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∂z
(t, x, y, b) = O(ε),

∂v

∂z
(t, x, y, η) = O(ε).

(2.30)

Therefore:

u(t, x, y, z) = ū(t, x, y) + O(ε), v(t, x, y, z) = v̄(t, x, y) + O(ε), (2.31)
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and straightforward we conclude that

u2(t, x, y) = ū2(t, x, y) + O(ε2), v2(t, x, y) = v̄2(t, x, y) + O(ε2), uv = ūv̄ + O(ε2). (2.32)

In order to derive our model, some further restrictions on given data have to be taken into
account. Firstly, we assume that

5b = O(ε), 5pa = O(ε), (2.33)

that is, we are supposing a slow varying bathymetry and a small atmospheric pressure gradient.
Moreover, as in [25], we suppose the horizontal components of the velocity to admit a linear
asymptotic expansion to the second order with respect to ε as:

u = ū + εu1 + O(ε2), v = v̄ + εv1 + O(ε2), (2.34)

where the zero order term is given by the mean value of quantities u and v respectively, computed
as in (2.25). This allows us to deduce from (2.31) that:

∂u

∂ϕ
=

∂ū

∂ϕ
+ O(ε),

∂v

∂ϕ
=

∂v̄

∂ϕ
+ O(ε) where ϕ ∈ {t, x, y} (2.35)

As in [9], Proposition 4.1, we obtain for the velocity and for the pressure the following approxi-
mations to the second order with respect to ε:

u(t, x, y, b) =
ū(t, x, y)

1 +
α0εH

3ν0

+ O(ε2), v(t, x, y, b) =
v̄(t, x, y)

1 +
α0εH

3ν0γ2

+ O(ε2), ,

∂

∂x

(

H
1

%
p̄

)

=
∂(Hpa)

∂x
+

G

2

∂H2

∂x
+ O(ε2),

∂

∂y

(

H
1

%
p̄

)

=
∂(Hpa)

∂y
+

G

2

∂H2

∂y
+ O(ε2).

(2.36)

Substituting (2.31) and (2.32) in (2.26), one obtains on (0, T ) × Ω, with a precision of O(ε2):







































































∂(Hū)

∂t
+

∂(Hū2)

∂x
+

∂(Hūv̄)

∂y
+

G

2

∂H2

∂x
=

λHv̄ − ∂(Hpa)

∂x
− S ��� � |x − α0

1 + α0εH
3ν0

ū,

γ2

(

∂(Hv̄)

∂t
+

∂(Hūv̄)

∂x
+

∂(Hv̄2)

∂y

)

+
G

2

∂H2

∂y
=

−λHū − ∂(Hpa)

∂y
− S ����� |y −

α0γ
2

1 + α0εH
3ν0γ

2

v̄,

∂H

∂t
+

∂

∂x
(Hū) +

∂

∂y
(Hv̄) = 0.

(2.37)
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Recovering dimensions in (2.37) we have on (0, T ) × Ω:







































































∂(Hū)

∂t
+

∂(Hū2)

∂x
+

∂(Hūv̄)

∂y
+

g

2

∂H2

∂x
=

lHv̄ − ∂(Hpa)

∂x
− s ����� |x − k

1 + kH
3µv

ū,

∂(Hv̄)

∂t
+

∂(Hūv̄)

∂x
+

∂(Hv̄2)

∂y
+

g

2

∂H2

∂y
=

−lHū − ∂(Hpa)

∂y
− s ����� |y −

k

1 + kH
3µv

v̄,

∂H

∂t
+

∂

∂x
(Hū) +

∂

∂y
(Hv̄) = 0,

(2.38)

which in compact form reads as:







































∂

∂t
(Hv̄) + 5 · (Hv̄ ⊗ v̄) + gH 5 H =

= lH ˆ̂v −5(Hpa) − s ����� |xy
− k

1 + kH
3µv

v̄,

∂H

∂t
+ 5 · (Hv̄) = 0.

(2.39)

Gradient and divergence operators are meant here as two-dimensional operators, s ����� |x,y
rep-

resents the vector of the first two components of the surface stress, v is the two-dimensional
vector of the two horizontal velocity components (v = (u, v)), while through vector ˆ̂v = (v̄,−ū)
we represent the Coriolis term.

We refer to (2.39) as our SW2d model, completed by boundary and initial conditions (2.27)-
(2.28).

System (2.39) has now become two-dimensional, meaning that spatial variables involved are
only two: x and y; the same way, only two averaged velocity components are involved: ū and v̄.
Note further, that momentum conservation equations are reduced from three (in (2.3)) to only
two.

Remark 2.2. Let us recall the classical unviscid two-dimensional Shallow Water system (see, for
instance, [1]) on (0, T )× Ω:



































∂

∂t
(Hv̄) + 5 · (Hv̄ ⊗ v̄) + gH 5 H =

= lH ˆ̂v − H 5 pa + ssup|xy
− g |v̄| v̄

C2

1

,

∂H

∂t
+ 5 · (Hv̄) = 0,

(2.40)

where we are considering notation (2.6). The friction term is modeled through the so-called Chézy formula
which involves a suitable proportion constant C1.

Notice, in comparison with our model (2.39), that classical model presents a different treatment of

the friction term and of the surface stresses, while convective and pressure terms are left the same.
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2.3 Recovering 3d-like informations.

Thanks to the continuity equation in (2.22), recalling the last relation in (2.24), we recover the
vertical component of the velocity by the relation:

w(t, x, y, z) = u(t, x, y, b(x, y))
∂b

∂x
(x, y) + v(t, x, y, b(x, y))

∂b

∂y
(x, y)+

−
∫ z

b(x,y)

∂u

∂x
(t, x, y, r) dr −

∫ z

b(x,y)

∂v

∂y
(t, x, y, r) dr.

(2.41)

Moreover, by (2.31), (2.41) takes the form

w(t, x, y, z) = ū(t, x, y)
∂b

∂x
(x, y) + v̄(t, x, y)

∂b

∂y
(x, y) − (z − b(x, y))

∂ū

∂x
(t, x, y)+

− (z − b(x, y))
∂v̄

∂y
(t, x, y) + O(ε). (2.42)

Then, we calculate the average vertical velocity as

w̄(t, x, y) = ū(t, x, y)
∂b

∂x
(x, y) + v̄(t, x, y)

∂b

∂y
(x, y) − H

2
(t, x, y)

∂ū

∂x
(t, x, y)+

− H

2
(t, x, y)

∂v̄

∂y
(t, x, y) + O(ε).

It is important to notice that we can obtain also the average value of the total stress tensor (2.5)
with an approximation of O(ε2). In fact, if we consider the rescaling of the total stress tensor
(2.5), using the notation in (2.14)–(2.17), we have:

[[

σ �

%

]]

= U2 ·















−p

%
+ 2νh

∂u

∂x

νh

γ

∂u

∂y
+ νhγ

∂v

∂x

νv

ε

∂u

∂z
+ νvε

∂w

∂x
νh

γ

∂u

∂y
+ νhγ

∂v

∂x
−p

%
+ 2νh

∂v

∂y
νv

γ

ε

∂v

∂z
+ νv

ε

γ

∂w

∂y
νv

ε

∂u

∂z
+ νvε

∂w

∂x
νv

γ

ε

∂v

∂z
+ νv

ε

γ

∂w

∂y
−p

%
+ 2νh

∂w

∂z















.

Then, approximating to O(ε2), using (2.42), (2.31) and (2.29) we conclude that

[[

σ �

%

]]

− U2 (pa + G(η(t, x, y) − z)) I3×3. (2.43)

Averaging and recovering dimensions, we obtain, modulus an O(ε2):

σ �

%
= −

(

pa + g
H

2

)

I3×3. (2.44)

Remark that only pressure terms don’t drop through the O(ε2) approximation.
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2.4 Further remarks

Let us observe that if we average model (2.37) along y-axis (where y ∈ (−L/2, L/2)) then it
is not possible anymore to extend the asymptotic reasoning described in the last paragraph to
obtain a one-dimensional model from the two-dimensional SW2d model (2.39).

It is important to note that the whole asymptotic analysis previously described starts from
the validity of (2.30), but a relation similar to (2.30) like:

∂2u

∂y2
(t, x, y, z) = O(ε),

∂2v

∂y2
(t, x, y, z) = O(ε),

does not hold as one can verify from (2.22). In fact, in sight of (2.18), it is evident that terms
∂2u

∂z2
and

∂2v

∂z2
appear, respectively, in the first and in the second equation of (2.22) with an ε

factor at the denominator, which permits (2.30) to be valid. On the other side, it can be seen

that this fact doesn’t hold for terms like
∂2u

∂y2
and

∂2v

∂y2
.

Remark that an analogous derivation of our model (2.39) together with boundary and initial
conditions (2.27)-(2.28) can be obtained with a general bounded domain with a piecewise smooth
boundary, provided boundary conditions are of the form v̄ ·n≥

≤0, where n doesn’t depend on z,
or of Dirichlet type.

3 The symmetrized model (SSW2d)

Let us consider again the SW2d system (2.38) in conservative form, denoting, for the sake of
simplicity, ū, v̄ and µv, respectively with u, v and µ on (0, T ) × Ω. This system is completed
with initial and boundary conditions (2.27)-(2.28). In quasi-linear form the system (2.38) can
be rewritten in the form:

∂V

∂t
+ A1(t, x, y,V )

∂V

∂x
+ A2(t, x, y,V )

∂V

∂y
= G(t, x, y,V ), (3.1)

where V = (Hu,Hv,H)T ,

A1(t, x, y,V ) =





2u 0 gH + pa − u2

v u −uv
1 0 0



 , (3.2)

A2(t, x, y,V ) =





v u −uv
0 2v gH + pa − v2

0 1 0



 ,

and

G(t, x, y,V ) =





















lHv − H
∂pa

∂x
− s ����� |x − ku

1 +
kH

3µ

−lHu − H
∂pa

∂y
− s ����� |y −

v

1 +
kH

3µ
0





















.
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Remark that the dependence of A1, A2 and G on t, x and y, is due to the explicit dependence
of terms pa and s ����� |xy on those variables.

The following proposition holds:

Proposition 3.1. Consider:

A(ξ, t, x, y,V ) = ξ1A1(t, x, y,V ) + ξ2A2(t, x, y,V ), ∀ξ ∈ R
2 \ {0},

where A1 and A2 are given by (3.2). The three eigenvalues of the SW2d system are then given
by:

λ2(ξ, t, x, y,V ) = ξ1u + ξ2v, λ1,3(ξ, t, x, y,V ) = ξ1u + ξ2v ∓
√

gH + pa

√

(ξ2
1 + ξ2

2). (3.3)

Therefore, the SW2d system is a (first order-quasilinear) strictly hyperbolic system.

In fact, since pa is a positive constant (as atmospheric pressure is always positive), we have
that:

λ1(ξ, t, x, y,V ) < λ2(ξ, t, x, y,V ) < λ3(ξ, t, x, y,V ).

Then, following the definition cited in Serre [23] vol.I, Chapter 3, the model is (quasilinear)
hyperbolic.

A wide analytical theory on hyperbolic problems has been developed in the case they are
symmetrizable. Therefore, we will first consider a symmetrization of (first order hyperbolic)
SW2d system, given by (3.1), in order to obtain the symmetric system, denoted by SSW2d, which
we show to be hyperbolic as well. We will then exploit if SSW2d model may be considered as
the inviscid limit of a sequence of artificial viscous perturbed (second order) parabolic problems.

We concentrate our attention in the case when pa is a non-null function of x, y and t. In
this case, we postulate that a Shallow Water flow on which an atmospheric pressure is acting,
behaves equivalently (from a physical point of view) to a Shallow Water flow with elevation
“fictitiously” increased by the constant value pa/g with no atmospheric pressure acting on it
(see Fig.3).
Formalizing this fact, let us define η ′ = η +pa/g, and derive newly the system as in the previous
sections (when pa = 0). In practice, we are considering that the free surface is now given by:

S ′ = {(t, x, y, z) ∈ [0, T ] × R
3 s.t. z = η′(t, x, y), (t, x, y) ∈ [0, T ] × Ω}. (3.4)

We set
Ĥ = H +

pa

g
, (3.5)

observing that Ĥ is always strictly positive (as
pa

g
).

Taking these considerations into account, if we reduce the NS3d model, we obtain on (0, T )×Ω
the system:















































∂(Ĥu)

∂t
+

∂(Ĥu2)

∂x
+

∂(Ĥuv)

∂y
+

g

2

∂Ĥ2

∂x
lĤv − s ����� |x − k

1 + kĤ
3µ

u,

∂(Ĥv)

∂t
+

∂(Ĥuv)

∂x
+

∂(Ĥv2)

∂y
+

g

2

∂Ĥ2

∂y
− lĤu − s ����� |y −

k

1 + kĤ
3µ

v,

∂Ĥ

∂t
+

∂

∂x
(Ĥu) +

∂

∂y
(Ĥv) = 0.

(3.6)
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x

η( t,x,y)

b(x,y)

H(t,x,y)

River bottom

ssupz /g

^
Physical free surface

Fictitiously increased free surface

z

Figure 3: Vertical cross-section with elevation “fictitiously increased”

Remark that assumption (2.33) on the “smallness” of 5pa becomes not restrictive for model
(3.6), as we are supposing that no atmospheric pressure is acting. In quasi-linear form system
(3.6) reads as:

∂V̂

∂t
+ Â1(V̂ )

∂V̂

∂x
+ Â2(V̂ )

∂V̂

∂y
= Ĝ(t, x, y, V̂ ), (3.7)

where we posed V̂ = (Ĥu, Ĥv, Ĥ)T ,

Â1(V̂ ) =





2u 0 gĤ − u2

v u −uv
1 0 0



 , Â2(V̂ ) =





v u −uv

0 2v gĤ − v2

0 1 0



 , (3.8)

and

Ĝ(t, x, y, V̂ ) =





















lĤv − s ��� � |x − ku

1 +
kĤ

3µ

−lĤu − s ����� |y −
kv

1 +
kĤ

3µ
0





















.

Now we can symmetrize system (3.7) i.e., performing a suitable change of variables we trans-
form matrices Â1 and Â2 into symmetric ones (the right hand side Ĝ will be consequently
changed).

Let us introduce the new vector variable:

U = (u, v,Hg)
T , Hg = 2

√

gĤ = 2
√

gH + pa, (3.9)

where Hg, known as the celerity variable, is always positive even if the effective elevation H is
vanishing. In fact we have:

Hg ≥ 2
√

pa > 0. (3.10)

Using the new set of variables, we can rewrite system (3.7) in the following form

∂V̂

∂U

∂U

∂t
+ Â1(V̂ )

∂V̂

∂U

∂U

∂x
+ Â2(V̂ )

∂V̂

∂U

∂U

∂y
= Ĝ(t, x, y, V̂ ). (3.11)
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We debote

Â0(V̂ ) ≡ ∂V̂

∂U



























Ĥ 0
Ĥu
√

gĤ

0 Ĥ
Ĥv
√

gĤ

0 0
Ĥ
√

gĤ



























, with Â0(V̂ )−1

















1

Ĥ
0 − u

Ĥ

0
1

Ĥ
− v

Ĥ

0 0

√

gĤ

Ĥ

















. (3.12)

Matrix Â0 and their inverse are is well posed as Ĥ is always strictly positive.
Multiplying to the left all terms defined in (3.11) by Â−1

0 (V̂ ), we finally obtain the symmetric
system:

∂U

∂t
+ S1(U)

∂U

∂x
+ S2(U )

∂U

∂y
= F (t, x, y,U ), (3.13)

where:

S1(U) =











u 0
Hg

2
0 u 0

Hg

2
0 u











, S2(U) =











v 0 0

0 v
Hg

2

0
Hg

2
v











, (3.14)

and

F (t, x, y,U ) =



























lv −
4gs ����� |x

H2
g

− 4gku

H2
g

(

1 +
kH2

g

12gµ

)

−lu −
4gs ����� |y

H2
g

− 4gkv

H2
g

(

1 +
kH2

g

12gµ

)

0



























. (3.15)

We will refer the symmetric system (3.13) as two-dimensional Symmetric Shallow Water
system, briefly denoted by SSW2d in the sequel. By components, in nonconservative form on
(0, T ] × Ω it looks like:























































∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

Hg

2

∂Hg

∂x
− lv +

4gs ��� � |x

H2
g

+
4gku

H2
g

(

1 +
kH2

g

12gµ

) = 0,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

Hg

2

∂Hg

∂y
+ lu +

4gs ��� � |y

H2
g

+
4gkv

H2
g

(

1 +
kH2

g

12gµ

) = 0,

∂Hg

∂t
+ 5 · (vHg) −

Hg

2
5 ·v = 0,

(3.16)

where v = (u, v)T .
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In the following, we will always deal with the SSW2d system together with initial and bound-
ary conditions (2.27)-(2.28). Let us now show some analytical properties. Of course, as soon as
5pa = O(ε), the solutions of (3.16) may be interpreted as the solutions of the previously SW2d
model.

Proposition 3.2. The eigenvalues of system SSW2d are given by:

λ2(ξ,U) = ξ1u + ξ2v, λ1,3(ξ,U)ξ1u + ξ2v ∓ Hg

2

√

(ξ2
1 + ξ2

2) (3.17)

and the SSW2d system is a quasilinear strictly hyperbolic system.

In fact, as Hg > 0 (see (3.10)), we have that

λ1(ξ,U ) < λ2(ξ,U ) < λ3(ξ,U ) (3.18)

Then the model is (quasilinear) hyperbolic. It is also important to note that the eigenvalues of
the SSW2d system are the same as the eigenvalues of the SW2d system.

Remark 3.1 (boundary conditions). If 0 < u < Hg/2, then Γin and Γout defined in (2.8) are
not-characteristic boundaries for SSW2d model. Further, on Γin the number of positive eigenvalues is

p = 2, while on Γout we have p = 1. For all x0 ∈
◦

Γin, take ξ = nin(x0) = (1, 0); from (3.17) we have:

λ1(ξ, U ) = u − Hg

2
, λ2(ξ, U ) = u, λ3(ξ, U ) = u +

Hg

2
,

while for all x0 ∈
◦

Γout, take ξ = nout(x0) = (−1, 0):

λ1(ξ, U) = −u − Hg

2
, λ2(ξ, U ) = −u, λ3(ξ, U) = −u +

Hg

2
.

On the other side, from boundary conditions (2.27), we have that Γc defined in (2.9) is a characteristic
boundary for SSW2d model on our bounded domain (2.2). Further on, we have on Γc exactly a null, a

positive and a negative eigenvalue. For all x0 ∈
◦

Γc, take ξ = (0,±1); from (3.17) we have:

λ1(ξ, U ) = ±v − Hg

2
λ2(ξ, U ) = ±v, λ3(ξ, U ) = ±v +

Hg

2
.

In the following, we will always consider for the sake of simplicity the following so-called subsonic hy-
pothesis:

u ∈
(

0,
Hg

2

)

, |v| ∈
[

0,
Hg

2

)

. (3.19)

3.1 Viscous perturbation of the SSW2d model

Let us consider a viscous perturbations of the SSW2d system (3.13), defined on the bounded
domain Ω (2.2) in the evolution time interval [0, T ]. To each equation of the SSW2d system
we add a Laplacian term multiplied by the artificial viscosity coefficient ν and we complete the
system with initial conditions and the following Dirichlet boundary conditions:



















∂Uν

∂t
+ S1(U

ν)
∂Uν

∂x
+ S2(U

ν)
∂U ν

∂y
− ν 4 Uν = F (t, x, y,U ν) on (0, T ] × Ω

Uν
Γ = a on Γ× [0, T ]

Uν
|t=0 = U0 on Ω × {t = 0}

(3.20)
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where a(t, x, y) is a function to be prescribed on (0, T ] × Γ and taking its values in R
3. We

used here as in (2.13) the same function-name a, to indicate Dirichlet conditions for a viscous
problem (system NS3d (2.3) or the above viscous perturbed SSW2d system (3.20)); of course,
we are dealing with two different functions, even if they show some logical relationship.

At present, an existence and uniqueness result global in time for smooth solutions of parabolic
problems like (3.20) is available (see e.g. Ladyzenskaia, Solonnikov, Ural’ceva [16], Theorem 7.1,
chap. VII, pgg. 596-597) only for a smooth and bounded boundary, with initial and boundary
conditions sufficiently smooth, satisfying suitable compatibility conditions.

However, as far as we know, existence and uniqueness results for initial boundary value
hyperbolic problems like:















∂U

∂t
+ S1(U )

∂U

∂x
+ S2(U)

∂U

∂y
= F (t, x, y,U ) on Ω × (0, T ]

UΓ ∈ C(a) on Γ × [0, T ]

U |t=0 = U0 on Ω × {t = 0}

(3.21)

and results on convergence of (3.20) to (3.21) in a suitable space-time norm, are not yet available
on a bounded domain like (2.2), even if one smooths its edges.

When the domain is a half-space in R
n, some literature is available on the convergence as

ν → 0 of perturbed symmetric problems like (3.20) to hyperbolic IVB problems like (3.21).
Let us observe that we may consider our bounded domain Ω (2.2) as the intersection of four

half-spaces:
Ω = Ωin ∩ Ωout ∩ Ωc+ ∩ Ωc−,

where, recalling Fig.2,

Ωin = {(x, y) ∈ R
2 s.t. x > xin}, Ωout = {(x, y) ∈ R

2 s.t. x < xout},
Ωc+ = {(x, y) ∈ R

2 s.t. y > −L/2}, Ωc− = {(x, y) ∈ R
2 s.t. y < L/2}.

(3.22)

If conditions (3.19) are satisfied and, in view of boundary conditions (2.27), Ωin and Ωout have
not-characteristic boundaries, while Ωc+ and Ωc− may have characteristic boundaries. We will
consider separately first the not-characteristic case, then the characteristic case (if v = 0).

1. The not-characteristic case: if we set our second order viscous perturbed SSW2d model
(3.20) into a half-space of the form Ωin (or Ωout), then by [16], we have that (3.20) has a
unique smooth solution U ν globally in time, while by [20] the hyperbolic problem (3.21)
has a unique smooth solution U 0 locally in time. Thanks to Grenier and Guès in [12], we
may also conclude that there exists a time T0 such that the following convergence result
is valid:

‖Uν − U‖L2((0,T0)×Ω → 0 as ν → 0.

A deeper analysis of the compatibility between the theory exposed by Grenier and Guès
in [12] and our case is shown in [7].

2. The characteristic case: for this case, literature is not so extensive as in the previous
one. We have a result by Guès in [13] for the semi linear case. In this case, we don’t have
much information on the admissible set of boundary conditions for the hyperbolic inviscid
limit, as we had in the not-characteristic case. Another result, by Grenier in [11], deals
with the quasilinear case, but only in the case of a scalar problem.
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Let us end this section by remarking that the classical Shallow Water model (2.40) is an
hyperbolic model as well, and that it may be symmetrized the same way as our SW2d model;
we shall refer to this one as to the CSSW2d model. In terms of variable U ∗ = (u, v,H∗

g)
T ,

where we posed:
H∗

g = 2
√

gH. (3.23)

The CSSW2d model on (0, T ) × Ω looks like:

∂U
�

∂t
+ S1(U

�

)
∂U

�

∂x
+ S2(U

�

)
∂U

�

∂y
= G(t, x, y,U

�

), (3.24)

where matrices S1 and S2 are the same as in (3.14), while the right hand side G is now given
by:

G(t, x, y,U
�

) =



















lv − ∂pa

∂x
+

4gs ����� |x

H∗2
g

− 4g2ku |v|
H∗2

g

−lu − ∂pa

∂y
+

4gs ��� � |y

H∗2
g

− 4g2kv |v|
H∗2

g

0



















, (3.25)

assuming that H∗
g > 0 iff H > 0.

Remark 3.2. About the introduction of a viscous perturbation, we want to mention the paper
by Sammartino and Caflisch in [22]. They consider the convergence of the three-dimensional
incompressible Navier-Stokes equations to the inviscid incompressible Euler equations; the phys-
ical second order viscous term which appears in the Navier-Stokes equation is considered to be
vanishing, thus “perturbing” the momentum equation in the Euler system, but the continuity
equation is left unaltered. In our paper, instead, following Grenier and Guès in [12], we con-
sider an artificial second order viscous perturbation of all the equations of a hyperbolic system
(with suitable properties).

Finally, it is important to notice that the presence of the atmospheric pressure term pa in
(3.13) allows the simulation of real phenomena s.t. storms, where the varying of that quantity
is compulsory. In our work it is worth noting the originality of treating atmospheric pressure,
where we “plugged” it into a free surface (reduced) model, while in the oceanographic literature
(see e.g. [10]), rigid lid models are considered.

4 Numerical experiments

In this section we present an academic test case in order to compare the results of the pro-
posed model with the results obtained with the viscous perturbed CSSW2d model, when the
atmospheric pressure and the Coriolis effects are neglected (s ����� |x = s ����� |y = 0 and l = 0).

Numerical approximation is based on the space-time approximation introduced in [8]: in par-
ticular, we consider piecewise-quadratic finite element in space and a first order semi-implicit
finite difference scheme in time. Notice that on the test cases, we will refer to the MKS sys-
tem of measurement; for the sake of simplicity, we will often omit in the following the unit of
measurement.

All the numerical results are obtained using the C++ library FreeFem++ [17].
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4.1 The gaussian hill test case

We deal with the spreading of a body of water initially having a Gaussian-hill distribution. The
closed water basin is Ω = [0, 10] × [0, 10] with a flat bathymetry b(x, y) = −1. The final time is
T = 0.81. Initial conditions are:

C(x, y, 0) = 5 + 5exp((−(x − 5)2 − (y − 5)2 + 1)), u0 = 0, v0 = 0, (4.1)

while for any time t ∈ (0, T ] the boundary conditions are given by:

u = 0, v = 0, C = 5.

The variable C is Hg (see (3.9)) when the SSW2d model is considered, H ∗
g (see (3.23)) for the

CSSW2d model. Remark that in the viscous perturbed SSW2d model, the atmospheric pressure
term is comprised into the celerity term Hg, while in the viscous perturbed CSSW2d model,
pressure is considered apart from the celerity variable H ∗

g .
On a uniform triangular grid (with space-step equal to 0.5) we compare the different behaviors

of our perturbed SSW2d model with the viscous perturbed CSSW2d model, considering different
values of the artificial viscosity parameter ν; we first point out the difference in treating the
friction term (letting the atmospheric pressure be a constant) and the atmospheric-pressure
term, considering an atmospheric pressure wave acting on the Gaussian hill. In both cases
we neglect for simplicity the wind effect and the Coriolis force effect; we set the time-step
∆t = 0.001, the final evolution time T = 0.81 and the physical viscosity parameter µ = 0.2.

In the following simulations we will compare the isovalues of the elevation η (see the beginning
of Section 2) at the final time t = T with the vertical cuts of the elevation profiles in y = 5
at t = T obtained by the viscous perturbed SSW2d model and the viscous perturbed CSSW2d
model with artificial viscosity values ν = 0.1 and ν = 0.00001 respectively.

Friction effects. Let us choose k = 50 and pa = 1. The initial plotting of elevation in the
case of our model is very similar to that for the classical model, as the atmospheric pressure is
supposed to be a constant.

Remark that our model evolves more rapidly than the classical one; in fact at the final time
(Fig. 4(a), Fig. 4(c) and Fig. 5(a), Fig. 5(c)) we notice that the wave depicted by our model is
already propagating toward the boundary, loosing much of its initial elevation, while the wave
depicted by the classical model (Fig. 4(b), Fig. 4(d) and Fig. 5(b), Fig. 5(d)) is still going down
from its initial elevation. It is clear that the classical model is quasi-insensitive with respect to
variations of the artificial viscosity, while our model is very sensitive to variations on the artificial
viscosity. Physically, water, which is an almost inviscid flow, behaves near to simulations with an
artificial viscosity ν = 0.00001, which is a value of the same magnitude order of water physical
viscosity. This fact is in accordance with respect to the convergence theory recalled in Section
3.1 (even if in particular cases) and with respect to our accurate model derivation exposed in
Section 1.

Atmospheric pressure effects. In order to point out atmospheric pressure effects, let us
consider an experiment where k = 0 and atmospheric pressure is given by:

pa = x + t (4.2)
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Since atmospheric pressure is not constant, the initial plotting of elevation for the viscous per-
turbed CSSW2d model is just the same as if pressure is constant (as the classical model is
pressure independent). But in the case of our SSW2d model, where elevation takes the atmo-
spheric pressure into account, then the plotting of initial elevation is quite different from the
constant-pressure case (compare Fig.6(a) and Fig.6(b)). We observe that elevation η might take
negative values, as it is in the case of our model (see Fig. 7(a), Fig. 7(c) and Fig. 8(a), Fig. 8(c)).
In this situation, both the perturbed CSSW2d (see Fig. 7(b), Fig. 7(d) and Fig. 8(b), Fig. 8(d))
and the perturbed SSW2d model are sensitive to the change of artificial viscosity. In particular
for ν = 0.00001 both the perturbed SSW2d model and the perturbed CSSW2d model behave
much less regularly as for ν = 0.1. Notice that for a low value of the artificial viscosity param-
eter ν, some peaks are generated. Observing the wave profiles, one may conclude that results
obtained by our model look closer to physical expectation than the classical one. As a pressure
wave moving horizontally toward the positive orientation of x-axis is acting, one expects the
wave to be “lower” on that side; that is what happens by our new model, while the classical
model behaves thoroughly unphysically.

5 Conclusions and open problems

We newly derived a two-dimensional Shallow Water model (SW2d model) on a bounded domain
and set physical boundary conditions on velocity. A specification of the “nature” (characteristic,
not-characteristic) of boundary edges is set.

An open problem is to demonstrate the convergence of the artificial viscous-perturbed model
to our model on a two-dimensional domain, with inhomogeneous initial and boundary data
and with different combinations of characteristic and not-characteristic edges. It would be
also interesting to find out what is the time-interval while our system evolves smoothly, in
relation with initial and boundary data and supposing that we are in the subsonic assumptions
(3.19). Another task which could be performed, is to find out some relations between initial
and boundary conditions such that the subsonic hypothesis, which are supposed a priori, are
effectively point-wise fulfilled.
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Elevazione al tempo t= 0.81sec.
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Figure 4: (a) Final total elevation for the gaussian hill case: the viscous perturbed SSW2d
model, ν = 0.00001, friction k = 50, atmospheric pressure pa = 1. (b) Final total
elevation for the Gaussian hill case: the viscous perturbed CSSW2d model, ν = 0.00001, friction
k = 50, atmospheric pressure pa = 1 (c) Elevation profile of the final total elevation
for the Gaussian hill case: the viscous perturbed SSW2d model, ν = 0.00001, friction k =
50, atmospheric pressure pa = 1 (d) Elevation profile of the final total elevation for
the Gaussian hill case: the viscous perturbed CSSW2d model, ν = 0.00001, friction k = 50,
atmospheric pressure pa = 1
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Elevazione al tempo t= 0.81sec.
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Figure 5: (a) Final total elevation for the Gaussian hill case: the viscous perturbed SSW2d
model, ν = 0.1, friction k = 50, atmospheric pressure pa = 1 (b) Final total elevation
for the Gaussian hill case: the viscous perturbed CSSW2d model, ν = 0.1, friction k = 50,
atmospheric pressure pa = 1 (c) Elevation profile of the final total elevation for the
Gaussian hill case: the viscous perturbed SSW2d model, ν = 0.1, friction k = 50, atmospheric
pressure pa = 1 (d) Elevation profile of the final total elevation for the Gaussian hill
case: the viscous perturbed CSSW2d model, ν = 0.1, friction k = 50, atmospheric pressure
pa = 1
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Figure 6: (a) Initial total elevation for the Gaussian hill case: the viscous perturbed SSW2d
model, atmospheric pressure pa = x+t (b) Initial total elevation profile for the Gaussian
hill case: the viscous perturbed CSSW2d model, atmospheric pressure pa = x + t
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Figure 7: (a) Final total elevation for the Gaussian hill case: the viscous perturbed SSW2d
model, ν = 0.00001, friction k = 0, atmospheric pressure pa = x + t (b) Final total
elevation for the Gaussian hill case: the viscous perturbed CSSW2d model, ν = 0.00001, friction
k = 0, atmospheric pressure pa = x + t (c) Elevation profile of the final total elevation
for the Gaussian hill case: the viscous perturbed SSW2d model, ν = 0.00001, friction k = 0,
atmospheric pressure pa = x + t (d) Elevation profile of the final total elevation for
the Gaussian hill case: the viscous perturbed CSSW2d model, ν = 0.00001, friction k = 0,
atmospheric pressure pa = x + t
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Figure 8: (a) Final total elevation for the Gaussian hill case: the viscous perturbed SSW2d
model, ν = 0.1, friction k = 0, atmospheric pressure pa = x + t (b) Final total
elevation for the Gaussian hill case: the viscous perturbed CSSW2d model, ν = 0.1, friction
k = 0, atmospheric pressure pa = x+t (c) Elevation profile of the final total elevation for
the Gaussian hill case: the viscous perturbed SSW2d model, ν = 0.1, friction k = 0, atmospheric
pressure pa = x + t (d) Elevation profile of the final total elevation for the Gaussian
hill case: the viscous perturbed CSSW2d model, ν = 0.1, friction k = 0, atmospheric pressure
pa = x + t
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